On generalized moving least squares and diffuse derivatives

Davoud Mirzaei
Department of Mathematics, University of Isfahan, 81746-73441 Isfahan, Iran
d.mirzaei@sci.ui.ac.ir
Robert Schaback*
Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, D-37073 Göttingen, Germany
*Corresponding author: schaback@math.uni-goettingen.de
AND
Mehdi Dehghan
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Avenue, 15914 Tehran, Iran mdehghan@aut.ac.ir

[Received on 1 February 2011; revised on 29 June 2011]

The moving least squares (MLS) method provides an approximation \hat{u} of a function u based solely on values $u\left(x_{j}\right)$ of u on scattered 'meshless' nodes x_{j}. Derivatives of u are usually approximated by derivatives of \hat{u}. In contrast to this, we directly estimate derivatives of u from the data, without any detour via derivatives of \hat{u}. This is a generalized MLS technique, and we prove that it produces diffuse derivatives as introduced by Nyroles et al. (1992, Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech., 10, 307-318). Consequently, these turn out to be efficient direct estimates of the true derivatives, without anything 'diffuse' about them, and we prove optimal rates of convergence towards the true derivatives. Numerical examples confirm this, and we finally show how the use of shifted and scaled polynomials as basis functions in the generalized and standard MLS approximation stabilizes the algorithm.

Keywords: moving least squares (MLS) approximation; local polynomial reproduction; full derivative; diffuse derivative; shifted, scaled polynomials basis; meshless methods.

1. Introduction

The moving least squares (MLS) approximation was introduced by Lancaster \& Salkauskas (1981) and inspired by the pioneering work of Shepard (1968) to approximate surfaces in multidimensional spaces. The MLS approximates the value $u(x)$ of an unknown function u from given data $u\left(x_{1}\right), \ldots, u\left(x_{N}\right)$ at nodes x_{1}, \ldots, x_{N} near x by a value

$$
\hat{u}(x)=\sum_{j=1}^{N} a_{j}(x) u\left(x_{j}\right) \approx u(x)
$$

where the functions $a_{j}(x)$ are called shape functions. In the sense of Belytschko et al. (1996), this is a meshless method because it writes an approximate solution entirely in terms of nodal values. The error
analysis of the method was presented in Levin (1998), Armentano (2001) and Wendland (2001, 2005) in different ways. In particular, we refer the reader to Levin (1998) for an account of the background connection to Backus-Gilbert optimality and related papers and to Levin (1999) for the application to numerical integration.

There have been many meshless techniques based on the MLS approximation for the numerical solution of differential equations in recent years. When setting up a large linear system for solving PDEs, MLS approximations are used to provide approximations to derivatives $D^{\alpha} u(x)$. This can be done via $D^{\alpha} \hat{u}(x) \approx D^{\alpha} u(x)$, i.e., taking exact derivatives of the MLS solution, or via a direct estimation of $D^{\alpha} u(x)$ from the data $u\left(x_{1}\right), \ldots, u\left(x_{N}\right)$ near x.

This paper describes the second approach and links it to the concept of diffuse derivatives introduced by Nyroles et al. (1992). It turns out that the second approach calculates diffuse derivatives, and therefore, these are a direct optimal estimation from the data. We prove optimal convergence rates for the diffuse derivatives and give numerical examples. A forthcoming paper by Mirzaei \& Schaback (2011) will apply our results to make the meshless local Petrov-Galerkin method (MLPG) by Atluri \& Zhu (1998), Atluri \& Shen (2002) and Atluri (2005) considerably more effective. This is the main motivation behind our approach.

This paper is organized as follows. Section 2 contains a review of the generalized moving least squares (GMLS) approximation in a form very similar to Levin (1998). In Section 3 classical and diffuse derivatives in the sense of Nyroles et al. (1992) and their connections to the GMLS are described. It is proven that diffuse derivatives are GMLS approximations of true derivatives. The main contribution of the paper is in Section 4 concerning error bounds for GMLS approximations of derivatives. Here, we follow the analysis path introduced by Wendland $(2001,2005)$ and the concept of norming sets introduced by Jetter et al. (1999) and adapt it to the approximation of derivatives. Finally, Section 5 provides numerical examples, while Section 6 illustrates the implementation.

2. The GMLS approximation

In the classical MLS, given a set $\left\{u\left(x_{j}\right)\right\}$ of values of an unknown function u in a domain $\Omega \subseteq \mathbb{R}^{d}$ at nodes $x_{j} \in \Omega \subseteq \mathbb{R}^{d}$ for $1 \leqslant j \leqslant N$, the value $u(x)$ at a fixed point $x \in \mathbb{R}^{d}$ is approximately recovered by minimizing a certain weighted discrete l_{2}-norm. But here we start with a generalized version of MLS.

Let $u \in C^{m}(\Omega)$ for some $m \geqslant 0$ and let $\left\{\lambda_{j}(u)\right\}_{j=1}^{N}$ be a set of continuous linear functionals λ_{j} from the dual $C^{m}(\Omega)^{*}$ of $C^{m}(\Omega)$. For a fixed given functional $\lambda \in C^{m}(\Omega)^{*}$ our problem is the approximate recovery of the value $\lambda(u)$ from the values $\left\{\lambda_{j}(u)\right\}_{j=1}^{N}$. The functionals λ and $\lambda_{j}, 1 \leqslant j \leqslant N$, can, for instance, describe point evaluations of u and its derivatives up to order m. The approximation $\widehat{\lambda(u)}$ of $\lambda(u)$ should be a linear function of the data $\lambda_{j}(u)$, i.e., it should have the form

$$
\begin{equation*}
\widehat{\lambda(u)}=\sum_{j=1}^{N} a_{j}(\lambda) \lambda_{j}(u), \tag{2.1}
\end{equation*}
$$

and the coefficients a_{j} should be linear in λ. As in the classical MLS, we assume the approximation equation (2.1) to be exact for a finite-dimensional subspace $\mathscr{P}=\operatorname{span}\left\{p_{1}, p_{2}, \ldots, p_{Q}\right\} \subset C^{m}(\Omega)$, i.e.,

$$
\begin{equation*}
\sum_{j=1}^{N} a_{j}(\lambda) \lambda_{j}(p)=\lambda(p) \quad \text { for all } p \in \mathscr{P} \tag{2.2}
\end{equation*}
$$

The GMLS approximation $\widehat{\lambda(u)}$ to $\lambda(u)$ is numerically obtained as $\widehat{\lambda(u)}=\lambda\left(p^{*}\right)$, where $p^{*} \in \mathscr{P}$ is minimizing the weighted least-squares error functional

$$
\begin{equation*}
\sum_{j=1}^{N}\left(\lambda_{j}(u)-\lambda_{j}(p)\right)^{2} w_{j} \tag{2.3}
\end{equation*}
$$

over all $p \in \mathscr{P}$, where we use positive weights w_{1}, \ldots, w_{N} which later will be chosen in a specific way to localize the approximation. Of course, we then have to prove that (2.1) holds, but we shall achieve it only for the optimal solution.

Suppose the set point $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset \Omega$ and $x \in \Omega$. The classical MLS is a special case of GMLS when λ and $\lambda_{j}, 1 \leqslant j \leqslant N$, are point evaluation functionals at x and $x_{j}, 1 \leqslant j \leqslant N$, and \mathscr{P} is a finite-dimensional space of polynomials, while the weights are of the form

$$
\begin{equation*}
w_{j}=w\left(x, x_{j}\right), \quad 1 \leqslant j \leqslant N \tag{2.4}
\end{equation*}
$$

with a non-negative weight function w that vanishes when the arguments are at a certain distance.
Furthermore, the classical MLS has an equivalent formulation, which in our generalization amounts to minimizing the quadratic form

$$
\begin{equation*}
\frac{1}{2} \sum_{j=1}^{N} a_{j}^{2}(\lambda) / w_{j} \tag{2.5}
\end{equation*}
$$

as a function of the coefficients $a_{j}(\lambda)$ subject to the linear constraints (2.2). By some linear algebra arguments which arise already for the standard MLS and which we repeat in the next section in order to take care of the dependence on the weights, the solutions p^{*} and $a^{*}(\lambda)=\left(a_{1}^{*}(\lambda), \ldots, a_{N}^{*}(\lambda)\right)^{\mathrm{T}}$ of the minimization problems (2.3) and (2.5), respectively, are connected by the relation

$$
\begin{equation*}
\widehat{\lambda(u)}=\lambda\left(p^{*}\right)=\sum_{j=1}^{N} a_{j}^{*}(\lambda) \lambda_{j}(u), \tag{2.6}
\end{equation*}
$$

which also proves (2.1).
Formally, the solution p^{*} of the minimization problem (2.3) does not depend on λ. By calculating p^{*} from the data $\lambda_{j}(u)$ first, one can obtain estimates of $\lambda(u)$ for all λ by just evaluating $\lambda\left(p^{*}\right)$. This is very useful for approximating derivatives as long as the weights are independent of λ but needs some care because both problems depend on the weights, and the weights will be connected to the functionals in most cases. This is the main implementation recipe in the general situation. We shall be more precise in the next section.

3. Classical and diffuse derivatives

We take a closer look now at estimating derivative values

$$
\begin{equation*}
\lambda_{\alpha, x}(u):=u^{\alpha}(x)=\delta_{x} D^{\alpha} u \tag{3.1}
\end{equation*}
$$

for fixed $x \in \Omega$ in standard multi-index notation with $|\alpha| \leqslant m$ and where δ_{x} denotes the Dirac pointevaluation functional

$$
\delta_{x}: f \mapsto f(x)
$$

This situation has already been mentioned as a special case in Levin (1998).

We now have to be more careful and take account of the weights. We use the weights (2.4) like in the standard MLS, even when we take more general functionals as in (3.1), but with the same x. By localization at a fixed point x, the indices $j \in\{1, \ldots, N\}$ are restricted to

$$
J(x):=\left\{j: 1 \leqslant j \leqslant N, w\left(x, x_{j}\right)>0\right\}
$$

and we introduce a basis p_{1}, \ldots, p_{Q} of \mathscr{P} and the notation

$$
\begin{aligned}
u & :=\left(u\left(x_{j}\right), j \in J(x)\right)^{\mathrm{T}} \in \mathbb{R}^{|J(x)|}, \\
P & :=\left(p_{\ell}\left(x_{j}\right)\right)_{j \in J(x), 1 \leqslant \ell \leqslant Q}, \\
b & :=\left(b_{1}, \ldots, b_{Q}\right)^{\mathrm{T}} \in \mathbb{R}^{Q}, \\
W & :=\left(\delta_{j k} w\left(x, x_{j}\right)\right)_{j, k \in J(x)}, \\
p & :=\sum_{k=1}^{Q} b_{k} p_{k} \in \mathscr{P},
\end{aligned}
$$

where almost everything depends on x. Then problem (2.3) is

$$
\begin{equation*}
\operatorname{minimize}\|\sqrt{W}(u-P b)\|_{2}^{2} \tag{3.2}
\end{equation*}
$$

over all $b \in \mathbb{R}^{Q}$, and by classical least-squares arguments, the solution b^{*} satisfies the normal equations

$$
\begin{equation*}
A b^{*}=B u, \tag{3.3}
\end{equation*}
$$

where $A=P^{\mathrm{T}} W P$ and $B=P^{\mathrm{T}} W$. The matrix A is of order $Q \times Q$ and plays an important role in the MLS approximation. The solution is unique if the rank of A is Q. We assume this in what follows, i.e., we assume that the data point set $X=\left\{x_{1}, \ldots, x_{N}\right\}$ is \mathcal{P}-unisolvent.

The minimization of (2.5) can be rewritten as

$$
\begin{aligned}
& \operatorname{minimize} \frac{1}{2} a^{\mathrm{T}} W^{-1} a \\
& \text { subject to } P^{\mathrm{T}} a=p_{\lambda},
\end{aligned}
$$

where $p_{\lambda}:=\left(\lambda\left(p_{1}\right), \ldots, \lambda\left(p_{Q}\right)\right)^{\mathrm{T}} \in \mathbb{R}^{Q}$. Introducing a Lagrange multiplier $z^{*}(\lambda)$, we have to construct the global minimizer $a^{*}(\lambda)$ of

$$
\frac{1}{2} a^{\mathrm{T}} W^{-1} a+\left(z^{*}(\lambda)\right)^{\mathrm{T}}\left(P^{\mathrm{T}} a-p_{\lambda}\right)
$$

with respect to a. Then the solution $a^{*}(\lambda)$ is given by the two systems

$$
\begin{aligned}
a^{*}(\lambda) & =W P z^{*}(\lambda), \\
P^{T} a^{*}(\lambda) & =p_{\lambda}
\end{aligned}
$$

which implies that

$$
P^{\mathrm{T}} W P z^{*}(\lambda)=p_{\lambda}, \quad a^{*}(\lambda)=W P\left(P^{\mathrm{T}} W P\right)^{-1} p_{\lambda} .
$$

In some more detail,

$$
\begin{equation*}
a_{j}^{*}(\lambda)=w_{j} \sum_{k=1}^{Q} z_{k}^{*}(\lambda) \lambda_{j}\left(p_{k}\right), \tag{3.4}
\end{equation*}
$$

where, due to our assumption of unisolvency, the $z_{k}^{*}(\lambda)$ are the unique solution of

$$
\begin{equation*}
\sum_{k=1}^{Q} z_{k}^{*}(\lambda) \sum_{j=1}^{N} w_{j} \lambda_{j}\left(p_{k}\right) \lambda_{j}\left(p_{\ell}\right)=\lambda\left(p_{\ell}\right), \quad 1 \leqslant \ell \leqslant Q \tag{3.5}
\end{equation*}
$$

If $\lambda_{j}=\delta_{x_{j}}, 1 \leqslant j \leqslant N$, the two solutions are connected by

$$
p_{\lambda}^{\mathrm{T}} b^{*}=u^{\mathrm{T}} a^{*}(\lambda)=\sum_{j \in J} a_{j}^{*}(\lambda) u\left(x_{j}\right),
$$

which is (2.1).
The solution b^{*} of the first problem is dependent on x via the weights and the index set, but, apart from that, not on λ. If λ is independent of x, we can get an approximation to $\lambda(u)$ by

$$
\begin{equation*}
\lambda\left(p^{*}\right)=p_{\lambda}^{\mathrm{T}} b^{*}=\sum_{k=1}^{Q} b_{k}^{*} \lambda\left(p_{k}\right) . \tag{3.6}
\end{equation*}
$$

If we keep x fixed and let the multi-index α for $\lambda_{\alpha, x}=\delta_{x} D^{\alpha}$ vary, we have no problems and can use

$$
\begin{equation*}
\widehat{\lambda_{\alpha, x}(u)}=p_{\lambda_{\alpha, x}}^{\mathrm{T}} b^{*}=\sum_{k=1}^{Q} b_{k}^{*} p_{k}^{(\alpha)}(x) \tag{3.7}
\end{equation*}
$$

to get estimates of all derivatives of u at x after the calculation of b^{*}, yielding (2.6). With (3.1) we have

$$
\begin{equation*}
\widehat{\lambda_{\alpha, x}(u)}=\widehat{D^{\alpha} u(x)}=\sum_{k=1}^{Q} b_{k}^{*} p_{k}^{(\alpha)}(x)=\sum_{j \in J(x)} a_{j, \alpha}^{*}(x) u\left(x_{j}\right), \tag{3.8}
\end{equation*}
$$

where $a_{j, \alpha}^{*}$ are generalized MLS shape functions that correspond to the above functionals. Note that by (3.8) we have a direct estimation of $D^{\alpha} u$ from the data.

The implementation of the method solves the weighted least-squares problem (3.2) first, usually by a $Q R$ decomposition of $\sqrt{W} P$, avoiding the stability problems induced by solving the normal equations (3.3). Once the solution vector b^{*} is known, all target functionals λ that use the same input data and weights can be estimated via (3.6). Note that this requires evaluation of λ on polynomials only, not on any shape functions. This can be used to accelerate certain meshless methods for solving PDEs, as will be demonstrated in a follow-up paper (Mirzaei \& Schaback, 2011) focusing on applications.

If $a^{*}(\lambda)=W P\left(P^{\mathrm{T}} W P\right)^{-1} p_{\lambda}$ is requested, we decompose $\sqrt{W} P=Q R$, where Q is unitary and R is upper triangular to get $P^{\mathrm{T}} W P=R^{\mathrm{T}} R$. By some simple calculations, $(W P)\left(P^{\mathrm{T}} W P\right)^{-1} R^{\mathrm{T}}=\sqrt{W} Q$. Using backward substitution, $(W P)\left(P^{\mathrm{T}} W P\right)^{-1}$ is derived from this, and a_{λ}^{*} can be calculated directly. This is what we need in GMLS derivatives when $\lambda=\delta_{x} D^{\alpha}$. For standard derivatives of MLS shape
functions, some more, but still straightforward, calculations are needed. For instance, first derivatives of shape functions are

$$
D^{e_{i}} a^{*}=\left[\sqrt{W} Q\left(R^{T}\right)^{-1}\right] D^{e_{i}}(p)+\left[\left(\widehat{W} Q-\sqrt{W^{-1}} Q Q^{T} \widetilde{W} Q\right)\left(R^{T}\right)^{-1}\right] p
$$

where $\widehat{W}=D^{e_{i}}(W) \sqrt{W^{-1}}$ and $\widetilde{W}=\sqrt{W^{-1}} \widehat{W}$. Both brackets are calculated using backward substitution without taking inverses. Higher-order derivatives can be computed similarly, but in a more complicated way. Clearly, the direct estimation of derivatives is computationally much more efficient than calculating the derivatives of the MLS shape functions.

We now connect this to the notion of diffuse derivatives (see Nyroles et al., 1992; Breitkopf et al., 2000; Kim \& Kim, 2003; Yoon et al., 2006) that we explain now. If we use the standard MLS with $\lambda=\delta_{x}$, the vector b^{*} comes out the same as above, and the resulting approximation is

$$
\hat{u}(x):=\sum_{k=1}^{Q} b_{k}^{*} p_{k}(x),
$$

but it should be kept in mind that b^{*} depends subtly on x via the weights and the index set $J(x)$. The derivatives of \hat{u} at x, if calculations are done for varying x, will thus not be what was done above since the dependence of b^{*} on x cannot be ignored. If it is ignored, the value

$$
D_{\mathrm{dif}}^{\alpha}(\hat{u})(x):=\sum_{k=1}^{Q} b_{k}^{*} p_{k}^{(\alpha)}(x)
$$

is called the diffuse derivative of \hat{u} at x.
THEOREM 3.1 The GMLS approximation when applied for $\lambda=\lambda_{\alpha, x}:=\delta_{x} D^{\alpha}$ and $\lambda_{j}=\delta_{x_{j}}, 1 \leqslant j \leqslant$ N, calculates the diffuse derivative of the standard MLS. The latter is a good approximation to $D^{\alpha} u(x)$ but is not the same as the standard derivative $D^{\alpha} \hat{u}(x)$.

For applications in meshless methods, the estimation of $D^{\alpha} u(x)$ via (3.1) is all that is needed when setting up linear systems of equations since it is the best weighted MLS estimate based on the data $u\left(x_{1},\right), \ldots, u\left(x_{N}\right)$. It is a completely unnecessary detour to go via $\hat{u}(x)$ and take derivatives thereof. We shall support this theoretically and practically in what follows. As we shall see, the accuracies of both schemes are nearly the same. Comparing the diffuse and full (standard) derivatives of \hat{u}, the computational cost of the diffuse derivatives is considerably less. For the GMLS, we just have to calculate b^{*}, which takes the same amount of work as in the standard MLS, and then we just need the derivatives of the polynomial basis to get (3.7). Since polynomials of degree up to m are exactly reproduced for all choices of weights, the full and diffuse derivatives of these polynomials coincide (Kim \& Kim, 2003).

The use of \hat{u} and its derivatives is not necessary when setting up the linear system. After solving, we will have approximations for the values $u\left(x_{j}\right)$ at the nodes. Then, for postprocessing, it may be necessary to calculate exact derivatives of the approximate solution \hat{u}, e.g., for the calculation of stress in elasticity problems. At this time, it is up to the user whether exact or diffuse derivatives are calculated. If users want to have a single solution function \hat{u} with exact derivatives, they will have to pay a price. If they can admit small errors, they can get away with diffuse derivatives. For postprocessing, the use of diffuse derivatives makes a lot of sense in certain situations but not for setting up linear systems.

Since the word 'diffuse' may mislead readers to assume that these derivatives are not first choice, we ignore this term from now on and use $\widehat{D^{\alpha} u(x)}$ or $\widehat{\lambda(u)}$ instead to let the notation indicate that we have a
direct and usually very good numerical approximation to $D^{\alpha} u(x)$ or $\lambda(u)$, respectively. For future work, we suggest dropping the term diffuse derivative in favor of GMLS derivative approximation. There is nothing diffuse or uncertain about it.

4. Error bounds

In the MLS, and for other scattered data approximation methods, the quantities fill distance and separation distance are important to measure the quality of data points and to derive rates of convergence. For a set of points $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ in a bounded domain $\Omega \subseteq \mathbb{R}^{d}$, the fill distance is defined to be

$$
h_{X, \Omega}=\sup _{x \in \Omega} \min _{1 \leqslant j \leqslant N}\left\|x-x_{j}\right\|_{2}
$$

and the separation distance is defined by

$$
q_{X}=\frac{1}{2} \min _{i \neq j}\left\|x_{i}-x_{j}\right\|_{2} .
$$

A set X of data sites is said to be quasi-uniform with respect to a constant $c_{\text {qu }}>0$ if

$$
\begin{equation*}
q_{X} \leqslant h_{X, \Omega} \leqslant c_{\mathrm{qu}} q_{X} \tag{4.1}
\end{equation*}
$$

Also,

$$
B(x, r):=\left\{y \in \mathbb{R}^{d}:\|x-y\|_{2} \leqslant r\right\}
$$

stands for the ball of radius r around x.
To be more precise with the generation of weights, we choose a continuous function $\phi:[0, \infty) \rightarrow \mathbb{R}$ that is positive on $[0,1 / 2]$ and supported in $[0,1]$ and define

$$
w_{\delta}(x, y)=\phi\left(\frac{\|x-y\|_{2}}{\delta}\right)
$$

for $\delta>0$ as a weight function. Then we define $J(x)=\left\{j \in\{1,2, \ldots, N\}:\left\|x-x_{j}\right\|_{2} \leqslant \delta\right\}$.
Henceforth, we use $\mathscr{P}=\mathbb{P}_{m}^{d}$ as a space of d-variate polynomials of degree at most m and dimension $Q=\binom{m+d}{d}$.

At first, the convergence rate of a local polynomial reproduction system will be presented and then we will show that the generalized MLS of the first section is a local polynomial reproduction in the following sense.
Definition 4.1. Consider a process that defines for every \mathbb{P}_{m}^{d}-unisolvent set $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset$ Ω and each multi-index α with $|\alpha| \leqslant m$ a family of functions $s_{j, \alpha}: \Omega \rightarrow \mathbb{R}, 1 \leqslant j \leqslant N$, to approximate

$$
D^{\alpha} u(x) \approx \sum_{j=1}^{N} s_{j, \alpha}(x) u\left(x_{j}\right)
$$

for functions $u \in C^{m}(\Omega)$. Then we say that the process provides a local polynomial reproduction of degree m on Ω if there exist constants $h_{0}, C_{1, \alpha}, C_{2, \alpha}>0$ such that

1. $\sum_{j=1}^{N} s_{j, \alpha}(x) p\left(x_{j}\right)=D^{\alpha} p(x)$ for all $p \in \mathbb{P}_{m}^{d}, x \in \Omega$,
2. $\sum_{j=1}^{N}\left|s_{j, \alpha}(x)\right| \leqslant C_{1, \alpha} h_{X, \Omega}^{-|\alpha|}$ for all $x \in \Omega$,
3. $s_{j, \alpha}(x)=0$ if $\left\|x-x_{j}\right\|_{2}>C_{2, \alpha} h_{X, \Omega}$
are satisfied for all $|\alpha| \leqslant m$ and all X with $h_{X, \Omega} \leqslant h_{0}$.
This definition is a generalized form of Wendland (2005, Definition 3.1). We avoided the notation $s_{j}^{(\alpha)}(x)$ since it is not true that $s_{j, \alpha}=D^{\alpha} s_{j, 0}$, as suggested by item 1 above.

For every sample point $x \in \Omega$, and for the classical MLS with $\lambda=\delta_{x}$, Wendland (2005) has proved the following theorem.
THEOREM 4.2 If $\left\{s_{j, 0}(x)\right\}$ is a local polynomial reproduction of order m, there exists a constant C such that for all $u(x) \in C^{m+1}\left(\Omega^{*}\right)$ and all X with $h_{X, \Omega} \leqslant h_{0}$, the classical MLS solution \hat{u} satisfies the error bound

$$
\begin{equation*}
|u(x)-\widehat{u}(x)| \leqslant C h_{X, \Omega}^{m+1}|u|_{C^{m+1}\left(\Omega^{*}\right)}, \tag{4.2}
\end{equation*}
$$

where Ω^{*} is the closure of $\cup_{x \in \Omega} B\left(x, C_{2} h_{0}\right)$. The seminorm on the right-hand side is defined by

$$
|u|_{C^{m+1}\left(\Omega^{*}\right)}:=\max _{|\beta|=m+1}\left\|D^{\beta} u\right\|_{L_{\infty}(\Omega)} .
$$

Using the same techniques, we can prove the following theorem.
THEOREM 4.3 Suppose that $\Omega \subset \mathbb{R}^{d}$ is bounded. Define Ω^{*} to be the closure of $\cup_{x \in \Omega} B\left(x, C_{2} h_{0}\right)$. Define

$$
\widehat{D^{\alpha} u(x)}:=\sum_{j=1}^{N} s_{j, \alpha}(x) u\left(x_{j}\right)
$$

where $\left\{s_{j, \alpha}\right\}$ is a local polynomial reproduction of order m on Ω for $|\alpha| \leqslant m$. Then there exists a constant $C>0$ such that for all $u \in C^{m+1}\left(\Omega^{*}\right)$ and all X with $h_{X, \Omega} \leqslant h_{0}$, there is an error bound

$$
\begin{equation*}
\left|D^{\alpha} u(x)-\widehat{D^{\alpha} u(x)}\right| \leqslant C h_{X, \Omega}^{m+1-|\alpha|}|u|_{C^{m+1}\left(\Omega^{*}\right)} . \tag{4.3}
\end{equation*}
$$

Proof. Let $p \in \mathbb{P}_{m}^{d}$ be an arbitrary polynomial. Using the properties of local polynomial reproduction in Definition 4.1 yields

$$
\begin{align*}
\left|D^{\alpha} u(x)-\widehat{D^{\alpha} u(x)}\right| & \leqslant\left|D^{\alpha} u(x)-D^{\alpha} p(x)\right|+\left|D^{\alpha} p(x)-\sum_{j=1}^{N} s_{j, \alpha}(x) u\left(x_{j}\right)\right| \\
& \leqslant\left|D^{\alpha} u(x)-D^{\alpha} p(x)\right|+\sum_{j=1}^{N}\left|s_{j, \alpha}(x)\right|\left|p\left(x_{j}\right)-u\left(x_{j}\right)\right| \\
& \leqslant\left\|D^{\alpha} u-D^{\alpha} p\right\|_{L_{\infty}(\mathcal{D})}+\|u-p\|_{L_{\infty}(\mathcal{D})} \sum_{j=1}^{N}\left|s_{j, \alpha}(x)\right| \\
& \leqslant\left\|D^{\alpha} u-D^{\alpha} p\right\|_{L_{\infty}(\mathcal{D})}+C_{1, \alpha} h_{X, \Omega}^{-|\alpha|}\|u-p\|_{L_{\infty}(\mathcal{D})}, \tag{4.4}
\end{align*}
$$

where $\mathcal{D}=B\left(x, C_{2, \alpha} h_{X, \Omega}\right)$. Now choose p to be the Taylor polynomial of u around x. This gives for each $|\beta|=m+1$ and $y \in \Omega, \mathrm{a} \xi(y, \beta) \in \Omega^{*}$ such that

$$
\begin{align*}
u(y) & =\sum_{|\beta| \leqslant m} \frac{D^{\beta} u(x)}{\beta!}(y-x)^{\beta}+\sum_{|\beta|=m+1} \frac{D^{\beta} u(\xi(y, \beta))}{\beta!}(y-x)^{\beta} \\
& =p(y)+\sum_{|\beta|=m+1} \frac{D^{\beta} u(\xi(y, \beta))}{\beta!}(y-x)^{\beta}, \tag{4.5}
\end{align*}
$$

where

$$
\begin{equation*}
p(y)=\sum_{|\beta| \leqslant m} \frac{D^{\beta} u(x)}{\beta!}(y-x)^{\beta} \tag{4.6}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\|u-p\|_{L_{\infty}(\mathcal{D})} & \leqslant\left(C_{2, \alpha} h_{X, \Omega}\right)^{m+1} \sum_{|\beta|=m+1} \frac{1}{\beta!}\left\|D^{\beta} u\right\|_{L_{\infty}\left(\Omega^{*}\right)} \\
& \leqslant C h_{X, \Omega}^{m+1}|u|_{C^{m+1}\left(\Omega^{*}\right)} . \tag{4.7}
\end{align*}
$$

Moreover, since $D^{\alpha} u \in C^{m+1-|\alpha|}\left(\Omega^{*}\right)$ the Taylor expansion of order $m-|\alpha|$ for $D^{\alpha} u$ around $x \in \Omega$ exists. This gives for each $|\beta|=m+1-|\alpha|$ and every $y \in \Omega, \mathrm{a} \zeta(y, \beta) \in \Omega^{*}$ such that

$$
\begin{equation*}
D^{\alpha} u(y)=\sum_{|\beta| \leqslant m-|\alpha|} \frac{D^{\beta+\alpha} u(x)}{\beta!}(y-x)^{\beta}+\sum_{|\beta|=m+1-|\alpha|} \frac{D^{\beta+\alpha} u(\zeta(y, \beta))}{\beta!}(y-x)^{\beta} . \tag{4.8}
\end{equation*}
$$

The first part of the right-hand side of equation (4.8) is clearly $D^{\alpha} p(y)$ with $p(y)$ defined in equation (4.6). Therefore,

$$
\begin{equation*}
\left\|D^{\alpha} u-D^{\alpha} p\right\|_{L_{\infty}(\mathcal{D})} \leqslant C h_{X, \Omega}^{m+1-|\alpha|}|u|_{C^{m+1}\left(\Omega^{*}\right)} . \tag{4.9}
\end{equation*}
$$

Combining (4.7) and (4.9) with (4.4) leads to (4.3).
Now it suffices to show that the family of functions $\left\{a_{j, \alpha}^{*}\right\}$ in (3.8) forms a local polynomial reproduction in the sense of Definition 4.1. It can be done using the concept of norming sets, introduced by Jetter et al. (1999). Before that we need some definitions.

DEFINITION 4.4. A set $\Omega \subset \mathbb{R}^{d}$ is said to satisfy an interior cone condition if there exist an angle $\theta \in(0, \pi / 2)$ and a radius $r>0$ such that for every $x \in \Omega$ a unit vector $\xi(x)$ exists such that the cone

$$
C(x, \xi, \theta, r):=\left\{x+t y: y \in \mathbb{R}^{d},\|y\|_{2}=1, y^{T} \xi \geqslant \cos \theta, t \in[0, r]\right\}
$$

is contained in Ω.
Let V be a finite-dimensional vector space with norm $\|\cdot\|_{V}$ and let $\Lambda \subseteq V^{*}$ be a finite set consisting of N functionals. Here, V^{*} denotes the dual space of V consisting of all linear and continuous functionals defined on V.

DEFInition 4.5. Λ is a norming set for V if the mapping $T: V \rightarrow T(V) \subseteq \mathbb{R}^{N}$ defined by $T(v)=$ $(\lambda(v))_{\lambda \in \Lambda}$ is injective. The operator T is called the sampling operator.

Theorem 4.6 (Jetter et al., 1999; Mhaskar et al., 2001; Wendland, 2005) Suppose V is a finitedimensional normed linear space and $\Lambda=\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$ is a norming set for V, T being the corresponding sampling operator. For every $\lambda \in V^{*}$ there exists a vector $s \in \mathbb{R}^{N}$ depending only on λ such that, for every $v \in V$,

$$
\lambda(v)=\sum_{j=1}^{N} s_{j} \lambda_{j}(v)
$$

and

$$
\|s\|_{\mathbb{R}^{N *}} \leqslant\|\lambda\|_{V^{*}}\left\|T^{-1}\right\| .
$$

Theorem 3.8 of Wendland (2005) proves the following.
THEOREM 4.7 Suppose $\Omega \subset \mathbb{R}^{d}$ is compact and satisfies an interior cone condition with radius r and angle $\theta \in(0, \pi / 2)$. For fixed number m if the set X satisfies

$$
\begin{equation*}
h_{X, \Omega} \leqslant \frac{r \sin \theta}{4(1+\sin \theta) m^{2}}, \tag{4.10}
\end{equation*}
$$

then $\Lambda=\left\{\delta_{x_{1}}, \ldots, \delta_{x_{N}}\right\}$ is a norming set for $\mathbb{P}_{m}^{d}(\Omega)$ and $\left\|T^{-1}\right\| \leqslant 2$.
Also it is easy to show that the following proposition is true.
PROPOSITION $4.8 \Lambda=\left\{\delta_{x_{1}}, \ldots, \delta_{x_{N}}\right\}$ forms a norming set for $\mathbb{P}_{m}^{d}(\Omega)$ if and only if $X \subset \Omega$ is \mathbb{P}_{m}^{d}-unisolvent.

On the other hand, from Proposition 2.2 of Narcowich et al. (2004) and Proposition 11.6 of Wendland (2005), we have the following.
Proposition 4.9 Suppose that $\Omega \subset \mathbb{R}^{d}$ is bounded and satisfies an interior cone condition with radius r and angle θ. If $p \in \mathbb{P}_{m}^{d}$ and $|\alpha| \leqslant m$, then

$$
\begin{equation*}
\left\|D^{\alpha} p\right\|_{L_{\infty}(\Omega)} \leqslant\left(\frac{2 m^{2}}{r \sin \theta}\right)^{|\alpha|}\|p\|_{L_{\infty}(\Omega)} \tag{4.11}
\end{equation*}
$$

If $V=\mathbb{P}_{m}^{d}(\Omega)$ and $\lambda=\delta_{x} D^{\alpha}$, in the situation of Theorem 4.7, using (4.11) and (4.10) it is easy to show that

$$
\|\lambda\|_{V^{*}} \leqslant\left(\frac{2 m^{2}}{r \sin \theta}\right)^{|\alpha|} \leqslant(2(1+\sin \theta))^{-|\alpha|} h_{X, \Omega}^{-|\alpha|} .
$$

Consequently, we can state the following corollary.
COROLLARY 4.10 Let $\Omega \subset \mathbb{R}^{d}$ be bounded and satisfy an interior cone condition with radius r and angle θ. If $X=\left\{x_{1}, \ldots, x_{N}\right\} \subset \Omega$ and (4.10) is satisfied, then there exist for every $x \in \Omega$ real numbers $s_{j, \alpha}(x)$ such that

$$
\sum_{j=1}^{N}\left|s_{j, \alpha}(x)\right| \leqslant 2(2(1+\sin \theta))^{-|\alpha|} h_{X, \Omega}^{-|\alpha|}
$$

and

$$
\sum_{j=1}^{N} s_{j, \alpha}(x) p\left(x_{j}\right)=D^{\alpha} p(x)
$$

for all $p \in \mathbb{P}_{m}^{d}$.
Now we should convert this global existence result to the local situation. It can be done using the fact that for every point $x \in \Omega$, we can find a cone $C(x)$ that is completely contained in Ω and since every cone itself satisfies a cone condition, we can apply Corollary 4.10 to the cone $C(x)$ and $Y=X \cap C(x)$. Therefore, as in Theorem 3.14 of Wendland (2005), we can prove the following.

THEOREM 4.11 If $\Omega \subset \mathbb{R}^{d}$ is compact and satisfies an interior cone condition with radius r and angle $\theta \in(0, \pi / 2)$, for fixed $m \in \mathbb{N}$ there exist constants

$$
C_{1, \alpha}=2(2(1+\sin \theta))^{-|\alpha|}, \quad C_{2, \alpha}=\frac{16(1+\sin \theta)^{2} m^{2}}{3 \sin ^{2} \theta}, \quad h_{0}=\frac{1}{C_{2}}
$$

such that for every $X \subset \Omega$ with $h_{X, \Omega} \leqslant h_{0}$ and every $x \in \Omega$ we can find real numbers $s_{j, \alpha}(x)$, $1 \leqslant j \leqslant N$, such that they form a local polynomial reproduction as in Definition 4.1.

Now using the minimal property of $a_{j, \alpha}^{*}$ in (3.8), we can show that these functions form a local polynomial reproduction. This comes in the following theorem. The proof is same as the proof of Theorem 4.7 of Wendland (2005).

THEOREM 4.12 Suppose that $\Omega \subset \mathbb{R}^{d}$ is compact and satisfies an interior cone condition with radius r and angle $\theta \in(0, \pi / 2)$. Fix $m \in \mathbb{N}$. Let $h_{0}, C_{1, \alpha}$ and $C_{2, \alpha}$ denote the aforementioned constants. Suppose that X satisfies (4.1) and $h_{X, \Omega} \leqslant h_{0}$. Let $\delta=2 C_{2, \alpha} h_{X, \Omega}$. Then the basis functions $a_{j, \alpha}^{*}$ from (3.8) provide a local polynomial reproduction as in Definition 4.1 with constants $\widetilde{C}_{1, \alpha}$ and $\widetilde{C}_{2, \alpha}$ that can be derived explicitly.

Finally, using Theorems 4.3 and 4.12 we conclude with the following corollary that includes the order of convergence of the MLS approximation and its diffuse derivatives.
Corollary 4.13 In the situation of Theorem 4.12, define Ω^{*} to be the closure of $\cup_{x \in \Omega} B\left(x, C_{2, \alpha} h_{0}\right)$. Define

$$
\widehat{D^{\alpha} u(x)}:=\sum_{j=1}^{N} a_{j, \alpha}^{*}(x) u\left(x_{j}\right),
$$

where $a_{j, \alpha}^{*}(x)$ are functions derived from the MLS approximation in (3.8). Then there exists a constant $c>0$ such that for all $u \in C^{m+1}\left(\Omega^{*}\right)$ and all $X \subset \Omega$ with $h_{X, \Omega} \leqslant h_{0}$, which are quasi-uniform in the sense of (4.1) with the same constant $c_{q u}$, we have

$$
\begin{equation*}
\left\|D^{\alpha} u(x)-\widehat{D^{\alpha} u(x)}\right\|_{L_{\infty}(\Omega)} \leqslant c h_{X, \Omega}^{m+1-|\alpha|}|u|_{C^{m+1}\left(\Omega^{*}\right)} . \tag{4.12}
\end{equation*}
$$

The error estimates of MLS approximation and its full derivatives are given in Armentano \& Durán (2001) and Zuppa (2003) using different strategies. They have proved that the error of full derivatives of order $|\alpha|$ is of order $\mathcal{O}\left(h^{m+1-|\alpha|}\right)$, where h plays the same role as $h_{X, \Omega}$. Thus, direct estimation
of derivatives from function values is recommended instead of taking full or diffuse derivatives of the classical MLS solution \hat{u}.

Following the suggestion of a referee, we finally point out that Lipman (2009) uses triangulationbased weights to eliminate the requirement of quasi-uniform node placement. It seems to be an open problem to extend this to truly meshless methods avoiding triangulations.

5. Numerical examples

To confirm the above theoretical bounds, we look at MLS approximation for Franke's function

$$
\begin{aligned}
u(\bar{x}, \bar{y})= & \frac{3}{4} e^{(1 / 4)\left((9 \bar{x}-2)^{2}+(9 \bar{y}-2)^{2}\right)}+\frac{3}{4} e^{-(1 / 49)\left((9 \bar{x}+1)^{2}-(1 / 10)(9 \bar{y}+1)^{2}\right)} \\
& +\frac{1}{2} e^{(1 / 4)\left((9 \bar{x}-7)^{2}+(9 \bar{y}-3)^{2}\right)}-\frac{1}{5} e^{-(9 \bar{x}-4)^{2}-(9 \bar{y}-7)^{2}}
\end{aligned}
$$

on $[0,1]^{2}$ which is a standard test function for two-dimensional scattered data fitting since the seminal survey of Franke (1982). Note that (\bar{x}, \bar{y}) denotes the two components of $x \in \mathbb{R}^{2}$. First, regular node distributions with distance h along each axis are used. A compactly-supported Radial Basis Function that possesses continuous derivatives up to order 4 is used as weight function, and the shifted, scaled polynomials (see Section 6) are employed as basis functions.

Table 1 presents the ratios of errors for the function and its first and second standard and GMLS derivatives in a fixed and sufficiently fine test-point mesh of size 31×31 on $[0,1]^{2}$. 'Ratio0', 'Ratio1'

TABLE 1 The ratios of errors of Franke's function and its first and second standard and GMLS derivatives

		Ratio1			Ratio2	
	h	Ratio0	Standard		GMLS	Standard

and 'Ratio2' refer to the ratios of error of the function, its first derivative with respect to \bar{x} and its second derivative with respect to \bar{x}, respectively. The distance h is divided by 2 row by row, so the ratio is computed by

$$
\begin{equation*}
\log _{2}\left(\frac{\|e(h)\|_{\infty}}{\|e(h / 2)\|_{\infty}}\right) . \tag{5.1}
\end{equation*}
$$

We consider both standard and GMLS derivatives. The results are presented for $m=1,2,3$ and $\delta=$ 1.5 mh . According to theoretical bounds, the ratios should be approximately $m+1-|\alpha|$. As we can see, the numerical results confirm the analytical bounds. Also it is evident that there is no significant difference between the rates of convergence of standard and GMLS derivatives. Note that with $m=1$ we cannot recover the second derivatives. In this example, for instance, the CPU time needed to compute the second GMLS derivative with $h=0.1 / 16(N=25921)$ and $m=2$ in the above test-point mesh is 2.60 s , while it is 3.35 s for the standard derivative.

Now, we choose the set of centres to be Halton points in $[0,1]^{2}$. We use the following commands in MATLAB to generate such sets:

```
p = haltonset(2,'Skip',1e3,'Leap',1e2);
N = 1000; % number of selected centers
X = net (p,N);
```

The first 1000 Halton points are depicted in Fig. 1.
Following Wendland (2001), it is in general too expensive to compute $h_{X, \Omega}$ exactly. Therefore, we used the approximation $h_{X, \Omega} \approx h=1 / \sqrt{N}$ together with $\delta=1.5 \mathrm{mh}$. The maximum errors and ratios, which are provided in a regular 31×31 mesh in $[0,1]^{2}$, are presented in Tables 2 and 3 for the first and the second derivatives with respect to the first variable, respectively, for $m=3$. The approximate fill distance h is divided by 2 consecutively and the ratios are computed by (5.1). One can see that the theoretical bounds are obtained and the results are nearly the same for both standard and GMLS derivatives. The CPU time required to execute the GMLS subroutine for computing the second

Fig. 1. First 1000 Halton points.

TABLE 2 Maximum and ratios of errors of the first standard and GMLS derivatives of Franke's function at Halton points with $m=3$

		Standard			GMLS					
N	h	$\\|e\\|_{\infty}$	Ratio		$\\|e\\|_{\infty}$	Ratio				
1000	0.03162	7.89×10^{-2}	-		7.76×10^{-2}	-				
4000	0.01581	1.08×10^{-2}	2.87		1.08×10^{-2}	2.84				
16000	0.00791	2.00×10^{-3}	2.43		1.99×10^{-3}	2.45				
64000	0.00395	1.08×10^{-4}	4.22		1.08×10^{-4}	4.20				

Table 3 Maximum and ratios of errors of the second standard and GMLS derivatives of Franke's function at Halton points with $m=3$

		Standard			GMLS					
N	h	$\\|e\\|_{\infty}$	Ratio		$\\|e\\|_{\infty}$	Ratio				
1000	0.03162	8.00×10^{0}	-		7.77×10^{0}	-				
4000	0.01581	2.16×10^{0}	1.87		2.17×10^{0}	1.84				
16000	0.00791	5.76×10^{-1}	1.93		5.74×10^{-1}	1.92				
64000	0.00395	1.40×10^{-1}	2.04		1.41×10^{-1}	2.03				

derivative with $N=16000$ in the aforementioned test-point mesh is 2.03 s , while it is 3.40 s for the standard MLS derivative subroutine.

6. Some notes on numerical implementation

Sometimes the set

$$
\begin{equation*}
\mathcal{B}=\left\{x^{\alpha}\right\}_{0 \leqslant|\alpha| \leqslant m} \tag{6.1}
\end{equation*}
$$

is used as a basis for \mathbb{P}_{m}^{d} in the MLS approximation. The choice of this basis is important and has quite some influence on the matrix $A=P^{\mathrm{T}} W P$ and thus on the matrix R obtained from the $Q R$ decomposition of $\sqrt{W} P$. This has major effects on stability, especially when the normal equations (3.3) are used directly. As an example, consider the unit square $[0,1]^{2}$ in \mathbb{R}^{2} with regular node distribution of distance h and fix $m=2$. In Fig. 2 the determinants and condition numbers of A are depicted in terms of decreasing h at a sample point $(\pi / 4, \pi / 4) \in[0,1]^{2}$ on the left and right side, respectively. As we see, the results get worse as h decreases. To overcome this drawback, it is better to use the shifted, scaled basis polynomials. The shifted basis, which, for example, was used by Levin (1998) and Wendland (2001), can be defined for fixed z by

$$
\begin{equation*}
\mathcal{B}^{z}=\left\{(x-z)^{\alpha}\right\}_{0 \leqslant|\alpha| \leqslant m} \tag{6.2}
\end{equation*}
$$

and the shifted, scaled basis by

$$
\begin{equation*}
\mathcal{B}_{h}^{z}=\left\{\frac{(x-z)^{\alpha}}{h^{|\alpha|}}\right\}_{0 \leqslant|\alpha| \leqslant m} \tag{6.3}
\end{equation*}
$$

FIG. 2. Determinants (left) and condition numbers (right) of A at a sample point $(\pi / 4, \pi / 4)$ using basis (6.1).

FIg. 3. Determinants (left) and condition numbers (right) of A at a sample point $(\pi / 4, \pi / 4)$ using basis (6.3).
where h can be $q_{X}, h_{X, \Omega}$ or an average of them for a quasi-uniform set X. In all cases, z is an evaluation point such as a test point or a Gaussian point for integration in weak-form-based techniques. Figure 3 shows the same results as before for the shifted, scaled basis functions. The effect of this variation is shown in Fig. 4, where we have illustrated the maximum error of reconstruction of Franke's function and its first and second derivatives with respect to \bar{x} on $[0,1]^{2}$ with and without shifted, scaled basis functions. Numerical instabilities are evident on the left side, where the basis (6.1) is applied.

To analyse this phenomenon, we use the notation $A=P^{\mathrm{T}} W P$, where the basis \mathcal{B} is employed, and $A^{z}=P(\cdot-z)^{\mathrm{T}} W P(\cdot-z)$ and $A_{h}^{z}=P\left(\frac{\cdot-z}{h}\right)^{\mathrm{T}} W P\left(\frac{-z}{h}\right)$, where \mathcal{B}^{z} and \mathcal{B}_{h}^{z} are used, respectively. By using

$$
(x-z)^{\alpha}=\sum_{\beta \leqslant \alpha} \underbrace{\binom{\alpha}{\beta}(-1)^{|\alpha-\beta|} z^{\alpha-\beta}}_{C_{z}(\alpha, \beta)} x^{\beta}=\sum_{\beta \leqslant \alpha} C_{z}(\alpha, \beta) x^{\beta},
$$

Fig. 4. Approximation errors of Franke's function (solid line and circles), its first derivative (dashed line and triangles) and its second derivative (dotted line and squares) using basis (6.1) (left) and basis (6.3) (right).
we have $P(\cdot-z)=P C_{z}$, where C_{z} is a $Q \times Q$ triangular matrix with diagonal elements 1 . It is clear that $A^{z}=C_{z}^{\mathrm{T}} A C_{z}$ and $\operatorname{det}(A)=\operatorname{det}\left(A^{z}\right)$. On the other hand, we set

$$
H_{h}=\operatorname{diag}\{1, \underbrace{\frac{1}{h}, \ldots, \frac{1}{h}}_{\left.\begin{array}{c}
d \\
d-1
\end{array}\right) \text { times }}, \underbrace{\frac{1}{h^{2}}, \ldots, \frac{1}{h^{2}}}_{\left.\begin{array}{c}
d+1 \\
d-1
\end{array}\right) \text { times }}, \ldots, \underbrace{\frac{1}{h^{m}}, \ldots, \frac{1}{h^{m}}}_{\begin{array}{c}
\binom{d-1+m}{d-1} \text { times }
\end{array}}\}_{Q \times Q} .
$$

It is obvious that $P\left(\frac{-z}{h}\right)=P C_{z} H_{h}$ and $A_{h}^{z}=H_{h} A^{z} H_{h}$; hence, $\operatorname{det}\left(A_{h}^{z}\right)=\operatorname{det}\left(A^{z}\right)\left[\operatorname{det}\left(H_{h}\right)\right]^{2}=$ $\operatorname{det}(A)\left[\operatorname{det}\left(H_{h}\right)\right]^{2}$. Using the combinatorial formula

$$
\sum_{j=0}^{m} j C_{d-1}^{d-1+j}=d C_{d+1}^{m+d}=: \rho
$$

we have $\operatorname{det}\left(H_{h}\right)=h^{-\rho}$; therefore,

$$
\operatorname{det}\left(A_{h}^{z}\right)=h^{-2 \rho} \operatorname{det}(A)
$$

This is the reason why the determinant of A_{h}^{z} remains constant as h decreases. Consequently, we have

$$
\operatorname{det}\left(R_{h}^{z}\right)=h^{-\rho} \operatorname{det}(R)
$$

where R_{h}^{z} is an upper triangular matrix obtained by the $Q R$ decomposition of $\sqrt{W} P\left(\frac{-z}{h}\right)$.
We can also estimate the condition numbers of both matrices A_{h}^{z} and R_{h}^{z}. Since $P\left(\frac{-z}{h}\right)=P C_{z} H_{h}$ and due to the uniqueness property of the $Q R$ decomposition of full-rank matrices, we have

$$
R_{h}^{z}=R C_{z} H_{h} .
$$

Finally, $\operatorname{cond}\left(C_{z}\right)=1$ and $\operatorname{cond}\left(H_{h}\right)=h^{m}$ yield

$$
\begin{equation*}
\operatorname{cond}(R) \approx \sqrt{\operatorname{cond}(A)}, \quad \operatorname{cond}\left(R_{h}^{z}\right) \approx \operatorname{cond}(R) h^{m}, \quad \operatorname{cond}\left(A_{h}^{z}\right) \approx \operatorname{cond}(A) h^{2 m} \tag{6.4}
\end{equation*}
$$

Although the $Q R$ decomposition gives stable results in many cases, (6.4) implies that the shifted the scaled basis is recommended even when the $Q R$ method is applied. In the numerical results presented in the previous section, we followed this strategy.

The quantity h can be replaced by a function which varies in accordance with the node density in Ω; see Hangelbroek (2011).

7. Conclusion and outlook

This paper implies that 'diffuse' derivatives used within certain applications of the MLS method can be stably implemented and induce no loss in accuracy because they are identical to direct optimal estimates of derivatives provided by the GMLS of this paper. In particular, the orders of convergence of both derivatives to the exact values turn out to be the same, and the computational efficiency of GMLS derivatives is better. On the other hand, we investigated the stabilization effect of shifted, scaled polynomial bases. In a forthcoming paper (Mirzaei \& Schaback, 2011), the GMLS will be applied to significantly enhance the computational efficiency of the MLPG method of Atluri and his colleagues (Atluri \& Zhu, 1998; Atluri \& Shen, 2002; Atluri, 2005).

Acknowledgements

The authors deeply thank the anonymous referees for their valuable remarks and suggestions which improved the quality of the paper.

References

Armentano, M. (2001) Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal., 39, 38-51.
Armentano, M. \& Durán, R. (2001) Error estimates for moving least square approximations. Appl. Numer. Math., 37, 397-416.
AtLuri, S. \& Zhu, T.-L. (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput. Mech., 22, 117-127.
Atluri, S. N. (2005) The Meshless Method (MLPG) for Domain and BIE Discretizations. Encino, CA: Tech Science Press.
Atluri, S. N. \& Shen, S. (2002) The Meshless Local Petrov-Galerkin (MLPG) Method. Encino, CA: Tech Science Press.
Belytschko, T., Krongauz, Y., Organ, D., Fleming, M. \& Krysl, P. (1996) Meshless methods: an overview and recent developments. Comput. Method Appl. Mech. Eng. (Special issue), 139, 3-47.
Breitkopf, P., Rassineux, A., Touzot, G. \& Villon, P. (2000) Explicit form and efficient computation of MLS shape functions and their derivatives. Int. J. Numer. Methods Eng., 48, 451-466.
Franke, R. (1982) Scattered data interpolation: tests of some methods. Math. Comput., 48, 181-200.
Hangelbroek, T. (2011) On local RBF approximation. Adv. Comput. Math., arXiv:0909.5244 (to appear).
Jetter, K., Stöckler, J. \& Ward, J. (1999) Error estimates for scattered data interpolation on spheres. Math. Comput., 68, 733-747.
KIM, D. W. \& KIM, Y. (2003) Point collocation methods using the fast moving least-square reproducing kernel approximation. Int. J. Numer. Methods Eng., 56, 1445-1464.
LANCASTER, P. \& SALKAUSKAS, K. (1981) Surfaces generated by moving least squares methods. Math. Comput., 37, 141-158.
Levin, D. (1998) The approximation power of moving least-squares. Math. Comput., 67, 1517-1531.
Levin, D. (1999) Stable integration rules with scattered integration points. J. Comput. Appl. Math., 112, 181-187.

Lipman, Y. (2009) Stable moving least-squares. J. Approx. Theory, 161, 371-384.
MHASKAR, H., NARCOWICH, F. \& WARD, J. (2001) Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput., 70, 1113-1130.
Mirzaei, D. \& Schaback, R. (2011) Direct meshless local Petrov-Galerkin (DMLPG) method: a generalized MLS approximation. Preprint.
Narcowich, F., Ward, J. \& Wendland, H. (2004) Sobolev bounds on functions with scattered zeros, with application to radial basis function surface fitting. Math. Comput., 47, 743-763.
Nyroles, B., Touzot, G. \& Villon, P. (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. Mech., 10, 307-318.
SHEPARD, D. (1968) A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference (R. B. S. Blue \& A. M. Rosenberg eds) New York: ACM Press, pp. 517-523.
WENDLAND, H. (2001) Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal., 21, 285-300.
Wendland, H. (2005) Scattered Data Approximation. Cambridge: Cambridge University Press, p. 394.
Yoon, Y., Lee, S. \& Belytschko, T. (2006) Enriched meshfree collocation method with diffuse derivatives for elastic fracture. Comput. Math. Appl., 51, 1349-1366.
Zuppa, C. (2003) Error estimates for moving least square approximations. Bull. Braz. Math. Soc., 34, 231-249.

