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Abstract In this paper a direct approximation method on the sphere, constructed
by generalized moving least squares, is presented and analyzed. It is motivated by
numerical solution of partial differential equations on spheres and other manifolds.
The newmethod generalizes the finite differencemethods, someway, for scattered data
points on each local subdomain. As an application, the Laplace–Beltrami equation
is solved and the theoretical and experimental results are given. The new approach
eliminates some drawbacks of the previous methods.
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1 Introduction

The moving least squares (MLS) has recently become a popular method for scattered
data approximation on bounded domains in Euclidean spaces. This method was intro-
duced by Lancaster and Salkauskas [15] with a special case going back to an earlier
paper by Shepard [23]. In the nineties and thereafter it has been used extensively for
solving partial differential equations (PDEs) in sciences and engineering; see [1,3].
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The error analysis has been studied by several authors; see [2,18,28] and the references
therein.

TheMLSapproximationwas developed for pure function approximation on spheres
in [27]. The application of the classical MLS for solving PDEs on spheres and other
manifolds is much involved, because the PDE operators should be evaluated for non-
close-form and complicated shape functions. This is one of the reasons why this
approximation technique has been rarely used for solving PDEs on manifolds. In this
paper, we avoid the classical approach and suggest a direct approximation using a
generalizedmoving least squares (GMLS). The idea of GMLS was introduced in [20]
on bounded domains in R

d and used to construct a fast numerical method based on
local weak-forms for solving PDEs in [19].

In this paper, we adapt the direct approach on spheres

S
d := {x ∈ R

d+1 : ‖x‖2 = 1}

and use it for numerical solution of spherical PDEs. The new technique eliminates the
action of operators on shape functions and replaces it by a much cheaper evaluation
on spherical harmonics. In fact, GMLS recovers test functionals directly from values
at nodes, without any detour via shape functions. The method is meshless, because
the unknown quantities are parameterized entirely in terms of scattered nodes. On the
other hand, this method generalizes the finite difference methods (FDM) for irregular
points on the sphere.

To carry out the error analysis, we first prove that there exists a family of stable
local polynomial reproductions on the sphere. To do this, we prove an analogous
Bernstein inequality for spherical harmonics on spherical caps, and we then use the
notion of norming sets to prove the unisolvency. Afterward, we show that the presented
GMLS approximation constructs an example for this family. Finally, we estimate the
error using a standard argument for stable local polynomial reproductions. The error
analysis in the PDE part falls into a recently framework for nodal meshless methods by
Schaback [22]. As an application, we present some numerical results for the Laplace–
Beltrami equation.

The paper is organized as follows. In Sect. 2, a short review on spherical harmonics
is given. In Sect. 3, it is proved that there exists a family of stable local polynomial
reproductions based on a set of scattered points on the sphere. In Sect. 4, the GMLS
approximation is formulated on the sphere, and in Sect. 5 it is shown that the presented
GMLS approximation constructs an example of the stable local polynomial reproduc-
tions. Then, the error analysis for some special and important cases of differential
operators is given. In Sect. 6, the application of the new method for solving PDEs
is presented and analyzed. Finally, in Sect. 7 some experimental results are given to
justify the theoretical error and stability bounds.

2 Spherical harmonics

Spherical harmonics are restrictions to the unit sphere S
d of polynomials Y which

satisfy
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ΔY = 0,

where Δ is the Laplacian operator in R
d+1. The space of all spherical harmonics of

degree � on Sd is denoted byHd
� = Hd

� (Sd), and has an L2 orthonormal basis

{
Y�k : k = 1, . . . , N (d, �)

}
,

where

N (d, 0) = 1, N (d, �) = (2� + d − 1)Γ (� + d − 1)

Γ (� + 1)Γ (d)
, � � 1,

where Γ is the known Gamma function. We have

∫

Sd
Y�k(x)Y�′k′(x)dσ(x) = δ��′δkk′ ,

where dσ is the surface measure of the unit sphere. The space of spherical harmonics
of order m or less will be denoted by

Pd
m = Pd

m(Sd):=
m⊕

�=0

Hd
� (Sd),

with dimension N (d + 1,m).
A spherical cap on Sd with center x0 ∈ S

d and geodesic radius δ is defined by

B(x0, δ) := {x ∈ S
d : dist(x, x0) < δ}, 0 < δ < π,

where dist(x, y) is the geodesic distance between two points x, y on S
d defined by

dist(x, y) = arccos(xT y).

3 Local polynomial reproduction on the sphere

In this section, we prove the existence of a family of functions, based on a set of
scattered points on the sphere, called “local polynomial reproductions”. An analogous
result on bounded domains inRd is given in [28]. In the forthcoming section, we show
that the generalized moving least squares approximation of this paper constructs an
example of this family. In doing so, we present the following definition from [13,28]
and then we employ a known result of Theorem 3.1.

Definition 3.1 Let V be a finite dimensional vector space with norm ‖ · ‖V and let
Λ ∈ V ∗ (the dual space of V ) be a finite set consisting of N functionals. We will
say that Λ is a norming set for V if the mapping T : V → T (V ) ⊆ R

N defined by
T (v) = (μ(v))μ∈Λ is injective. T is called the sampling operator.
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If Λ is a norming set for V , then T−1 : T (V ) → V exists, and if RN has the norm
‖ · ‖RN and its dual RN∗ = R

N has the norm ‖ · ‖RN∗ , then equipping T (V ) with the
induced norm, we have

‖T−1‖ = sup
x∈T (V )\{0}

‖T−1x‖V
‖x‖RN

= sup
v∈V \{0}

‖v‖V
‖T v‖RN

.

Also, we can simply show that

‖T v‖RN � ‖T ‖ ‖v‖V , ‖v‖V � ‖T−1‖ ‖T v‖RN ,

which means that ‖ · ‖V and ‖T (·)‖RN are equivalent norms on V . Thus Λ allows
us to equip V with an equivalent norm via the operator T . This is the origin of term
norming set or norm generating set [13].

The proof of the following theorem can be found in [17,28].

Theorem 3.1 Suppose V is a finite-dimensional normed linear space and Λ =
{μ1, . . . , μN } is a norming set for V , T being the corresponding sampling opera-
tor. For every λ ∈ V ∗ there exists a vector u ∈ R

N depending only on λ such that for
every v ∈ V ,

λ(v) =
N∑

j=1

u j μ j (v),

and

‖u‖RN∗ � ‖λ‖V ∗‖T−1‖.

In the sequel, Theorem3.1will be used for V = Pd
m andμ j = δx j alongwith �∞-norm

on RN and �1-norm on its dual.
To have awell-defined approximation based onmultivariate polynomials we should

impose a condition on the distribution of points to guarantee the solvability.

Definition 3.2 A set point X = {x1, . . . , xN } ⊂ S
d with N � dim(Pd

m) is called
Pd
m-unisolvent, if the zero function is the only function from Pd

m that vanishes on X .

The following proposition links the notions of norming sets and unisolvency of
scattered points. Here δx denotes the point evaluation functional at x , defined by
δx (v) = v(x).

Proposition 3.1 The functionals Λ = {δx1, . . . , δxN } form a norming set for Pd
m if

and only if X is Pd
m-unisolvent.

To demonstrate the unisolvency of a set point X on a spherical cap or any subset
of Sd , we require a variation of the Markov inequality on spheres. The restriction of
any spherical harmonic Y of degree m to a great circle is a univariate trigonometric
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polynomial of degree less than or equal to m. A simple inequality says that if pm is a
trigonometric polynomial of degree � m then

‖p′
m‖∞,[−π,π ] � m‖pm‖∞,[−π,π ].

This is the best possible bound, for there is equality if pm(t) = sinmt . A simple proof
can be found in [6, Section 4]. A variation of this inequality which holds on an interval
shorter than the period is called the Videnskii’s inequality [26]: if δ ∈ (0, π) and

m >
1

2

√
3 tan2(δ/2) + 1, (3.1)

then

‖p′
m‖∞,[−δ,δ] � 2m2 cot

( δ

2

)
‖pm‖∞,[−δ,δ]. (3.2)

If we assume δ < π/2 then (3.1) holds true for allm � 1. Moreover, (3.2) is trivial for
m = 0 independent of δ. Thus, (3.2) is guaranteed for all m ∈ N0 and δ ∈ (0, π/2).

Let x0 ∈ S
d and δ > 0 and let Y be any spherical harmonic in Pd

m |B(x0,δ). For
x, y ∈ B(x0, δ), let C be the geodesic arc (part of a great circle) passing through x and
y, and let p be the restriction of Y to C. We have

|Y (x) − Y (y)| �
∫

C
|p′(t)|dt

� dist(x, y)2m2 cot
( δ

2

)
‖p‖∞,[−δ,δ]

� dist(x, y)2m2 cot
( δ

2

)
‖Y‖∞,B(x,δ),

leading to an integrated form of the Markov inequality as below

|Y (x) − Y (y)| � 2m2 cot
( δ

2

)
dist(x, y)‖Y‖∞,B(x0,δ), x, y ∈ B(x0, δ). (3.3)

Now, we are in situation that we can prove the following theorem.

Theorem 3.2 Let x0 ∈ S
d and δ ∈ (0, π/2) be given. Suppose B(x0, δ) is a spherical

cap on Sd , and let m ∈ N0 be fixed. Suppose that h > 0 and the set X ′ = X ∩ B(x0, δ)
satisfy

(1) h � δ
16m2 ,

(2) for every B(x, h) ⊂ B(x0, δ) there is a center x j ∈ X ′ ∩ B(x, h);

then Λ = {δx : x ∈ X ′} is a norming set for Pd
m and the norm of the inverse of the

associated sampling operator is bounded by 2.

Proof Let B = B(x0, δ). Choose an arbitrary Y ∈ Pd
m with ‖Y‖∞,B = 1. There exists

x ∈ B with |Y (x)| = ‖Y‖∞,B = 1. Assume that x /∈ X ′. Consider a great circle C
which passes through x0 and x . If dist(x0, x) � h set x ′ = x0, otherwise let x ′ ∈ B
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be a point on C between x0, x with dist(x, x ′) = h. Using condition (2) there exists
a point x j ∈ X ′ ∩ B such that dist(x ′, x j ) � h. Thus dist(x, x j ) � 2h. Applying
the integrated Markov inequality (3.3), using the fact that cot(δ/2) � 2/δ and using
condition (1), we can write

|Y (x) − Y (x j )| � 2m2 cot
( δ

2

)
2h

� 8m2

δ
h

� 1

2
.

This shows that |Y (x j )| � 1/2, thus the sampling operator T exists and

‖T−1‖ = sup
Y∈Pd

m\{0}
‖Y‖∞,B

‖TY‖∞
= sup

Y∈Pd
m\{0},‖Y‖∞,B=1

1

‖Y‖∞,X ′
� 2.

Finally, if x ∈ X ′ then for x = x j we have |Y (x j )| = 1. Thus the smaller upper bound
1, instead of 2, will be achieved for ‖T−1‖. ��
In case h = hX condition (2) of Theorem 3.2 is automatically satisfied.

It is worth to note that, Theorem 3.2 of [12] proves a similar statement with a
special definition for h and a different upper bound on it. Its proof uses the Videnskii’s
inequality and the norming sets as well. Although we should refer to [12] for the origin
of the idea, our condition on h covers that of [12] and our proof, which follows the
standard argument of the corresponding case in R

d+1 [28], is shorter and simpler.
Also, see [10] for a global estimation on the sphere.

Sincewe are finally interested in solving equations containing theLaplace–Beltrami
operator Δ0 and/or its corresponding gradient operator ∇0, we will try to obtain some
Bernstein bounds for these operators. The Laplace–Beltrami operator on S

d is the
spherical part of the Laplace operator in Rd+1. It plays an important role for analysis
on the sphere. Let x = (x1, . . . , xd+1) ∈ R

d+1. In the spherical-polar coordinates
x = r y, r > 0, y ∈ S

d , the Laplace operator satisfies

Δ = ∂2

∂r2
+ d

r

∂

∂r
+ 1

r2
Δ0,

where Δ0 is independent of derivatives with respect to the radial direction r . For
example in case d = 1 and in the polar coordinates (x1, x2) = (r cos θ, r sin θ) ∈ R

2,
r > 0, 0 � θ � 2π , we have

Δ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
d2

dθ2
,

which means that the Laplace–Beltrami operator on S
1 is Δ0 = d2/dθ2. In case

d = 2, and in the spherical polar coordinates
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(x1, x2, x3) = (r sin θ sin φ, r sin θ cosφ, r cos θ), r > 0, 0 � θ � π, 0 � φ � 2π,

(3.4)
we have

Δ = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2

(
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

)
,

which gives

Δ0 = 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 . (3.5)

On the other side, the spherical gradient ∇0 satisfies

∇ = 1

r
∇0 + y

∂

∂r
, x = r y, y ∈ S

d ,

where ∇0 is the spherical part of ∇ = (∂1, . . . , ∂d+1) and involves only derivatives
in y. Here ∂ j := ∂/∂x j . See [5] for proof. The following lemma can also be easily
established [5].

Lemma 3.1 Let f ∈ C2(Sd). Define F(x) := f (x/‖x‖2), x ∈ R
d+1. Then

Δ0 f (x) = ΔF(x), ∇0 f (x) = ∇F(x), x ∈ S
d .

The usual Laplacian Δ satisfies the dot product Δ = ∇ · ∇, and the analogue of this
identity also holds on the sphere, i.e. Δ0 = ∇0 · ∇0.

Now, we introduce the operators Di j to express some explicit relations between
spherical and Euclidian differential operators. Using this, we can apply some know
bounds from Euclidian spaces to prove the analogous bounds on spheres.

Definition 3.3 For x = (x1, . . . , xd+1) ∈ R
d+1 and 1 � i �= j � d + 1, define

Di j :=xi
∂

∂x j
− x j ∂

∂xi
= ∂

∂θi j
, (3.6)

where θi j is the angle of polar coordinates in the (xi , x j )-plane, defined by (xi , x j ) =
ri j (cos θi j , sin θi j ), ri j � 0 and 0 � θi j � 2π .

The first equality in (3.6) shows that Di j acts on R
d+1, yet the second equality

shows that it acts on Sd . With notations introduced in Lemma 3.1, Theorem 8.2 of [5]
proves that

Δ0 f (x) =
∑

1�i< j�d+1

D2
i j F(x), x ∈ S

d . (3.7)

Besides, Lemma 8.6 of the same reference proves

(∇0) j f (x) =
∑

1�i�d+1
i �= j

x i Di j F(x), x ∈ S
d , (3.8)
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where (∇0) j is the j-th component of ∇0.
A Bernstein inequality for multivariate polynomials in R

d+1 is known from [28]
which is stated in the following proposition.

Proposition 3.2 ([28] Proposition 11.6) Suppose that Ω ⊂ R
d+1 is bounded and

satisfies an interior cone condition with radius r > 0 and angle θ ∈ (0, π/2). If
p ∈ Pm(Rd+1) (the space of multivariate polynomials of degree at most m on R

d+1)
and α ∈ N0 is a multi-index for which |α| � m then

‖Dα p‖L∞(Ω) �
(

2m2

r sin θ

)|α|
‖p‖L∞(Ω).

Note that, a set Ω ⊂ R
d+1 is said to satisfy an interior cone condition if there exist

an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω a unit vector ξ(x)
exists such that the cone

Cone(x, ξ, θ, r) := {
x + t y : y ∈ R

d+1, ‖y‖2 = 1, yT ξ � cos θ, t ∈ [0, r ]}

is contained in Ω .
Proposition 3.2 can be used to prove the following theorem.

Theorem 3.3 Let x0 ∈ S
d and δ ∈ (0, π/8]. Then for Y ∈ Pd

m we have the following
inequalities for x ∈ B(x0, δ),

|∇0Y (x)| � C1,m,dδ
−1‖Y‖L∞(B(x0,δ)), (3.9)

|Δ0Y (x)| � C2,m,dδ
−2‖Y‖L∞(B(x0,δ)), (3.10)

where C1,m,d = 20dm2 and C2,m,d = 200d(d + 1)m4. The first inequality is inter-
preted component-wise.

Proof Define Ω := Cone(0, x0, δ, 1)\{0} ⊂ R
d+1. If δ � π/8, one can prove that Ω

itself satisfies an interior cone condition with radius r = 1/4 and angle θ = δ. Define
Ỹ (x) := Y (x/‖x‖2) for x ∈ Ω . It is clear that Ỹ ∈ Pm(Rd+1). Definition 3.3 and
Proposition 3.2 imply

|Di j Ỹ (x)| � |xi ||∂ j Ỹ (x)| + |x j ||∂i Ỹ (x)|
� 2‖x‖∞ max

1� j�d+1
|∂ j Ỹ (x)|

� 2‖x‖∞
2m2

(1/4) sin δ
‖Ỹ‖L∞(Ω)

� 20‖x‖∞m2δ−1‖Ỹ‖L∞(Ω)

� 20‖x‖∞m2δ−1‖Y‖L∞(B(x0,δ)).

The inequality in the fourth line above uses the fact that sin δ � 4
5δ for δ ∈ (0, π/8)

and the inequality in the last line uses the homogenous property of Ỹ . By restricting x
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to the sphere and by using (3.8) we simply get (3.9). Bound (3.10) can be established
by a simple induction. ��

Now we can prove, by applying Theorems 3.1 and 3.3, the existence of a stable
local polynomial reproduction based on a set point X on S

d . We restrict ourselves to
some special differential operators by introducing the following notation.

Notation 1 Let L0 := I d where Id is the identity operator, L1 := ∇0 and L2 := Δ0.
Note that, the subscript on L refers to the order of the related differential operator.

Theorem 3.4 Assume that m ∈ N is given. For every set X = {x1, . . . , xN } ⊂ S
d

with fill distance hX � π
128m2 =: h0, every x ∈ S

d and every k ∈ {0, 1, 2} there exist
numbers u(k)

1 (x), . . . , u(k)
N (x) such that

(1)
∑N

j=1 u
(k)
j (x)Y (x j ) = LkY (x), for all Y ∈ Pd

m,

(2)
∑N

j=1 |u(k)
j (x)| � Ck,1h

−k
X ,

(3) u(k)
j (x) = 0 if dist(x, x j ) > C2hX ,

where Lk are introduced in Notation 1, C0,1 = 2, C1,1 = 5
2d, C2,1 = (5/4)2d(d + 1)

and C2 = 16m2.

Proof Let x ∈ S
d be given. Choose δ := C2hX where C2 = 16m2. Since hX �

π/(128m2) we have δ � π/8 as is required for the previous inequalities. The fill-
distance hX and X ′ = X ∩ B(x, δ) satisfy both conditions of Theorem 3.2. Thus
{δx j : x j ∈ X ′} is a norming set for Pd

m |B(x,δ) and ‖T−1‖ � 2, where T is the
associated sampling operator. By applying Theorem 3.1 for V = Pd

m |B(x,δ), X = X ′,
N = |X ′|, λ = δx ◦ Lk , μ j = δx j and �∞-norm on R|X ′| (�1-norm on its dual) and by
using (3.10) and (3.9) we have

LkY (x) =
∑

x j∈X ′
u(k)
j (x)Y (x j ), ‖u(k)‖�1 � 2Ck,m,dδ

−k = Ck,1h
−k
X .

Finally, by setting u(k)
j (x) = 0 for x j ∈ X\X ′ we have (1) and (2). For (3), we realize

that dist(x, x j ) > δ = C2hX means that x j /∈ B(x, δ), and thus u(k)
j (x) = 0. ��

4 Generalized moving least squares on spheres

Let u ∈ Cm+1(Sd) for some m � 0. Note that the smoothness of a function u on the
spheres (or any manifold) is defined by the smoothness of u ◦ T with homeomorphic
mapping T : U ⊂ R

d → S
d whereU is open. Assume that X = {x1, . . . , xN } ⊂ S

d is
a set of scattered points with fill distance hX . For a given functional λ ∈ Cm+1(Sd)∗,
we are going to recover λ(u) from values u(x j ), j = 1, . . . , N . The functional λ

can, for instance, describe point evaluations of u and its derivatives up to order m.
Therefore, we assume that λ is finally localized at some x ∈ S

d . Let L be a linear
differential operator of order at mostm, and for x ∈ S

d define λ := δx ◦L . Themoving
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least squares approximation makes such recovery possible, by first approximating u
by

u(x) ≈ su,X (x) =
N∑

j=1

a j (x)u(x j ), x ∈ S
d , (4.1)

where a j are shape functions, and then approximating λ(u) = Lu(x) by λ(su,X ) =
Lsu,X (x),

Lu(x) ≈ Lsu,X (x) =
N∑

j=1

La j (x)u(x j ), x ∈ S
d . (4.2)

This approach can be called the shape function or the trial space approach which is
the usual techniques for solving partial differential and integral equations in numerical
analysis. In the context of MLS it requires the action of L on shape functions which
are complicated to evaluate. Here we follow an alternative approach which directly
approximates Lu(x) from nodal values u(x j ) by

Lu(x) ≈
N∑

j=1

aLj (x)u(x j ) =: sLu,X (x), x ∈ S
d . (4.3)

The new approach is called the direct approach. In general, La j is not identical to
aLj . If L = I d then the classical moving least squares (4.1) is resulted for pure func-
tion approximation. However, we desire to consider some more general functionals
motivated by numerical solution of PDEs in strong and weak forms.

Let w : Sd × S
d → [0,∞) be a continuous function. For a given x ∈ S

d the value
sLu,X (x) of generalized moving least squares approximation is given by sLu,X (x) =
LY ∗(x) where Y ∗ is the solution of

min

⎧
⎨

⎩

N∑

j=1

[u(x j ) − Y (x j )]w(x, x j ) : Y ∈ Pd
m

⎫
⎬

⎭
. (4.4)

Note that, the weight function w is chosen independent of L which makes the mini-
mization problem (4.4) independent of L , and thus makes the new method different
from the classical approximation (4.2). If we expand the optimal solution Y ∗(x) in
terms of spherical harmonics then we have

sLu,X (x) = LY ∗(x) =
m∑

�=0

N (d,�)∑

k=1

b∗
� k(x)LY� k(x),

where the optimal vector b∗ depends subtly on x via the weights. To have a local
representation we choose a compactly supported weight functionw, and for simplicity
we let w to be a radial function. Thus we choose a continuous function φ : [0, π) →
[0,∞) with φ(r) > 0 for r ∈ [0, 1/2], and φ(r) = 0 for r � 1. We define for some
0 < δ < π ,
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w(x, y) := φ

(
dist(x, y)

δ

)
=: φδ(dist(x, y)). (4.5)

For some reasons in analysis and implementation, it is more interesting to write the
approximation in terms of shape functions and nodal values as in (4.3). For this, there
is an alternative minimization problem on aL instead of b. The proof of the following
theorem is the same as the corresponding result in R

d [20]. Also, see [27,28] for a
special casewhere L is the identity operator.Note that, this theoremmakes a connection
to the Backus–Gilbert optimality which was discovered in [4] for the classical moving
least squares.

Theorem 4.1 Suppose that for every x ∈ S
d the set {x j : j ∈ I (x, δ, X)} is Pd

m-
unisolvent where I (x, δ, X) ≡ I (x) := { j ∈ {1, 2, . . . , N } : dist(x, x j ) � δ}. Then
problem (4.4) with (4.5) is uniquely solvable and the solution sLu,X (x) = LY ∗(x) can
be represented as

sLu,X (x) =
∑

j∈I (x)
aL∗
j (x)u(x j ),

where the coefficients aL∗
j are determined by minimizing

1

2

∑

j∈I (x)
aLj (x)

2 1

φδ(dist(x, x j ))
, (4.6)

under the constraints

∑

j∈I (x)
aLj (x)Y (x j ) = LY (x), Y ∈ Pd

m . (4.7)

In the following we drop the star from notation and write aL instead of aL∗ for
simplicity.As a consequence ofTheorem4.1 by using the classical Lagrangemultiplier
approach, as it is done in [20,28] in case Rd , functions aLj have representation

aLj (x) = φδ(dist(x, x j ))
m∑

�=0

N (d,�)∑

k=1

βL
� kY� k(x j ),

where, due to our assumption on unisolvency, the βL
� k are the unique solution of the

following system of linear equations

m∑

�=0

N (d,�)∑

k=1

βL
� k

∑

j∈I (x)
φδ(dist(x, x j ))Y� k(x j )Y�′k′(x j ) = LY�′k′(x),

where 0 � �′ � m, 1 � k′ � N (d, �). In a matrix form, this system can be rewritten
as

[PT (x)W (x)P(x)]βL = Y L(x),
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where P(x) ∈ R
|I (x)|×N (d+1,m) has components Y� k(x j ) and W (x) is a diagonal

matrix of size |I (x)| carrying the weights φδ(dist(x, x j )) on its diagonal. The right
hand side vector Y L(x) ∈ R

N (d+1,m) has components LY�′k′(x). The system is clearly
positive semi-definite and using the assumption on unisolvency it is positive definite.
Thus,

aL(x) = W (x)P(x)[PT (x)W (x)P(x)]−1Y L(x). (4.8)

For approximation at any point x ∈ S
d a small linear system of equation should

be solved. The computational complexity of the approximant at a single point x is
bounded byO(N (d+1,m)3+N (d+1,m)2|I (x)|+ |I (x)|). Since in practice |I (x)|
is much smaller than N and it is comparable with N (d + 1,m), the complexity at
every point is of order N (d + 1,m)3. Recall that N (d + 1,m) is the dimension of
space Pd

m of spherical harmonic basis functions.
From (4.8) we see that it suffices to evaluate L on space Pd

m , not on a certain
trial space spanned by shape functions a j . This significantly speeds up numerical
calculations in comparison with the classical moving least squares (4.2).

The error estimation for special cases L = L0, L1, L2 (see Notation 1) will be
given in the next section.

5 Error analysis

In this section we estimate the error Lu(x) − sLu,X (x) for some special L in terms of
the fill distance hX . We will assume that all set of centers X are quasi-uniform. To be
more precise, we define the separation distance qX to be the radius of the largest ball
that can be placed around every point in X such that no two balls overlap, i.e.

qX := 1

2
min
j �=k

dist(x j , xk).

In addition, the mesh ratio ρX is defined by

ρX := hX

qX
,

which measures how uniformly the points are placed. If we have a sequence of point
sets X , they are said to be quasi-uniform if there exists a global constant cqu > 1 such
that ρX � cqu, independent of X .

According to Notation 1, assume that L is specialized in L0 = I d, L1 = ∇0 or
L2 = Δ0. Functions a

(k)
j := aLk

j , k ∈ {0, 1, 2}, from generalized moving least squares
approximation provide a local polynomial reproduction in sense of Theorem 3.4.
Assume that h0, Ck,1, k = 0, 1, 2 and C2 denote the constants from Theorem 3.4.
Suppose that X satisfies ρX � cqu and hX � h0, and let δ = 2C2hX . The first property
(polynomial reproduction)

N∑

j=1

a(k)
j (x)Y (x j ) = LkY (x), for all Y ∈ Pd

m,
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follows from the construction process of the generalized moving least squares approx-
imation. Since a(k)

j are supported in B(x j , δ) and δ = 2C2hX , the third property holds
with constant C2 replaced by 2C2, i.e.

a(k)
j (x) = 0 if dist(x, x j ) � 2C2hX .

The proof of the second property (stability bound) invites more challenge. The same
argument as given in [27] yields

N∑

j=1

|a(k)
j (x)| � C̃k,1h

−k
X ,

where C̃k,1 = Ck,1(1+2cquC2)
d/2(π/2)(d−1)/2

√
Cφ/cφ in which cφ := min

r∈[0,1/2] φ(r)

and Cφ := ‖φ‖L∞[0,1].
These properties can be used to obtain the convergence order for smooth functions.

Theorem 5.1 Suppose that X = {x1, . . . , xN } ⊂ S
d is quasi-uniform with constant

cqu. Fix m ∈ N0 with m � k. Suppose further that sLk
u,X is the generalized moving

least squares approximation of u ∈ Cm+1(Sd) for δ = 2C2hX where C2 is defined
in Theorem 3.4. Then there exist positive constants h0 and C = C(u,m, d, k, φ, cqu)
such that for every X with hX � h0 and every x ∈ S

d the estimate

|Lku(x) − sLk
u,X (x)| � Chm+1−k

X , k ∈ {0, 1, 2}, (5.1)

holds.

Proof We follow the standard proof of [27, Theorem 4] for pure function approxi-
mation by MLS and modify it for derivative approximation by GMLS. First, for any
Y ∈ Pd

m , the local polynomial reproduction properties of GMLS, described before the
theorem, can be used to write

|Lku(x) − sLk
u,X (x)| � |Lku(x) − LkY (x)| +

∑

j∈I (x)
|a(k)

j (x)||u(x j ) − Y (x j )|

� |Lku(x) − LkY (x)| + C̃k,1h
−k
X ‖u − Y‖L∞(B(x,δ)). (5.2)

Now we bound the right-hand side by inserting a proper Y . In Euclidean cases, the
Taylor expansion usually gives a simple choice. Unfortunately, the Taylor formula can
not be defined on spheres. Thus we use a convenient map T to make a relation between
subsets of Sd and Rd . Without restriction we can assume that x = (0, . . . , 0, 1)T ; the
north pole. In this case B(x, δ) = {y ∈ S

d : yd+1 > cos δ}. We define the bijective

map T : U → B(x, δ) by ỹ �→ (ỹ,
√
1 − ‖ỹ‖22)T , where

U = {ỹ ∈ R
d : ‖ỹ‖2 < sin δ}.
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The inverse of T is given by T−1(y) = ỹ = (y1, . . . , yd)T . Using this simple chart,
u ∈ Cm+1(B(x, δ)) means v = u ◦ T ∈ Cm+1(U ). The Taylor expansion of v around
origin is

v(ỹ) =
∑

α∈Nd
0 ,|α|�m

Dαv(0)

α! ỹ α +
∑

α∈Nd
0 ,|α|=m+1

Dαv(ξ(ỹ))

α! ỹ α

=
∑

β∈A
cβ y

β +
∑

β∈B
bβ(y)yβ =: v ◦ T−1(y) = u(y)

:= Ym(y) + Em(y)

where A = {β ∈ N
d+1
0 : |β| � m, βd+1 = 0} and B = {β ∈ N

d+1
0 : |β| =

m + 1, βd+1 = 0}. Here Ym(y) = ∑
β∈A cβ yβ is a polynomial of degree at most

m. It can be easily verified (for example by using operators Di j ) that Ym(x) = u(x),
∇0Ym(x) = ∇0u(x) and Δ0Ym(x) = Δ0u(x). This will eliminate the first term in the
right hand side of (5.2), if we are allowed to insert Ym instead of Y into (5.2). We can
do this because Ym can be expressed in terms of spherical harmonics of degree at most
m. To finalize the proof it is enough to bound |Em(y)| = |u(y)−Ym(y)|. In doing so,
we have

|E(y)| =
∣∣∣∣∣∣

∑

β∈B
bβ(y)yβ

∣∣∣∣∣∣

� C(u,m, d)‖ỹ‖m+1
2

� C(u,m, d) sinm+1(δ)

� C(u,m, d)δm+1

= (2C2)
m+1C(u,m, d)hm+1

X .

Inserting this bound into (5.2) gives the desired result. The new constant in the final
bound depends further on k, φ and cqu via C̃k,1. ��

6 Solving PDEs by GMLS

Consider the operator equation

Lu(x) = f (x), x ∈ S
d , (6.1)

where L is awell-posed linear differential operator of order k, for some k > 0 and f is a
given known function. In practice, usually f is only known on limited scattered points
z1, z2, . . . , zM ∈ S

d and one should approximate the solution in terms of this limited
information. Scattered data approximation methods are applicable in this situation.
We give a simple algorithm using the GMLS approximation.
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Assume that the true solution of (6.1) is denoted by u∗. We first approximate
Lu∗(z�) for 1 � � � M by theGMLSapproximation (4.3) based on a set of trial points
X = {x1, . . . , xN } which are well distributed on whole Sd to fulfill the requirements
of the approximation. Since L contains derivatives of order k, the degree of spherical
harmonic basis functions, m, should be equal or bigger than k. This leads to

f (z�) = Lu∗(z�) ≈
N∑

j=1

aLj (z�)u
∗(x j ), 1 � � � M,

for nodal values u∗(x1), . . . , u∗(xN ). Assume that the exact values u∗(x j ) are replaced
by approximate values u j to have

N∑

j=1

aLj (z�)u j = f (z�), 1 � � � M.

The above linear system can be written in matrix form

Au = f (6.2)

with

A = (
aLj (z�)

)
1���M,1� j�N ∈ R

M×N ,

f = ( f (z1), . . . , f (zM ))T ∈ R
M ,

u = (u1, . . . , uN )T ∈ R
N .

The linear system (6.2) is an unsymmetric system of equations. The square system
of certain meshless methods may be singular. But one can bypass this problem by
overtesting i.e. choosing M (the number of test points) larger than N (the number
of trial points). This leads to an overdetermined system of equations which can be
handled by standard numerical linear algebra techniques. We assume that the matrix
A is set up by sufficiently thorough testing so that the matrix has rank N � M .

This approach is called direct discretization, because it bypasses shape functions. It
is the same as the standard technique for generalized finite differences. The theoretical
analysis of this method falls into a framework given by Schaback [22] for nodal
meshless methods. Although it was given for operator equations on Euclidean spaces,
one can simply proceed with the framework to see that it actually works for a general
case including PDE problems on manifolds and particularly on spheres.

Let’s specialize the Schaback’s theory for our numerical scheme for a differential
equation of the form

− Δ0u(x) + ω2u(x) = f (x), x ∈ S
d , (6.3)

where ω is a positive constant. Such PDE arises from discretizing the heat equation
on the sphere. We should take three ingredients in to account for analysis, namely
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consistency, stability and numerical linear algebra solver. Let’s start with the latter
first.

So far we have denoted the vector of approximate nodal values u j by u. Hereafter,
the new notations u∗ and ũ will be respectively denoted as the vector of exact nodal
values u∗(x j ) and the vector of approximate nodal values ũ j that is obtained by some
numericalmethod that solves the system (6.2) approximately.We impose the following
condition on the numerical procedure that produces ũ,

‖Aũ − f ‖q � K (A)‖Au∗ − f ‖q , (6.4)

where ‖ · ‖q is the q-norm on R
N . Note that (6.4) can be obtained with K (A) = 1

if ũ is calculated via minimization of the residual ‖Au − f ‖q over all u ∈ R
N , or

with K (A) = 0 if f is in the range of A. Once the approximated nodal vector ũ
is obtained, u and its derivatives can be approximated in any point x ∈ S

d again
via GMLS approximation (4.3) by replacing u(x j ) by ũ j . This is a postprocessing
calculation which is independent of the PDE itself.

We assume that the true solution lies in some regularity subspace U that carries a
strong norm or seminorm ‖ · ‖U , and there is a consistency error bound

|Lu(x) − sLu,X (x)| � τ(x, L , X)‖u‖U , x ∈ S
d , (6.5)

where we expect that τ(x, L , X) is small provided that u has enough smoothness and
the discretization quality keeps up with the smoothness.We have provided such bound
for GMLS approximation in Theorem 5.1 for some special and important choices of
differential operators Lk of order k and for U = Cm+1(Sd), m � k. In our cases we
found τ(x, Lk, X) = Chm+1−k

X independent of x .
For stability we again assume that the stiffness matrix A has no rank loss. Thus the

stability constant

CS(A) := sup
u �=0

‖u‖q
‖Au‖p

, (6.6)

is finite for any choice of discrete norms ‖ · ‖q and ‖ · ‖p onRN and RM , respectively.
This constant can be explicitly calculated for standard norms and it measures the con-
ditioning of the final (global) linear system (6.2). One hopes that CS(A) is reasonably
small.

Now we have the following theorem which gives the errors on nodal values [22].

Theorem 6.1 Under the above assumptions we have

‖u∗ − ũ‖q
‖u∗‖U � (1 + K (A))CS(A)‖τ‖p,

where τ = (τ (z1, L , X), . . . , τ (zM , L , X)). This leads to

‖u∗ − ũ‖q � C(1 + K (A))CS(A)hm−1
X ‖u∗‖Cm+1(Sd ),
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for PDE (6.3) when it is numerically solved by the presented GMLS approximation
with m � 2.

But a question is still unanswered. How can one estimate the stability constant
CS(A)? The literature has no theoretical estimator for this constant in terms of dis-
cretization quality. However, Schaback [22] has proposed some numerical estimators
which allow users to check the error and stability of their methods.

In case p = q = 2,

CS(A) =
(

min
1� j�N

σ j

)−1

for the N positive singular valuesσ1, . . . , σN of A, and these are obtainable by singular
value decomposition (SVD).

The (q, p)-norm of the pseudoinverse of A, defined by

‖A†‖q,p := sup
v �=0

‖A†v‖q
‖v‖p

,

overestimates CS(A). Thus one can calculate the pseudoinverse and take the (q, p)-
norm to have a close grip on the stability.

A simple possibility, restricted to square systems, is to use the fact that MATLAB’s
condest command estimates the L1 condition number, which is the L∞ condition
number of the transpose. Thus

C̃S(A) := condest(A′)
‖A‖∞

is an estimate of the L∞ norm of A−1. This is computationally very cheap for sparse
matrices and turns out to work fine on the examples in Sect. 7, but an extension to
non-square matrices is missing.

7 Numerical experiments

Before going to the experimental results, we should note that the computation of aL(x)
from (4.8) suffers from a numerical instability caused by roundoff errors. This goes
back to the computation of spherical harmonics on small spherical caps which leads
to nearly dependent columns in matrix P(x). To obtain a reliable solution, we avoid
both matrix inverting and Matlab’s backslash command (for the square systems) in
favour of using the QR factorization for normal linear systems as below. Recall

aL = WP[PTW P]−1
︸ ︷︷ ︸

=:B
Y L = BY L

from (4.8). Decompose
√
WP = QR where Q is unitary and R is upper triangular to

get PTW P = RT R. By some simple calculations, RBT = QT
√
W . Using backward
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Fig. 1 Trial points on S
2, 201 points on the left and 801 points on the right

Table 1 The order of convergence at nodal points, the order of growth of Lebesgue function at a sample
point, the orders of growth (decay) of the stability constants; equal area partitioning points

N hX Orders

ord(‖e‖2) ord(‖aL‖1) ord(CS) ord(C̃S)

50 0.3535 – – – –

201 0.1762 0.96 −1.88 1.30 0.79

801 0.0882 2.38 −1.93 0.57 0.69

3201 0.0442 2.17 −1.99 0.00 0.43

12,801 0.0220 2.13 −2.02 0.00 0.17

substitution, B is derived from this and aL can be calculated directly. This technique
stabilizes our calculations, significantly.

Now, we present the results of a numerical experiment for approximating the solu-
tion of differential equation (6.3) where the true solution is given by the following
Franke’s function on the unit sphere S

2 [16]. To be more precise, in the spherical
coordinates (3.4) we define

u∗(x) =3

4
exp

(
− (9x1 − 2)2 + (9x2 − 2)2

4

)
+ 3

4
exp

(
− (9x1 + 1)2

49
− (9x2 + 1)2

10

)

+ 1

2
exp

(
− (9x1 − 7)2 + (9x2 − 3)2

4

)
− 1

5
exp

(
−(9x1 − 4)2 − (9x2 − 7)2

)

where x = (x1, x2, x3), and compute f via the formula (3.5). Function u∗ is inde-
pendent of x3, but it of course depends on both θ and φ of spherical coordinates. The
results for the 3-dimensional Franke’s function (see for example [24]) are roughly the
same.

The first type of points, used to construct the approximate solutions, is generated
using the equal area partitioning algorithm given in [21]. Two sets of these points are
plotted in Fig. 1.

Results are presented in Table 1 for m = 2 and different number of points. The fill
distance hX is of order O(N−1/2).
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Fig. 2 The sparsity patterns of the final GMLS matrix: N = 3201 (left) and N = 12,801 (right)

Since N is approximately quadrupled (or hX is approximately halved) row by row,
the approximated orders in columns 3-6 of the table are calculated via formula

ord(G) = log2

(
G(Nold)

G(Nnew)

)

where G(N ) is the value of ‖e‖2, ‖aL‖1, CS or C̃S at level N .
No overtesting is applied here and the final linear systems are solved using the

backslash operator of Matlab. The third column shows the order of convergence at
the nodal points of ‖e‖2 = ‖u∗ − ũ‖2, while the fourth column shows the order of
growth of Lebesgue function

∑N
j=1 |aLj (x)| at sample point x = z�N/2�. The observed

order of convergence is even better than the expected theoretical order m − 1. The
Lebesgue function grows polynomially like h−2

X as it was proved theoretically in
Sect. 5. The orders of growth (here decay) of the stability constants CS and C̃S are
reported in the last two columns. The numbers are approximately approaching to zero
which show that CS and C̃S behave (approximately) independent of hX .

The sparsity patterns of the (global) final linear system for N = 3201 and N =
12,801 are shown in Fig. 2.

In order to check how the choice of the testing points influence the results, the same
results are obtained in Table 2 for spherical t-designs on S2 with N = t2/2+ t +O(1)
points which are described and distributed at the website [29]. The orders are roughly
the same as those given in Table 1 for equal area partitioning points. This is expectable
because both types of set points are quasi-uniform and they have a nearly identical
fill-distance. This also holds for the minimum energy points of Hardin and Saff [11].

The true solutionwe considered so far (the Franke’s function) is an infinitely smooth
function. Now, we turn to a finitely smooth function on S2 as a true solution for (6.3).
Let {ξ1, . . . , ξn} be a set of n points on the sphere and let φ(r) = (1 − r)6+(35r2 +
18r + 3) for r � 0. Define
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Table 2 The order of convergence at nodal points, the order of growth of Lebesgue function at a sample
point, the orders of growth (decay) of the stability constants; spherical t-designs

N hX Orders

ord(‖e‖2) ord(‖aL‖1) ord(CS) ord(C̃S)

50 0.3608 – – – –

201 0.1843 0.86 −1.79 1.39 0.78

801 0.0933 2.89 −2.04 0.34 0.76

3201 0.0449 2.09 −2.02 0.00 0.56

12,801 0.0262 2.14 −2.01 0.00 0.20

Table 3 The order of convergence and the order of growth of stability constants in GMLS method for
m = 3 with and without overtesting

N M = N M = 2N

ord(‖e‖2) ord(‖aL‖1) ord(CS) ord(‖e‖2) ord(‖aL‖1) ord(CS)

50 – – – – – –

201 +2.98 −1.66 +0.59 +1.61 −1.72 +0.74

801 +2.99 −2.00 +0.04 +3.10 −1.88 +0.26

3201 +1.91 −1.96 -1.20 +3.78 −2.07 +0.00

12,801 −0.44 −2.03 −3.65 +2.18 −2.00 −0.00

u∗(x) =
n∑

k=1

ckφ(

√
2 − 2xT ξk), x ∈ S

2,

for some known coefficients ck . Since φ is a C4 function so is u. In experiments we
assume that n = 100 and {ξ1, . . . , ξ100} are 100 scattered minimal energy points on
S
2 [11]. Moreover, we set

c̃ = (0.1,−0.2, 0.4, 0.3,−0.1,−0.4, 0.3,−0.5, 0.1, 0.2), c = (c̃, c̃, . . . , c̃︸ ︷︷ ︸
10 times

).

The right hand side function f is calculated using the fact that Δ0ϕ(xT ξ) = Lϕ(t)
for t = xT ξ with

L = d

dt
(1 − t2)

d

dt
.

In Table 3 the orders are presented for m = 3 in two cases: M = N (without overtest-
ing) and M = 2N (with overtesting). We observe that overtesting improves both the
order of convergence and the stability constant CS at finer levels.

As we pointed out, the GMLS method generalizes the finite difference method
for unstructured node layouts. In this direction, another well-established approach
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Fig. 3 Comparing the GMLS and the RBF–FD methods: GMLS versus IMQ (left), GMLS versus Wend-
land’s function (right)

is the radial basis function-generated finite difference (RBF–FD) method [25]. Both
techniques directly approximate the differential operators from function values at
scattered nodes in small subdomains. GMLS uses the space of spherical harmonics as
basis functions in a certain waywhich has been discussed in this paper, while RBF–FD
uses the exactness of operator values on the space of translates of an RBF (instead
of the space of polynomials in the standard finite difference method) on each local
subdomain. We refer the reader to [8] (and the references therein) for a comprehensive
discussion about the RBF–FD method. Here, we present some numerical results for
comparison. The well-known RBFs

φ(r) = (1 + ε2r2)−1/2, Inverse Multiquadric (IMQ),
φ(r) = (1 − εr)6+(3 + 18εr + 35ε2r2), C4-Wendland’s function,

when restricted to the sphere, will be employed. The results of the RBF–FD method
highly depend on the type of RBF and the scaling parameter ε. We assign different
values to ε but we care about the conditioning of the local matrices. Our numerical
tests show that the behaviours of CS and C̃S are more or less the same as those of the
GMLS method, no matter what the value of ε is. Note that, CS or C̃S measures the
conditioning of the (global) final matrix A which is different from the conditioning of
the local matrices for each stencil. The ‖ · ‖2 errors of the presented GMLS method
are compared with the RBF–FD method (IMQ and Wendland’s function) in Fig. 3 for
Franke’s function. As we can see, depending on the scaling parameter ε, the RBF–FD
method may give better or worse results than the GMLS method.

Small values of ε produce more accurate results until the calculation suddenly
breaks down due to the increasing ill-conditioning of the local linear systems. The
RBF interpolation itself is not unstable in function space even in the flat limit. Thus,
a stable numerical algorithm would overcome that apparent problem.

Numerical tests by the Gaussian kernel do not converge for large values of ε in this
example. As discussed in [7,9,14,30], the use of RBF-QR, RBF-GA or Contour-Padé
algorithm for small values of ε should lead to convergent results. Due to the need
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of this special treatment, we did not consider the Gaussian here and we restricted
ourselves to the above mentioned basis functions.

Finally we note that, augmenting the RBF–FD stencils with spherical harmonic
terms and using a special technique (such as RBF-QR, RBF-GA and Contour-Padé
algorithms) for handling the flat limit case will turn this method more accurate than
the GMLS method at the price of increasing the computational cost.

8 Conclusions and final remarks

A generalized moving least squares approximation was constructed on spheres to
approximate an operator equation from scattered points on local spherical caps. The
method avoided the action of the operator on the complicated shape functions and
replaced it by much cheaper evaluation on spherical harmonics. Thus the computa-
tional cost was reduced remarkably compared to the classical moving least squares
approach. It was applied and analyzed for some PDE problems on the sphere. The
method provided the optimal algebraic rate of convergence and the final linear system
is sparse and well-conditioned.

Finally, we note that the direct computation of spherical harmonics on small spher-
ical caps leads to an instability when the discretization becomes finer. This is a
disadvantage not only for this approach but also for all numerical methods based
on local polynomial reproduction on the sphere, including the classical MLS. We
suggested to use the QR factorization for solving the local normal linear systems.
Other computational tricks, which avoid forming the ill-conditioned systems and are
applicable in a general case, will be welcome in a future work.
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