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Abstract As an improvement of the Meshless Local Petrov–Galerkin (MLPG), the
Direct Meshless Local Petrov–Galerkin (DMLPG) method is applied here to the
numerical solution of transient heat conduction problem. The new technique is based
on direct recoveries of test functionals (local weak forms) from values at nodes
without any detour via classical moving least squares (MLS) shape functions. This
leads to an absolutely cheaper scheme where the numerical integrations will be done
over low–degree polynomials rather than complicated MLS shape functions. This
eliminates the main disadvantage of MLS based methods in comparison with finite
element methods (FEM), namely the costs of numerical integration.

Keywords Generalized moving least squares (GMLS) approximation · Meshless
methods · MLPG methods · DMLPG methods · Heat conduction problem

1 Introduction

Meshless methods have received much attention in recent decades as new tools
to overcome the difficulties of mesh generation and mesh refinement in classical
mesh-based methods such as the finite element method (FEM) and the finite volume
method (FVM).
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The classification of numerical methods for solving PDEs should always start
from the classification of PDE problems themselves into strong, weak, or local weak
forms. The first is the standard pointwise formulation of differential equations and
boundary conditions, the second is the usual weak form dominating all FEM tech-
niques, while the third form splits the integrals of the usual global weak form into
local integrals over many small subdomains, performing the integration by parts on
each local integral. Local weak forms are the basis of all variations of the Meshless
Local Petrov–Galerkin technique (MLPG) of S.N. Atluri and collaborators [1]. This
classification is dependent on the PDE problem itself, and independent of numerical
methods and the trial spaces used. Note that these three formulations of the “same”
PDE and boundary conditions lead to three essentially different mathematical prob-
lems that cannot be identified and need a different mathematical analysis with respect
to existence, uniqueness, and stability of solutions.

Meshless trial spaces mainly come via Moving Least Squares or kernels like
Radial Basis Functions. They can consist of global or local functions, but they should
always parametrize their trial functions “entirely in terms of nodes” [3, 15] and
require no triangulation or meshing.

A third classification of PDE methods addresses where the discretization lives.
Domain type techniques work in the full global domain, while boundary type meth-
ods work with exact solutions of the PDE and just have to care for boundary
conditions. This is independent of the other two classifications.

Consequently, the literature should confine the term “meshless” to be a feature of
trial spaces, not of PDE problems and their various formulations. But many authors
reserve the term truly meshless for meshless methods that either do not require any
discretization with a background mesh for calculating integrals or do not require inte-
gration at all. These techniques have a great advantage in computational efficiency,
because numerical integration is the most time–consuming part in all numerical
methods based on local or global weak forms. This paper focuses on a truly meshless
method in this sense.

Most of the methods for solving PDEs in global weak form, such as the Element-
Free Galerkin (EFG) method [4], are not truly meshless because a triangulation is
still required for numerical integration. The Meshless Local Petrov-Galerkin (MLPG)
method solves PDEs in local weak form and uses no global background mesh to
evaluate integrals because everything breaks down to some regular, well-shaped and
independent sub-domains. Thus the MLPG is known as a truly meshless method.

We now focus on meshless methods using Moving Least Squares as trial func-
tions. If they solve PDEs in global or local weak form, they still suffer from the cost
of numerical integration. In these methods, numerical integrations are traditionally
done over MLS shape functions and their derivatives. Such shape functions are com-
plicated and have no closed form. To get accurate results, numerical quadratures with
many integration points are required. Thus the MLS subroutines must be called very
often, leading to high computational costs. In contrast to this, the stiffness matrix in
finite element methods (FEMs) is constructed by integrating over polynomial basis
functions which are much cheaper to evaluate. This relaxes the cost of numerical inte-
grations. For an account of the importance of numerical integration within meshless
methods, we refer the reader to [2].
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To overcome this shortage within the MLPG based on MLS, Mirzaei and Schaback
[8] proposed a new technique, Direct Meshless Local Petrov-Galerkin (DMLPG)
method, which avoids integration over MLS shape functions in MLPG and replaces
it by the much cheaper integration over polynomials. It ignores shape functions com-
pletely. Altogether, the method is simpler, faster and often more accurate than the
original MLPG method. DMLPG uses a generalized MLS (GMLS) method of [9]
which directly approximates boundary conditions and local weak forms as some
functionals, shifting the numerical integration into the MLS itself, rather than into an
outside loop over calls to MLS routines. Thus the concept of GMLS must be outlined
first in Section 2 before we can go over to the DMLPG in Section 4 and numerical
results for heat conduction problems in Section 6.

The analysis of heat conduction problems is important in engineering and applied
mathematics. Analytical solutions of heat equations are restricted to some special
cases, simple geometries and specific boundary conditions. Hence, numerical meth-
ods are unavoidable. Finite element methods, finite volume methods, and finite
difference methods have been well applied to transient heat analysis over the past few
decades [5]. MLPG methods were also developed for heat transfer problems in many
cases. For instance, J. Sladek et al. [12] proposed MLPG4 for transient heat conduc-
tion analysis in functionally graded materials (FGMs) using Laplace transform tech-
niques. V. Sladek et al. [13] developed a local boundary integral method for transient
heat conduction in anisotropic and functionally graded media. Both authors and their
collaborators employed MLPG5 to analyze the heat conduction in FGMs [10, 11].

The aim of this paper is the development of DMLPG methods for heat conduc-
tion problems. This is the first time where DMLPG is applied to a time–dependent
problem. Moreover, compared to [8], we will discuss all DMLPG methods, go
into more details and provide explicit formulae for the numerical implementation.
DMLPG1/2/4/5 will be proposed, and the reason of ignoring DMLPG3/6 will be dis-
cussed. The new methods will be compared with the original MLPG methods in a
test problem, and then a problem in FGMs will be treated by DMLPG1.

In all application cases, the DMLPG method turned out to be superior to the
standard MLPG technique, and it provides excellent accuracy at low cost.

2 Meshless methods and GMLS approximation

Whatever the given PDE problem is and how it is discretized, we have to find a
function u such that M linear equations

λk(u) = βk, 1 � k � M, (1)

defined by M linear functionals λ1, . . . , λM and M prescribed real values
β1, . . . , βM are to be satisfied. Note that weak formulations will involve function-
als that integrate u or a derivative against some test function. The functionals can
discretize either the differential equation or some boundary condition.

Now meshless methods construct solutions from a trial space whose functions
are parametrized “entirely in terms of nodes” [3]. We let these nodes form a set
X := {x1, . . . , xN }. Theoretically, meshless trial functions can then be written as
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linear combinations of shape functions u1, . . . , uN with or without the Lagrange
conditions uj (xk) = δjk, 1 � j, k ≤ N as

u(x) =
N∑

j=1

uj (x)u(xj )

in terms of values at nodes, and this leads to solving the system (1) in the form

λk(u) =
N∑

j=1

λk(uj )u(xj ) = βk, 1 � k � M

approximately for the nodal values. Setting up the coefficient matrix requires the
evaluation of all functionals on all shape functions, and this is a tedious procedure
if the shape functions are not cheap to evaluate, and it is even more tedious if the
functionals consist of integrations of derivatives against test functions.

But it is by no means mandatory to use shape functions at this stage at all. If each
functional λk can be well approximated by a formula

λk(u) ≈
N∑

j=1

αjku(xj ) (2)

in terms of nodal values for smooth functions u, the system to be solved is

N∑

j=1

αjku(xj ) = βk, 1 � k � M (3)

without any use of shape functions. There is no trial space, but everything is still
written in terms of values at nodes. Once the approximate values u(xj ) at nodes
are obtained, any multivariate interpolation or approximation method can be used
to generate approximate values at other locations. This is a postprocessing step,
independent of PDE solving.

This calls for efficient ways to handle the approximations (2) to functionals in
terms of nodal values. We employ a generalized version of Moving Least Squares
(MLS), adapted from [9], and without using shape functions.

The techniques of [9] and [8] allow to calculate coefficients αjk for (2) very effec-
tively as follows. We fix k and consider just λ := λk. Furthermore, the set X will be
formally replaced by a much smaller subset that consists only of the nodes that are
locally necessary to calculate a good approximation of λk, but we shall keep X and
N in the notation. This reduction of the node set for the approximation of λk will
ensure sparsity of the final coefficient matrix in (3).

Now we have to calculate a coefficient vector a(λk) = (α1k, . . . , αNk)
T ∈ R

N for
(2) in case of λ = λk. We choose a space P of polynomials which is large enough
to let zero be the only polynomial p in P that vanishes on X. Consequently, the
dimension Q of P satisfies Q � N , and the Q × N matrix P of values pi(xj ) of
a basis p1, . . . , pQ of P has rank Q. Then for any vector w = (w1, . . . , wN)

T of
positive weights, the generalized MLS solution a(λ) to (2) can be written as

a(λk) = WPT (P W PT )−1λk(P) (4)
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where W is the diagonal matrix with diagonal w and λk(P) ∈ R
Q is the vector with

values λk(p1), . . . , λk(pQ).
Thus it suffices to evaluate λk on low–order polynomials, and since the coefficient

matrix in (4) is independent of k, one can use the same matrix for different λk as long
as X does not change locally. This will significantly speed up numerical calculations,
if the functional λk is complicated, e.g. a numerical integration against a test func-
tion. Note that the MLS is just behind the scene, no shape functions occur. But the
weights will be defined locally in the same way as in the usual MLS, e.g. we choose
a continuous function φ : [0,∞) → [0,∞) with

– φ(r) > 0, 0 � r < 1,
– φ(r) = 0, r � 1,

and define

wj(x) = φ

(‖x − xj‖2

δ

)

for δ > 0 as a weight function, if we work locally near a point x.

3 MLPG formulation of heat conduction

In the Cartesian coordinate system, the transient temperature field in a heterogeneous
isotropic medium is governed by the diffusion equation

ρ(x)c(x)
∂u

∂t
(x, t) = ∇ · (κ∇u)+ f (x, t), (5)

where x ∈ 
 and 0 � t � tF denote the space and time variables, respectively, and
tF is the final time. The initial and boundary conditions are

u(x, 0) = u0(x), x ∈ 
, (6)

u(x, t) = uD(x, t), x ∈ �D, 0 � t � tF , (7)

κ(x)
∂u

∂n
(x, t) = uN(x, t), x ∈ �N, 0 � t � tF . (8)

In (5)–(8), u(x, t) is the temperature field, κ(x) is the thermal conductivity dependent
on the spatial variable x, ρ(x) is the mass density and c(x) is the specific heat, and
f (x, t) stands for the internal heat source generated per unit volume. Moreover, n is
the unit outward normal to the boundary �, uD and uN are specified values on the
Dirichlet boundary �D and Neumann boundary �N where � = �D ∪ �N .

Meshless methods write everything entirely in terms of scattered nodes forming a
set X = {x1, x2, . . . , xN } located in the spatial domain 
 and its boundary �. In the
standard MLPG, around each xk a small subdomain 
k

s ⊂ 
 = 
∪� is chosen such
that integrations over 
k

s are comparatively cheap. For instance, 
k
s is conveniently

taken to be the intersection of 
 with a ball B(xk, r0) of radius r0 or a cube (or a
square in 2D) S(xk, r0) centered at xk with side-length r0. On these subdomains, the
PDE including boundary conditions is stated in a localized weak form

∂

∂t

∫


k
s

ρcuv d
 =
∫


k
s

∇ · (κ∇u)v d
+
∫


k
s

f v d
, (9)



280 Numer Algor (2014) 65:275–291

for an appropriate test function v. Applying integration by parts, this weak equation
can be partially symmetrized to become the first local weak form

∂

∂t

∫


k
s

ρcuv d
 =
∫

∂
k
s

κ
∂u

∂n
v d� −

∫


k
s

κ∇u · ∇v d
+
∫


k
s

f v d
. (10)

The second local weak form, after rearrangement of (5) and integration by parts
twice, can be obtained as

∂

∂t

∫


k
s

1

κ
ρcuv d
 =

∫


k
s

u�v d
−
∫

∂
k
s

u
∂v

∂n
d� +

∫

∂
k
s

v
∂u

∂n
d�

+
∫


k
s

1

κ
∇κ · ∇u v d
+

∫


k
s

1

κ
f v d
.

(11)

If the boundary of the local domain 
k
s hits the boundary of 
, the MLPG inserts

boundary data at the appropriate places in order to care for boundary conditions.
Since these local weak equations are all affine–linear in u even after insertion of
boundary data, the equations of MLPG are all of the form (1) after some rearrange-
ment, employing certain linear functionals λk . In all cases, the MLPG evaluates
these functionals on shape functions, while our DMLPG method will use the GMLS
approximation of Section 2 without any shape function.

However, different choices of test functions v lead to the six different well–known
types of MLPG. The variants MLPG1/5/6 are based on the weak formulation (10). If
v is chosen such that the first integral in the right hand side of (10) vanishes, we have
MLPG1. In this case v should vanish on ∂
k

s . If the Heaviside step function v on local
domains is used as test function, the second integral disappears and we have a pure
local boundary integral form in the right hand side. This is MLPG5. In MLPG6, the
trial and test functions come from the same space. MLPG2/3 are based on the local
unsymmetric weak formulation (9). MLPG2 employs Dirac’s delta function as the
test function in each 
k

s , which leads to a pure collocation method. MLPG3 employs
the error function as the test function in each 
k

s . In this method, the test functions can
be the same as for the discrete least squares method. The test functions and the trial
functions come from the same space in MLPG3. Finally, MLPG4 (or LBIE) is based
on the weak form (11), and a modified fundamental solution of the corresponding
elliptic spatial equation is employed as a test function in each subdomain.

We describe these types in more detail later, along with the way we modify them
when going from MLPG to DMLPG.

4 DMLPG formulations

Independent of which variation of MLPG we go for, the DMLPG has its special ways
to handle boundary conditions, and we describe these first.

Neither Lagrange multipliers nor penalty parameters are introduced into the local
weak forms, because the Dirichlet boundary conditions are imposed directly. For
nodes xk ∈ �D , the values u(xk, t) = uD(xk, t) are known from the Dirichlet
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boundary conditions. To connect them properly to nodal values u(xj , t) in neighbor-
ing points xj inside the domain or on the Neumann boundary, we turn the GMLS
philosophy upside down and ask for coefficients aj (xk) that allow to reconstruct
nodal values at xk from nodal values at the xj . This amounts to setting λk = δxk in
Section 2 , and we get localized equations for Dirichlet boundary points xk as

N∑

j=1

aj (xk)u(xj , t) = uD(xk, t), xk ∈ �D, t ∈ [0, tF ]. (12)

Note that the coefficients are time–independent. In matrix form, (12) can be
written as

Bu(t) = uD(t), (13)

where u(t) ∈ R
N is the time–dependent vector of nodal values at x1, x2, ..., xN .

These equations are added into the full matrix setup at the appropriate places, and
they are in truly meshless form, since they involve only values at nodes and are with-
out numerical integration. Note that (10) has no integrals over the Dirichlet boundary,
and thus we can impose Dirichlet conditions always in the above strong form. For
(11) there are two possibilities. We can impose the Dirichlet boundary conditions
either in the local weak form or in the collocation form (12). Of course the latter is
the cheaper one.

We now turn to Neumann boundary conditions. They can be imposed in the same
way as Dirichlet boundary conditions by assuming λk(u) = ∂u

∂n
(xk) in the GMLS

approximation

N∑

j=1

aj (xk)u(xj , t) = ∂u

∂n
(xk, t), xk ∈ �N, t ∈ [0, tF ]. (14)

Note that the coefficients again are time–independent, and we get a linear system
like (13), but with a vector uN(t) of nodal values of normal derivatives in the right–
hand side. This is collocation as in subsection 4.2. But it is often more accurate to
impose Neumann conditions directly into the local weak forms (10) and (11). We will
describe this in more detail in the following subsections. We now turn the different
variations of the MLPG method into variations of the DLMPG.

4.1 DMLPG1/5

These methods are based on the local weak form (10). This form recasts to

∂

∂t

∫


k
s

ρcuv d
+
∫


k
s

κ∇u · ∇v d
−
∫

∂
k
s \�N

κ
∂u

∂n
v d�

=
∫

�N∩∂
k
s

uNv d� +
∫


k
s

f v d


(15)

after inserting the Neumann boundary data from (8), when the domain 
k
s of

(10) hits the Neumann boundary �N . All integrals in the top part of (15) can be
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efficiently approximated by GMLS approximation of Section 2 as purely spatial
formulas

λ1,k(u) :=
∫


k
s

ρcuv d
 ≈ λ̂1,k(u) =
N∑

j=1

a1,j (xk)u(xj ),

λ2,k(u) := −
∫


k
s

κ∇u · ∇v d
 ≈ λ̂2,k(u) =
N∑

j=1

a2,j (xk)u(xj ),

λ3,k(u) := −
∫

∂
k
s \�N

κ
∂u

∂n
v d� ≈ λ̂3,k(u) =

N∑

j=1

a3,j (xk)u(xj ).

(16)

While the two others can always be summed up, the first formula, if applied to
time–varying functions, has to be modified into

∂

∂t

∫


k
s

ρcuv d
 ≈
N∑

j=1

a1,j (xk)
∂

∂t
u(xj , t)

and expresses the main PDE term not in terms of values at nodes, but rather in terms
of time derivatives of values at nodes.

Again, everything is expressed in terms of values at nodes, and the coefficients
are time–independent. Furthermore, Section 2 shows that the u part of the integration
runs over low–order polynomials, not over any shape functions.

The third functional can be omitted if the test function v vanishes on ∂
k
s \ �N .

This is DMLPG1. An example of such a test function is

v = v(x; xk) = φ

(‖x − xk‖2

r0

)
,

where φ is the weight function in the MLS approximation with the radius δ of the
support of the weight function being replaced by the radius r0 of the local domain 
k

s .
In DMLPG5, the local test function is the constant v = 1. Thus the functionals

λ2,k of (16) are not needed, and the integrals for λ1,k take a simple form, if c and ρ are
simple. DMLPG5 is slightly cheaper than DMLPG1, because the domain integrals
of λ2,k are replaced by the boundary integrals of λ3,k .

Depending on which parts of the functionals are present or not, we finally get a
time–dependent system of the form

A(1) ∂

∂t
u(t)+ A()u(t) = b(t),  = 2 or 3 (17)

where u(t) is the time–dependent vector

u(t) = (u(x1, t), . . . , u(xN, t))
T ∈ R

N

of nodal values, b(t) ∈ R
M collects the time–dependent right–hand sides with

components

bk =
∫


k
s

f (x, t)v(x; xk) d
+
∫

�N∩∂
k
s

uN(x, t)v(x; xk) d�,
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and A
()
kj = a,j (xk),  = 1, 2, 3. The k-th row of A() is

a
()
k = WP(PWPT )−1λ,k(P),  = 1, 2, 3,

where

λ1,k(P) =
[∫


k
s

ρcp1v d
,

∫


k
s

ρcp2v d
, . . . ,

∫


k
s

ρcpQv d


]T

,

λ2,k(P) =−
[∫


k
s

κ∇p1 · ∇v d
,

∫


k
s

κ∇p2 · ∇v d
, . . . ,

∫


k
s

κ∇pQ · ∇v d


]T

,

λ3,k(P) =
[∫

∂
k
s \�N

κ
∂p1

∂n
v d�,

∫

∂
k
s \�N

κ
∂p2

∂n
v d�, . . . ,

∫

∂
k
s \�N

κ
∂pQ

∂n
v d�

]T

.

As we can immediately see, numerical integrations are done over low-degree poly-
nomials p1, p2, ..., pQ only, and no shape function is needed at all. This reduces the
cost of numerical integration in MLPG methods significantly.

4.2 DMLPG2

In this method, the test function v on the local domain 
k
s in (9) is replaced by

the test functional δxk , i.e. we have strong collocation of the PDE and all boundary
conditions. Depending on where xk lies, one can have the functionals

μ1,k(u) := u(xk),

μ2,k(u) := ∂u

∂n
(ρcu)(xk),

μ3,k(u) := ∇ · (κ∇u)(xk)

(18)

connecting u to Dirichlet, Neumann, or PDE data. The first form is used on the
Dirichlet boundary, and leads to (12) and (13). The second applies to points on the
Neumann boundary and is handled by (14), while the third can occur anywhere in 


independent of the other possibilities. In all cases, the GMLS method of Section 2
leads to approximations of the form

μi,k(u) ≈
N∑

j=1

ai,j (xk)u(xj ), i = 1, 2, 3

entirely in terms of nodes, where values on nodes on the Dirichlet boundary can be
replaced by given data.

This DMLPG2 technique is a pure collocation method and requires no numerical
integration at all. Hence it is truly meshless and the cheapest among all versions of
DMLPG and MLPG. But it needs higher order derivatives, and thus the order of
convergence is reduced by the order of the derivative taken. Sometimes DMLPG2 is
called Direct MLS Collocation (DMLSC) method [8].

It is worthy to note that the recovery of a functional such as μ2,k(u) or μ3,k(u)

in (18) using GMLS approximation gives GMLS derivative approximation. These
kinds of derivatives have been comprehensively investigated in [9] and a rigorous
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error bound was derived for them. Sometimes they are called diffuse or uncertain
derivatives, because they are not derivatives of shape functions, but [9] proves there
is nothing diffuse or uncertain about them and they are direct and usually very good
numerical approximation of corresponding function derivatives.

4.3 DMLPG4

This method is based on the local weak form (11) and uses the fundamental solution
of the corresponding elliptic spatial equation as test function. Here we describe it for
a two–dimensional problem. To reduce the unknown quantities in local weak forms,
the concept of companion solutions was introduced in [16]. The companion solution
of a 2D Laplace operator is

v(x; y) = 1

2π
ln

r0

r
, r = ‖x − y‖2,

which corresponds to the Poisson equation �v(x; y) + δ(r) = 0 and thus is a fun-
damental solution vanishing for r = r0. Dirichlet boundary conditions for DMLPG4
are imposed as in (12). The resulting local integral equation corresponding to a node
xk located inside the domain or on the Neumann part of the boundary is

∂

∂t

∫


k
s

1

κ
ρcuv d
− αku(xk)+−

∫

∂
k
s

∂v

∂n
u d� −

∫


k
s

1

κ
∇κ · ∇u v d


=
∫

∂
k
s∩�N

uNv d� +
∫


k
s

1

κ
f v d
,

(19)

where αk is a coefficient that depends on where the source point xk lies. It is 1/2 on
the smooth boundary, and θk/(2π) at a corner where the interior angle at the point xk
is θk . The symbol −

∫
represents the Cauchy principal value (CPV). For interior points

xk we have αk = 1 and CPV integrals are replaced by regular integrals.
In this case

λ1,k(P) =
[∫


k
s

1

κ
ρcp1v d
,

∫


k
s

1

κ
ρcp2v d
, . . . ,

∫


k
s

1

κ
ρcpQv d


]T

,

and λ2,k(P) = αkλ
(1)
2,k(P)+ λ

(2)
2,k(P)+ λ

(3)
2,k(P), where

λ
(1)
2,k(P) = [

p1(xk), p2(xk), . . . , pQ(xk)
]T

,

λ
(2)
2,k(P) = −

[
−
∫

�k
s

∂v

∂n
p1 d�,−

∫

�k
s

∂v

∂n
p2 d�, . . . ,−

∫

�k
s

∂v

∂n
pQ d�

]T

,

λ
(3)
2,k(P) =

[∫


k
s

1

κ
∇κ · ∇p1 v d
,

∫


k
s

1

κ
∇κ · ∇p2 v d
, . . . ,

∫


k
s

1

κ
∇κ · ∇pQ v d


]T

.

Finally, we have the time-dependent linear system of equations

A(1) ∂

∂t
u(t)+ A(2)u(t) = b(t), (20)
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where the k-th row of A() is

a
()
k = WP(PWPT )−1λ,k(P),  = 1, 2.

The components of the right-hand side are

bk(t) =
∫


k
s

1

κ(x)
f (x, t)v(x; xk) d
+

∫

∂
k
s∩�N

uN(x, t)v(x; xk) d�.

This technique leads to weakly singular integrals which must be evaluated by special
numerical quadratures.

4.4 DMLPG3/6

In both MLPG3 and MLPG6, the trial and test functions come from the same space.
Therefore they are Galerkin type techniques and should better be called MLG3
and MLG6. But they annihilate the advantages of DMLPG methods with respect
to numerical integration, because the integrands include shape functions. Thus we
ignore DMLPG3/6 in favour of keeping all benefits of DMLPG methods. Note that
MLPG3/6 are also rarely used in comparison to the other MLPG methods.

5 Time stepping

To deal with the time variable in meshless methods, some standard methods were
proposed in the literature. The Laplace transform method [10, 12], conventional finite
difference methods such as forward, central and backward difference schemes are
such techniques. A method which employs the MLS approximation in both time and
space domains, is another different scheme [6, 7].

In our case the linear system (3) turns into the time–dependent version (17) cou-
pled with (13) that could, for instance, be solved like any other linear first–order
implicit Differential Algebraic Equations (DAE) system. Invoking an ODE solver on
it would be an instance of the Method of Lines. If a conventional time–difference
scheme such as a Crank-Nicolson method is employed, if the time step �t remains
unchanged, and if M = N , then a single LU decomposition of the final stiffness
matrix and corresponding backward and forward substitutions can be calculated once
and for all, and then the final solution vector at the nodes is obtained by a simple
matrix–vector iteration.

The classical MLS approximation can be used as a postprocessing step to obtain
the solution at any other point x ∈ 
.

6 Numerical results

Implementation is done using the basis polynomials
{
(x − z)β

h|β|

}

0�|β|�m
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where h is an average mesh-size, and z is a fixed evaluation point such as a test
point or a Gaussian point for integration in weak–form based techniques. Here β =
(β1, . . . , βd) ∈ N

d
0 is a multi-index and |β| = β1 + . . . + βd . If x = (χ1, . . . , χd)

then xβ = χ
β1
1 . . . χ

βd
d . This choice of basis function, instead of {xβ}0�|β|�m, leads

to a well-conditioned matrix PWPT in the (G)MLS approximation. The effect of
this variation on the conditioning has been analytically investigated in [9].

A test problem is first considered to compare the results of MLPG and DMLPG
methods. Then a heat conduction problem in functionally graded materials (FGM)
for a finite strip with an exponential spatial variation of material parameters is inves-
tigated. In numerical results, we use the quadratic shifted scaled basis polynomial
functions (m = 2) in (G)MLS approximation for both MLPG and DMLPG methods.
Moreover, the Gaussian weight function

wj (x) =
⎧
⎨

⎩

exp
(−(‖x−xj‖2/c)

2
)−exp

(−(δ/c)2
)

1−exp(−(δ/c)2)
, 0 � ‖x − xj‖2 ≤ δ,

0, ‖x − xj‖2 > δ

where δ = δ0h and c = c0h is used. The parameter δ0 should be large enough to
ensure the regularity of the moment matrix PWPT in (G)MLS approximation. It
depends on the degree of polynomials in use. Here we put δ0 = 2m. The constant
c0 controls the shape of the weight function and has influence on the stability and
accuracy of (G)MLS approximation. There is no optimal value for this parameter at
hand. Experiments show that 0.4 < c0 < 1 lead to more accurate results.

All routines were written using MATLAB© and run on a Pentium 4 PC with 2.50
GB of Memory and a twin–core 2.00 GHz CPU.

6.1 Test problem

Let 
 = [0, 1]2 ⊂ R
2 and consider (5)–(8) with ρc = 2π2, κ = 1 and f (x, t) = 0.

Boundary conditions using x = (χ1, χ2) ∈ R
2 are

∂u

∂n
= 0, (χ1, χ2 = 0) ∪ (χ1, χ2 = 1), χ1 ∈ [0, 1],

u = e−t cos(πχ2), (χ1 = 0, χ2), χ2 ∈ [0, 1],
u = −e−t cos(πχ2), (χ1 = 1, χ2), χ2 ∈ [0, 1].

The initial condition is u(x, 0) = cos(πχ1) cos(πχ2), and u(x, t) =
e−t cos(πχ1) cos(πχ2) is the exact solution. Let tF = 1 and �t = 0.01 in the
Crank-Nicolson scheme. A regular node distribution with distance h in both direc-
tions is used. In Table 1 the CPU times used by MLPG1/2/4/5 and DMLPG1/2/4/5 are
compared. As we can immediately see, DMLPG methods are absolutely faster than
MLPG methods. There is no significant difference between MLPG2 and DMLPG2,
because they are both collocation techniques and no numerical integration is required.

The maximum absolute errors are drawn in Fig. 1 and compared. MLPG2 and
DMLPG2 coincide, but DMLPG1/4/5 are more accurate than MLPG1/4/5. DMLPG1
is the most accurate method among all. Justification needs a rigorous error and sta-
bility analysis which is not presented here. But, according to [8, 9] and all numerical
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Table 1 Comparison of MLPG and DMLPG methods in terms of CPU times used (Sec.)

h Type 1 Type 2 Type 4 Type 5

MLPG DMLPG MLPG DMLPG MLPG DMLPG MLPG DMLPG

0.2 4.3 0.2 0.2 0.2 1.9 0.2 1.4 0.2

0.1 22.6 0.3 0.3 0.3 9.8 0.3 6.8 0.3

0.05 116.4 1.4 0.8 0.6 52.9 1.1 35.6 1.2

0.025 855.8 9.6 8.3 7.0 446.5 8.3 302.2 8.5

results, we can expect an error behavior like O (
hm+1−k

)
, where k is the maximal

order of derivatives of u involved in the functional, and if numerical integration and
time discretization have even smaller errors.

For more details see the elliptic problems in [8] where the ratios of errors of both
method types are compared for m = 2, 3, 4.

6.2 A problem in FGMs

Consider a finite strip with a unidirectional variation of the thermal conductivity. The
exponential spatial variation is taken

κ(x) = κ0 exp(γ χ1), (21)

with κ0 = 17 Wm−1 ◦C−1 and ρc = 106. This problem has been considered in [12]
using the meshless LBIE method (MLPG4) with Laplace transform in time, and in
[6, 7] using MLPG4/5 with MLS approximation for both time and space domains,

Fig. 1 Comparison of MLPG and DMLPG methods in terms of maximum errors
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and in [14] using a RBF based meshless collocation method with time difference
approximation.

In numerical calculations, a square with a side-length a = 4 cm and a 11 × 11
regular node distribution is used.

Boundary conditions are imposed as bellow: the left side is kept to zero temper-
ature and the right side has the Heaviside step time variation i.e., u = TH(t) with
T = 1◦C. On the top and bottom sides the heat flux vanishes.

We employed the ODE solver ode15s from MATLAB for the final DAE system,
and we used the relative and absolute tolerances 1e-5 and 1e-6, respectively. With
these, we solved on a time interval of [0 60]with initial condition vector u0 at time
0. The Jacobian matrix can be defined in advance because it is constant in our linear
DAE. The integrator will detect stiffness of the system automatically and adjust its
local stepsize.

In special case with an exponential parameter γ = 0 which corresponds to a
homogeneous material the analytical solution

u(x, t) = T χ1

a
+ 2

π

∞∑

n=1

T cosnπ

n
sin

nπχ1

a
× exp

(
−α0n

2π2t

a2

)
,

is available. It can be used to check the accuracy of the present numerical method.
Numerical results are computed at three locations along the χ1-axis with χ1/a =

0.25, 0.5 and 0.75. Results are depicted in Fig. 2. An excellent agreement between
numerical and analytical solutions is obtained.

It is known that the numerical results are rather inaccurate at very early time
instants and at points close to the application of thermal shocks. Therefore in Fig. 3
we have compared the numerical and analytical solutions at very early time instants
(t ∈ [0, 0.4]). Besides, in Fig. 4 the numerical and analytical solutions at points very
close to the application of thermal shocks are given and compared for sample time
t (70) ≈ 10.5 sec.

The discussion above concerns heat conduction in homogeneous materials in a
case where analytical solutions can be used for verification. Consider now the cases

Fig. 2 Time variation of the temperature at three positions with γ = 0
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Fig. 3 Accuracy of method for early time instants at position x1/a = 0.5

γ = 0, 20, 50, and 100 m−1, respectively. The variation of temperature with time for
the three first γ -values at position χ1/a = 0.5 are presented in Fig. 5. The results are
in good agreement with Figure 11 presented in [14], Figure 6 presented in [7] and
Figure 4 presented in [6].

In addition, in Fig. 6 numerical results are depicted for γ = 100 m−1. For high
values of γ , the steady state solution is achieved rapidly.

It is found from Figs. 5 and 6 that the temperature increases with an increase in
γ -values.

For the final steady state, an analytical solution can be obtained as

u(x, t → ∞) = T
exp(−γχ1)− 1

exp(−γ a)− 1
,

(
u → T

χ1

a
, as γ → 0

)
.

Analytical and numerical results computed at time t = 60 sec. are presented in
Fig. 7. Numerical results are in good agreement with analytical solutions for the
steady state temperatures.

Fig. 4 Accuracy of method for points close to the thermal shock at time t (70) sec
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Fig. 5 Time variation of the temperature at position x1/a = 0.5 for γ = 0, 20, 50 m−1

Fig. 6 Time variation of the temperature at positions x1/a = 0.25, 0.5, 0.75 for γ = 100 m−1

Fig. 7 Distribution of temperature along x1-axis under steady-state loading conditions
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