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Abstract. In this paper, a numerical solution of partial differential equations on the unit
sphere is given by using a kernel trial approximation in combination with a special Petrov–Galerkin
test discretization. The solvability of the scheme is proved, and the error bounds are obtained for
functions in appropriate Sobolev spaces. The condition number of the final system is estimated in
terms of discretization parameters. The method is meshless because in the trial side the numerical
solution parameterizes entirely in terms of scattered points and in the test side everything breaks
down to simple numerical integrations over independent spherical caps. This means that no connected
background mesh is required for either approximation or integration.
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1. Introduction. Scattered data approximation in Euclidian spaces has a rather
long and rich history. In recent years researchers have become increasingly interested
in using tools from approximation theory to develop numerical methods for problems
on spheres and other manifolds [11]. Fitting a surface to scattered data arising from
sampling an unknown function defined on a manifold, or solving a partial differential
equation (PDE) where the underlying domain is a manifold with information available
at scattered points, comes up frequently in applied problems. There are applications to
geodesy, meteorology, astrophysics, geophysics, and other areas when the underlying
manifold is a sphere [7].

Spherical basis functions (SBF) are known as one of the most promising and
interesting tools for solving spherical problems [11]. They are closely related to radial
basis functions (RBF), which are well-established for pure function approximation
and PDE problems on regions in Euclidean spaces [3, 32]. There exists a reasonable
number of publications for solving data fitting problems on spheres using SBFs [13,
12, 24, 15]. Applications for numerical solution of PDEs can be found, for example,
in [16, 18, 14, 21]. See also [2, 25] for spherical spline solutions to PDEs. In this
direction, the collocation method is used in [18, 16], and the Gelerkin method is
employed in [14, 21, 2, 25]. In Galerkin methods entries in the stiffness matrices
have to be numerically computed via quadrature. For instance, the methods used in
[2, 25] require spherical triangulation and special quadratures, and the method of [14]
requires solving an optimization problem to find the quadrature weights. This will
sometimes increase the computational costs.

In this paper we present an alternative approach based on a special Petrov–
Galerkin test discretization. The new method utilizes the interpolation by a given
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SBF as a trial function and local integrated forms against certain test functions on
spherical caps as test functionals. The Petrov–Galerkin test discretization makes
the new technique different from already well-recognized collocation and Galerkin
methods. However, the approach itself is different from the usual Petrov–Galerkin
method, which usually involves bilinear forms directly. Test functionals have special
convolution form giving us suitable insight to analyze and implement the method
simply and interestingly. Error analysis is given for functions that lie in Sobolev
spaces defined on the unit sphere. As well as the Galerkin methods, the new technique
needs a numerical quadrature, but here everything breaks down to simple numerical
integration on spherical caps.

The remainder of this paper is organized as follows. In section 2 some prelimi-
nary results about spherical harmonics and Fourier series expansions on the sphere
are outlined. In section 3, inspired by our final extracted test functionals, the well-
known convolution on the sphere is reviewed and its main properties are addressed.
In section 4 a simple local integrated form of the underlying PDE problem is ex-
tracted. In section 5 the trial space used in this work is discussed. In section 6 the
properties of some specific kernels obtained by restricting a Euclidian kernel on the
sphere are given. In section 7 the test space is constructed by the restricted com-
pactly supported kernels. In section 8 a detailed description of the method and an
error analysis are given. The condition number of the final linear system is estimated
in section 9, and finally, section 10 is devoted to some discussions about constructing a
numerical quadrature on spherical caps as needed for numerical implementation done
in section 11.

With regard to notation, constants are denoted by c, c̃, or C with or without
subscript. In asymptotic expressions, c and c̃ are used in lower and upper bounds,
respectively. Constants without subscript are understood as “generic,” i.e., they can
change their value when used at different places, but we shall sometimes state ex-
plicitly on which problem parameters they depend. But constants with subscript are
“specific” and their value will be unchanged through the paper.

2. Spherical harmonics. Spherical harmonics are restrictions to the unit sphere
Sd of polynomials Y which satisfy

∆Y = 0,

where ∆ is the Laplacian operator in Rd+1. The space of all spherical harmonics of
degree ` on Sd is denoted by Hd` and has an L2 orthonormal basis

{Y`k : k = 1, . . . , N(d, `)} ,

where

N(d, 0) = 1, N(d, `) =
(2`+ d− 1)Γ(`+ d− 1)

Γ(`+ 1)Γ(d)
, ` > 1,

where Γ is the known Gamma function. The orthonormality is expressed as∫
Sd
Y`k(x)Y`′k′(x)dσ(x) = δ``′δkk′ ,

where dσ is the surface measure of the unit sphere. The space of spherical harmonics
of order m or less will be denoted by

Pdm :=
m⊕
`=0

Hd`
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276 DAVOUD MIRZAEI

with dimension N(d+ 1,m). It is known that the spherical harmonics are the eigen-
functions of the Laplace–Beltrami operator ∆0, and every function f ∈ L2 = L2(Sd)
can be expanded as

(2.1) f =
∞∑
`=0

N(d,`)∑
k=1

f̂`kY`k, f̂`k =
1
ωd

∫
Sd
fY`kdσ,

where ωd denotes the surface area of Sd,

ωd :=
∫

Sd
dσ =

2π(d+1)/2

Γ((d+ 1)/2)
.

The L2-norm of f given by the formula

‖f‖2L2
:=
∫

Sd
|f |2dσ

can also be expressed, via Parseval’s identity, as

‖f‖2L2
=
∞∑
`=0

N(d,`)∑
k=1

|f̂`k|2.

Finally we note that

(2.2)
N(d,`)∑
k=1

Y`k(x)Y`k(y) =
N(d, `)
ωd

P`(d+ 1;xT y)

is the addition formula for spherical harmonics. For a detailed discussion about the
subject of this section see [4, 19].

3. Convolution on spheres. In this section the definition of convolution on
the sphere and some of its properties are briefly explained. We refer the reader to [5]
as an earlier reference and to [26, 4] as some newer sources. Let

wα(t) := (1− t2)α−1/2, α > −1
2
, t ∈ (−1, 1).

The space of univariate functions for which the pth power of the absolute value is
integrable with respect to the weight wα on [−1, 1] is denoted by Lp(wα; [−1, 1]), and
the norm of this space is denoted by ‖ · ‖α,p and is defined to be

‖g‖α,p :=
(
cα

∫ 1

−1
|g(t)|pwα(t)dt

)1/p

, g ∈ Lp(wα; [−1, 1]),

where cα is a normalization constant such that cα
∫ 1
−1 wα(t)dt = 1. For α = d−1

2 one
can prove cα = ωd−1

ωd
. Now, a convolution on the unit sphere Sd can be defined as

follows.

Definition 3.1. Let f ∈ L1(Sd), the space of integrable functions on Sd, and
g ∈ L1(wα; [−1, 1]) with α = d−1

2 . The convolution of f and g is defined by

(f ∗ g)(x) :=
1
ωd

∫
Sd
f(y)g(xT y) dσ(y),

where dσ is the surface measure and ωd is the surface area of Sd, respectively.
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If f is expressed as (2.1), then the following lemma can be viewed as an analogue
of the fact that the Fourier transform of f ∗ g is equal to the product of the Fourier
transforms of f and g.

Lemma 3.2. For f ∈ L2(Sd) and g ∈ L1(wα, [−1, 1]) with α = d−1
2 we have

(f̂ ∗ g)`k := ĝ`f̂`k.

This fundamental result plays an important role in analysis of the numerical
algorithm presented in section 8.

4. A Petrov–Galerkin formulation. We consider the PDE

(4.1) Lu = f on Sd,

where L is an elliptic self-adjoint differential operator of order κ, for some κ > 0.
Instead of the usual global weak formulation, we use a local weak form in this

paper. For this purpose we first define

B(x, %) :=
{
y ∈ Sd : dist(x, y) 6 %

}
as a spherical cap centered at x ∈ Sd with geodesic radius % for some 0 < % < π. Here
dist(x, y) is the geodesic distance between two points x, y on Sd which is defined by
dist(x, y) = arccos(xT y).

Let Ψ(x, ·) be a compactly supported test function on B(x, %) for x ∈ Sd. Sufficient
smoothness will be assumed for the test function as needed. By integrating (4.1)
against Ψ(x, ·) we have

(4.2)
∫
B(x,%)

Lu(y)Ψ(x, y)dσ(y) =
∫
B(x,%)

f(y)Ψ(x, y)dσ(y), x ∈ Sd.

This is similar to the standard Galerkin method when one integrates against a basis
in a given trial space. However, we will choose Ψ from a space different from the
underlying trial space. It is clear that the integrals in (4.2) both can be written over
Sd instead of B(x, %) because Ψ is assumed to be compactly supported. If we assume
that the test function is zonal, i.e., there exists a continuous function vρ : [−1, 1]→ R
such that

Ψ(x, y) = vρ(xT y) for all x, y ∈ Sd,

then the left-hand side of (4.2) gets the convolution form as defined in section 3. Here
ρ 6 % is the scaling parameter of the test function. In this case we can rewrite (4.2) as

(Lu ∗ vρ)(x) = (f ∗ vρ)(x), x ∈ Sd.

To approximate the unknown solution u, two different finite dimensional SBF sub-
spaces will be assigned as trial and test spaces. Any SBF, local or global, with certain
smoothness, can be used to construct the trial space. However, in this paper we are
mainly interested in positive definite functions that possess a Fourier transform that
decays only algebraically. The test function vρ should be necessarily compactly sup-
ported to allow us to form a set of independent test functionals and in parallel to
relax the costs of numerical integrations. This type of Petrov–Galerkin method is im-
plemented and analyzed on the sphere for the first time in this paper. The idea comes
form the local Petrov–Galerkin methods on bounded domains in Rd, introduced in a
mechanical engineering community [1].
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278 DAVOUD MIRZAEI

5. Trial functions. Zonal kernels are employed to construct the approximate
solution uN of u. Recall that zonal kernels on Sd are functions that can be represented
as φ(xT y) for all x, y ∈ Sd, where φ(t) is a continuous function on [−1, 1]. We are
especially interested in zonal kernels of the type

Φ(x, y) = φ(xT y) =
∞∑
`=0

a`P`(d+ 1;xT y), a` > 0,
∞∑
`=0

a` <∞,

where {P`(d + 1; t)}∞`=0 is the sequence of (d + 1)-dimensional Legendre polynomials
normalized to P`(d+ 1; 1) = 1. In [30] and [33] it was proved that such φ is positive
definite on Sd. One can expand the kernel Φ(x, y) in terms of spherical harmonics.
Using the addition formula (2.2) we have

(5.1) Φ(x, y) =
∞∑
`=0

N(d,`)∑
k=1

φ̂(`)Y`k(x)Y`k(y),

where

φ̂(`) =
ωd

N(d, `)
a`.

If we assume that for some σ > d/2,

(5.2) cφ(1 + `)−2σ 6 φ̂(`) 6 c̃φ(1 + `)−2σ, ` > 0,

holds for specific positive constants cφ and c̃φ, then the native space associated to Φ
is norm equivalent to Hσ = Hσ(Sd), the Sobolev space of order σ on Sd. If fact, the
native space NΦ = NΦ(Sd) is defined by

NΦ :=

f ∈ D′(Sd) : ‖f‖2Φ :=
∞∑
`=0

N(d,`)∑
k=1

|f̂`k|2

φ̂(`)
<∞

 ,

where D′(Sd) is the space of distributions on Sd. It can be shown that NΦ is a Hilbert
space with respect to the inner product

〈f, g〉Φ :=
∞∑
`=0

N(d,`)∑
k=1

f̂`kĝ`k

φ̂(`)
, f, g ∈ NΦ.

Moreover, Φ is reproducing kernel for NΦ, i.e., for all f ∈ NΦ,

〈f,Φ(x, ·)〉Φ = f(x), x ∈ Sd.

On the other hand, the Sobolev space Hσ with real parameter σ is defined by

Hσ = Hσ(Sd) :=

f ∈ D′(Sd) : ‖f‖2Hσ :=
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2σ|f̂`k|2 <∞

 .

Thus, under condition σ > d/2, due to the definitions of NΦ and Hσ and condition
(5.2), we deduce that

cφ‖f‖2Φ 6 ‖f‖2Hσ 6 c̃φ‖f‖2Φ,

which means that NΦ and Hσ are norm equivalent.
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A class of basis functions which satisfy condition (5.2) for some σ will be briefly
addressed in the next section.

6. Restricted kernels. The restriction of a positive definite kernel from Rd+1

to any submanifold M is a seemingly naive way for obtaining a positive definite kernel
on M. If the original kernel is positive definite, so is its restriction to M, making
it well-suited for scattered data interpolation problems. The case M = Sd has been
studied in [22, 34], while the general case has been investigated in [9]. Before all, a
variation of compactly supported RBFs of Wendland’s type [31] on the sphere was
introduced in [24].

Assume that S is an RBF on Rd+1, i.e., there exists a univariate function ψ such
that S(x) = ψ(‖x‖2), where ‖·‖2 is Euclidian norm in Rd+1. Since for points x, y ∈ Sd

we have ‖x− y‖2 =
√

2− 2xT y, we may therefore define

Φ(x, y) = φ(xT y) := ψ(
√

2− 2xT y) = S(x− y), x, y ∈ Sd.

It is clear that Φ inherits the property of positive definiteness from S. In [22] it was
proved that if Φ is represented in the form (5.1), then the Fourier coefficients φ̂(`)
satisfy the decay condition (5.2) for some σ > 0. To be more precise, if we assume
that the RBF S has Hs(Rd+1) as its native space, which is equivalent to this fact that
its (d+ 1)-variate Fourier transform Ŝ behaves like

(6.1) c(1 + ‖ω‖22)−s 6 Ŝ(ω) 6 c̃(1 + ‖ω‖22)−s, ω ∈ Rd+1,

for s > d+1
2 , then Φ (the restriction of S on Sd) generates Hs−1/2(Sd), i.e., its Fourier

coefficients satisfy (5.2) for σ = s − 1
2 . This loss of “1

2 a derivative” is familiar from
the theory of Sobolev spaces and traces of functions. In the general case, when S is
restricted to a k-dimensional smooth submanifold M ⊂ Rd+1, then the native space
of the restricted kernel is Hs−(d+1−k)/2(M). See [9, Theorem 5].

7. Test functions. In Petrov–Galerkin schemes trial and test functions come
from different spaces. Here we use a scaled compactly supported positive definite
kernel as a reference test function and then we rotate it to some different test points
to construct a set of independent test functionals. Assume that we are given a zonal
kernel v on Sd defined from a compactly supported RBF ψ on Rd+1 by

v(xT y) := ψ(‖x− y‖2), x, y ∈ Sd.

Then we define for x, y ∈ Sd

vρ(xT y) := ρ−dψ

(
‖x− y‖2

ρ

)
,

where ρ > 0 is a scaling parameter. If we expand vρ as

vρ(xT y) =
∞∑
`=0

N(d,`)∑
k=1

v̂ρ(`)Y`k(x)Y`k(y), x, y ∈ Sd,

and if we assume that ψ is a compactly supported RBF of Wendland’s type [31], then
we can show that for some ν > d/2,

(7.1) cv(1 + ρ`)−2ν 6 v̂ρ(`) 6 c̃v(1 + ρ`)−2ν , ` > 0,

where cv and c̃v are two specific positive constants. More precisely, we have the
following lemma from [15].
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Lemma 7.1. If the radial function ψ(‖ · ‖2) = S(·) has compact support in the
unit ball and a Fourier transform satisfying the condition (6.1) with s > (d + 1)/2,
then there are constants cv and c̃v depending only on s and d such that the associated
scaled SBF vρ has Fourier coefficients satisfying (7.1) with ν = s− 1

2 .

8. Numerical method and error analysis. Assume that we can expand Lu,
for a κ-order elliptic self-adjoint differential operator L, as a Fourier series

(8.1) Lu =
∞∑
k=1

N(d,`)∑
k=1

L̂(`)û`kY`k,

in which

(8.2) cL(1 + `)κ 6 L̂(`) 6 c̃L(1 + `)κ, ` > 0,

where cL, c̃L are two positive constants independent of `. For example, we may take
L = −∆0 +ω2I, where ∆0 is the Laplace–Beltrami operator and ω > 0, in which case
L̂(`) = `(`+ d− 1) + ω2 and κ = 2.

Assumptions (8.1) and (8.2) mean that L = P (−∆0), where P is a polynomial
with P (x) > 0 for all x > 0. This excludes, for example, PDEs with operators of the
form Lu =

∑
i,j aij

∂2u
∂xi∂xj + lower order terms, unless a is the metric tensor for the

unit sphere. This also implies that κ in (8.2) is an even number. Otherwise L would
be a pseudodifferential operator [7].

Assume that Φ is a kernel that satisfies condition (5.2) for some σ > d/2. Suppose
X = {x1, x2, . . . , xN} ⊂ Sd is a given discrete set of scattered points on the unit sphere
Sd. Our numerical solution uN comes from the trial space

VΦ,X := span{Φ(·, xj) : xj ∈ X}

by linear combination

uN =
N∑
j=1

bjΦ(·, xj).

Recall the test functionals

(8.3) (Lu ∗ vρ)(x) = (f ∗ vρ)(x), x ∈ Sd,

from section 4. Replacing u by uN in (8.3) and then imposing at x = xk, k = 1, . . . , N ,
we will finally get the linear system

(8.4) Ab = F,

where A = (akj) is an (N ×N)-matrix with

(8.5) akj = (LΦ(·, xj) ∗ vρ)(xk), k, j = 1, . . . , N,

and F = (fk) is an N -vector with

(8.6) fk = (f ∗ vρ)(xk), k = 1, . . . , N.

Although it is not explicitly expressed in the notation, the coefficient vector b depends
on ρ and so does uN .

The following theorem establishes the solvability of the proposed scheme.

D
ow

nl
oa

de
d 

01
/3

1/
18

 to
 1

28
.2

10
.1

26
.1

99
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PETROV–GALERKIN KERNEL APPROXIMATION 281

Theorem 8.1. Suppose that ψ(r) is a compactly supported RBF supported in
[0, 1]. Define

(8.7) vρ(t) := ρ−dψ

(√
2− 2t
ρ

)
, t ∈ [−1, 1].

In additions, let L be an elliptic self-adjoint differential operator of order κ, and
assume that Φ is a positive definite RBF on the unit sphere which satisfies (5.2) for
σ > d/2 + κ/2. Then there exists a unique function uN ∈ VΦ,X , which depends on ρ,
that fulfills the conditions

(8.8) (LuN ∗ vρ)(xk) = (f ∗ vρ)(xk)

for k = 1, 2, . . . , N .

Proof. The lower bound of σ guarantees that L can be applied to one of the
arguments of Φ. Since the entries of the final linear system are given by (8.5), it is
enough to prove that

(8.9) Λ(x, y) := (LΦ(·, y) ∗ vρ)(x)

is a positive definite kernel on the unit sphere. If Φ is a zonal kernel represented by
the Fourier series (5.1), then LΦ is a zonal kernel having the Fourier expansion

(8.10) LΦ(x, y) =
∞∑
`=0

N(d,`)∑
k=1

φ̂(`)L̂(`)Y`k(x)Y`k(y).

Using Lemma 3.2 and the series representation (8.10) we conclude that the Fourier
coefficients of kernel Λ(x, y) are

λ̂(`) = φ̂(`)L̂(`)v̂ρ(`).

Both φ̂(`) and v̂ρ(`) are positive because the trial kernel Φ and the test function vρ
are positive definite. On the other hand, by assumption, L̂(`) are positive numbers.
Consequently, λ̂(`) are positive and thus Λ is positive definite. This guarantees that
(8.4) is always uniquely solvable.

The remaining parts of this section will be devoted to convergence and stability
properties of the numerical solution. Things start with the following theorem.

Theorem 8.2. Assume that ρ ∈ (0, 2] is given and vρ is defined via (8.7) where
(7.1) holds for its corresponding Fourier coefficients with ν > d/2 and ν > κ/2. If
u ∈ Hτ for τ > κ, then Lu ∗ vρ ∈ Hτ−κ+2ν and

(8.11) c‖u‖Hµ 6 ‖Lu ∗ vρ‖Hµ−κ+2ν 6 c̃ ρ−2ν‖u‖Hµ

hold for any µ with 0 6 µ 6 τ .

Proof. By assumptions, Lu ∈ Hτ−κ ⊆ L2(Sd) and the convolution is well-defined.
Using the definition of norms by Fourier series we have
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‖Lu ∗ vρ‖2Hµ−κ+2ν =
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(µ−κ+2ν)|(L̂u ∗ vρ)`k|2

=
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(µ−κ+2ν)|L̂(`)v̂ρ(`)û`k|2

6 c̃2v c̃
2
L

∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(µ+2ν)(1 + ρ`)−4ν |û`k|2,

where we have used conditions (7.1) and (8.2) to bound v̂ρ(`) and L̂(`), respectively.
Since (1 + ρ`) = ρ(1/ρ+ `) > ρ

2 (1 + `), we have

(1 + ρ`)−4ν 6 24νρ−4ν(1 + `)−4ν .

Thus

‖Lu ∗ vρ‖2Hµ−κ+2ν 6 c̃2v c̃
2
L24νρ−4ν

∞∑
`=0

N(d,`)∑
k=1

(1 + `)2µ|û`k|2

= c̃2 ρ−4ν‖u‖2Hµ

for c̃ = c̃v c̃L22ν . On the other hand we can write

‖u‖2Hµ =
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2µ|û`k|2

6
1

c2vc
2
L

∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(µ−κ)(1 + ρ`)4ν |L̂(`)v̂ρ(`)û`k|2

6
24ν

c2vc
2
L

∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(µ−κ+2ν)|(L̂u ∗ vρ)`k|2

=
1
c2
‖Lu ∗ vρ‖2Hµ−κ+2ν ,

where we have used conditions (7.1) and (8.2) and the fact that (1+ρ`)4ν 6 24ν(1+`)4ν

for ρ ∈ (0, 2]. This proves the left-hand-side inequality in (8.11) for c = 2−2νcvcL.

Now, following [16], we introduce a new positive definite kernel. We can interpret
the kernel Λ(x, y) as the action of an operator K on Φ,

(8.12) Λ(x, y) = (LΦ(·, y) ∗ vρ)(x) =: KΦ(x, y), x, y ∈ Sd.

The new kernel Θ is then defined by

Θ := K−1Φ.

This kernel has Fourier coefficients

θ̂(`) =
φ̂(`)

L̂(`)v̂ρ(`)
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and defines an inner product

(8.13) 〈f, g〉Θ =
∞∑
`=0

N(d,`)∑
k=1

L̂(`)v̂ρ(`)

φ̂(`)
f̂`kĝ`k, f, g ∈ Hσ+κ/2−ν ,

with the corresponding norm
‖f‖2Θ := 〈f, f〉Θ.

Under conditions (5.2), (7.1), and (8.2) on trial kernel Φ, test kernel vρ, and operator
L, respectively, we can prove that

(8.14) c‖u‖Hσ+k/2−ν 6 ‖u‖Θ 6 c̃ρ−ν‖u‖Hσ+k/2−ν ,

with c =
√
cLcv/c̃φ2−ν and c̃ =

√
c̃v c̃L/cφ2ν , which shows that the ‖ · ‖Θ norm is

equivalent to the Sobolev norm ‖ · ‖Hσ+κ/2−ν , and Hσ+κ/2−ν with the inner product
(8.13) is a reproducing kernel Hilbert space with kernel Θ, provided that σ > d/2 +
ν − κ/2.

Next, we need to specify the exact order of smoothness of the approximate solution
uN . The smoothness of uN , of course, depends on the behavior of Fourier coefficients
φ̂(`). The following lemma makes it precise.

Lemma 8.3. If Φ satisfies (5.2) for σ > d/2 + β for β > 0, then uN belongs to
Hσ+β.

Proof. If we define ϕj := Φ(·, xj), then from (5.1) we have ϕ̂j(`) = φ̂(`)Y`k(xj),
which leads via (5.2) to

‖ϕj‖Hσ+β =
∞∑
`=0

N(d,`)∑
k=1

φ̂(`)2Y`k(xj)2(1 + `)2σ+2β

6 c̃2φ

∞∑
`=0

N(d,`)∑
k=1

Y`k(xj)2(1 + `)−2σ+2β

= c̃2φ

∞∑
`=0

N(d, `)
ωd

P`(d+ 1; 1)(1 + `)−2σ+2β

6 c̃

∞∑
`=0

(1 + `)−2σ+2β+d−1.

In the third line above we have used the addition formula (2.2) for x = y = xj , and in
the forth line we have used P`(d+ 1; 1) = 1 and the fact that N(d, `) = O((1 + `)d−1).
Since by assumption −2σ + 2β + d < 0, the last sum is finite. This shows that ϕj
belong to Hσ+β and completes the proof because uN ∈ VΦ,X and VΦ,X is a finite
dimensional space spanned by functions ϕj .

The following theorem gives an orthogonality property helping us to prove some
error bounds for our numerical solution.

Theorem 8.4. Suppose that the test function vρ, ρ ∈ (0, 2], satisfies (7.1) for
ν > d/2, and operator L satisfies (8.2) for positive integer κ. Let ν > κ/2 and
assume that the trial kernel Φ satisfies (5.2) for some σ with

(8.15) σ > d/2 + ν − κ/2 and σ > ν + κ/2.
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Finally assume that u ∈ Hσ+κ/2−ν , and uN ∈ VΦ,X is the solution of the Petrov–
Galerkin scheme. Then

〈u− uN , s〉Θ = 0 for all s ∈ VΦ,X .

Proof. The second lower bound of σ together with ν > d/2 imply that σ > d/2 +
κ/2. This with the first lower bound of σ gives σ > d/2+β for β := max{κ/2, ν−κ/2}.
Lemma 8.3 ensures that uN ∈ Hσ+β . Condition ν > κ/2 guarantees that

eN := u− uN

belongs to Hσ+κ/2−ν . Theorem 8.2 implies that KeN ∈ Hσ+ν−κ/2. Note that K can
operate on eN because by assumption σ > ν+κ/2, which implies σ+κ/2− ν > κ. It
is clear that KeN ∈ Hσ+k/2−ν because ν > κ/2. On the other hand, from (8.8) and
(8.12) we have

Ku(xk) = KuN (xk), k = 1, 2, . . . , N,

which means that the error function eN satisfies KeN (xk) = 0 for k = 1, 2, . . . , N .
Using (8.1) and the definition of the Θ-inner product in (8.13) one can easily show
that K is self-adjoint. Operator K is also invertible, thus we can write

〈eN ,Φ(·, xk)〉Θ = 〈KeN ,K−1Φ(·, xk)〉Θ
= 〈KeN ,Θ(·, xk)〉Θ
= KeN (xk)
= 0.

This completes the proof because VΦ,X is a finite dimensional space spanned by func-
tions Φ(·, xk).

Theorem 8.4 immediately implies Pythagoras’ theorem

‖u− uN‖2Θ + ‖uN‖2Θ = ‖u‖2Θ,

which proves

(8.16) ‖u− uN‖Θ 6 ‖u‖Θ.

The norm equivalence property (8.14) together with (8.16) gives the stability bound

‖u− uN‖Hσ+κ/2−ν 6 C‖u− uN‖Θ
6 C‖u‖Θ
6 Cρ−ν‖u‖Hσ+κ/2−ν .

(8.17)

The order of convergence of kernel methods is mainly based on the density and the
quality of trial and test points. Recall the set X = {x1, x2, . . . , xN} of scattered points
on Sd. There are three geometrical quantities associated with X. The separation
distance qX is the radius of the largest ball that can be placed around every point in
X such that no two balls overlap, i.e.,

qX :=
1
2

min
j 6=k

dist(xj , xk).
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On the other hand, the fill distance corresponds to the radius of the largest empty
possible ball that can be placed between the points in X. It is defined to be

hX := max
x∈Sd

min
xj∈X

dist(x, xj).

Finally the mesh ratio rX is defined by

rX :=
hX
qX

,

which measures how uniformly the points are placed. When it is close to 1, the
distribution of the points inX is said to be quasi uniform. For R > 1, let XR = XR(Sd)
be the family of all sets of centers X with rX 6 R; we will say that the family XR is
R-uniform.

The following “sampling inequality” is very important in our analysis. The au-
thors of [21] have applied Theorem 5.5 of [23] to prove this lemma. Going through
the details of the proof, one can find that the assumption of quasi uniformity for set
X is not actually required.

Lemma 8.5. Let α, β ∈ R satisfy β > d/2 and 0 6 α 6 β. Suppose that X ⊂ Sd
is a set of scattered points with fill distance hX . If u ∈ Hβ satisfies u|X = 0, then for
hX sufficiently small, we have

‖u‖Hα 6 Chβ−αX ‖u‖Hβ .

Finally, the following theorem gives an error bound for the presented method. We
assume that the integrals in (8.5) and (8.6) are computed exactly and thus no error
is produced by numerical integration.

Theorem 8.6. Suppose that all assumptions of Theorem 8.4 are satisfied. Let
τ := σ + κ/2− ν. Then the error bound

(8.18) ‖u− uN‖Hβ 6 Chτ−βX ρ−3ν‖u‖Hτ

holds for 0 6 β 6 τ and for sufficiently small fill distance hX of set X on Sd. Here ρ
is the radius of support of a test function.

Proof. By applying Theorem 8.2, Lemma 8.5, and inequalities (8.17) we have

‖u− uN‖Hβ 6 C‖Ku−KuN‖Hβ+2ν−κ

6 Ch
σ+κ/2−ν−β
X ‖Ku−KuN‖Hσ+ν−κ/2

6 Ch
σ+κ/2−ν−β
X ρ−2ν‖u− uN‖Hσ+κ/2−ν

6 Ch
σ+κ/2−ν−β
X ρ−3ν‖u‖Hσ+κ/2−ν .

This completes the proof.

Note that, with τ = σ + κ/2− ν, the lower bounds (8.15) on σ are equivalent to
the following lower bounds on τ :

τ > d/2 and τ > κ.

The error bound (8.18) estimates the error for a function u that lies in Sobolev
space Hτ for τ = σ + κ/2− ν. It is also interesting to estimate the error for approx-
imating functions smoother than those in the native space Hτ of kernel Θ. In the
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following we use the “doubling trick” in the case where u ∈ Hτ+α for α ∈ [0, τ ]. Re-
sults of this kind have been developed by Schaback [29] for positive definite functions
on Rd and on manifolds. See also [9, Proposition 11] and [21, Appendix A.1]. Our
argument is partly based on [21]. First, we measure the error in the Hτ -norm and
then we extend it to the Hβ-norm for β ∈ [0, τ ].

Lemma 8.7. Let τ := σ + κ/2 − ν and α ∈ [0, τ ]. Under the assumptions of
Theorem 8.4 we have

‖u− uN‖Hτ 6 Cρ−2νhαX‖u‖Hτ+α ,

provided that hX is sufficiently small and u ∈ Hτ+α.

Proof. By Theorem 8.4 we have 〈u − uN , s〉Θ = 0 for all s ∈ VX . Consequently,
〈u − uN , uN 〉Θ = 0 and so 〈u − uN , uN 〉Hτ = 0. This implies ‖u − uN‖2Hτ = 〈u −
uN , u〉Hτ . Let w := u− uN . We have

‖u− uN‖2Hτ = 〈w, u〉Hτ =
∞∑
`=0

N(d,`)∑
k=1

(1 + `)2τ û`kŵ`k

6
∞∑
`=0

N(d,`)∑
k=1

(1 + `)τ+α|û`k|(1 + `)τ−α|ŵ`k|

6

 ∞∑
`=0

N(d,`)∑
k=1

(1 + `)2(τ+α)|û`k|2
1/2 ∞∑

`=0

N(d,`)∑
k=1

(1 + `)2(τ−α)|ŵ`k|2
1/2

= ‖u‖Hτ+α‖w‖Hτ−α
= ‖u‖Hτ+α‖u− uN‖Hτ−α .

On the other hand we can write

‖u− uN‖Hτ−α 6 C‖Ku−KuN‖Hτ−α−κ+2ν (using Theorem 8.2)
6 ChαX‖Ku−KuN‖Hτ−κ+2ν (using Lemma 8.5)
6 ChαXρ

−2ν‖u− uN‖Hτ . (using Theorem 8.2).

Combining these and then dividing both sides by ‖u − uN‖Hτ yield the desired
bound.

Theorem 8.8. Let τ := σ + κ/2 − ν, β ∈ [0, τ), and γ ∈ (τ, 2τ ]. Under the
assumptions of Theorem 8.4 we have

(8.19) ‖u− uN‖Hβ 6 Cρ−4νhγ−βX ‖u‖Hγ ,

provided that hX is sufficiently small and u ∈ Hγ .

Proof. By applying Theorem 8.2 and Lemma 8.5 we have

‖u− uN‖Hβ 6 C‖Ku−KuN‖Hβ−κ+2ν

6 Chτ−βX ‖Ku−KuN‖Hτ−κ+2ν

6 Cρ−2νhτ−βX ‖u− uN‖Hτ .

Then Lemma 8.7 with α = γ − τ gives the desired bound.
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Theorems 8.6 and 8.8 estimate the error function when u ∈ Hγ for γ ∈ [τ, 2τ ].
The following theorem concerns the case γ ∈ [µ, τ) for µ > d/2 and µ > κ, i.e., the
case where u lies outside the native space Hτ of kernel Θ.

Theorem 8.9. Let τ := σ + κ/2 − ν. Assume that γ > d/2, γ > κ, γ < τ , and
0 6 β 6 γ. Then for all u ∈ Hγ we have

(8.20) ‖u− uN‖Hβ 6 Cρ−2νrτ−γX hγ−βX ‖u‖Hγ ,

provided that hX is sufficiently small. Here rX is the mesh ratio of set X.

Proof. Let τ̄ := σ + ν − κ/2. Remember that KuN = LuN ∗ vρ can be viewed as
the Λ-interpolant of function Ku. Since λ̂(`) = φ̂(`)L̂(`)v̂ρ(`), by using (5.2), (7.1),
(8.2), and inequality (1 + ρ`) 6 2(1 + `) for ρ ∈ (0, 2], we have

cφcvcL2−2ν(1 + `)−2τ̄ 6 λ̂(`) 6 c̃φc̃v c̃L2−2νρ−2ν(1 + `)−2τ̄ .

This means that the native space of Λ, i.e., NΛ, is H τ̄ and their norms are equivalent,
namely,

(8.21) cρν‖u‖H τ̄ 6 ‖u‖Λ 6 c̃‖u‖H τ̄ .

Let γ̄ > d/2 + 2ν − κ, γ̄ > 2ν, γ̄ 6 τ̄ , and 0 6 β̄ 6 γ̄. Since ν > κ/2 and ν > d/2,
thus γ̄ > d/2 and [23, Theorem 5.5] yields

‖Ku−KuN‖Hβ̄ 6 Crτ̄−γ̄X hγ̄−β̄X ‖Ku‖Hγ̄ ,

where rX is the mesh ratio of set X. Now, by setting β̄ := β−κ+2ν and γ̄ := γ−κ+2ν
and by using Theorem 8.2 and the above inequality we have

‖u− uN‖Hβ 6 C‖Ku−KuN‖Hβ̄

6 Crτ̄−γ̄X hγ̄−β̄X ‖Ku‖Hγ̄

6 Cρ−2νrτ̄−γ̄X hγ̄−β̄X ‖u‖Hγ

= Cρ−2νrτ−γX hγ−βX ‖u‖Hγ ,

because τ̄ − γ̄ = τ − γ and γ̄ − β̄ = γ − β.

If we work with an R-uniform family of centers, i.e., X ∈ XR, then in inequality
(8.20) we can replace rX by R to get the bound

‖u− uN‖Hβ 6 CXR ρ
−2νhγ−βX ‖u‖Hγ ,

where Crτ−γX 6 CRτ−γ =: CXR .
The error bounds (8.18), (8.19), and (8.20), which contain the scaling test pa-

rameter ρ, suggest the stationary and the nonstationary test discretizations. These
concepts are well-known in the kernel approximation when the trial space is formed
by translates of a scaled kernel [32]. However, they are new here in the test space.
The stationary and the nonstationary test discretizations refer to the cases when
ρ = O(hX) and ρ = O(1), respectively. In the stationary case, the error bounds
(8.18), (8.19), and (8.20) show that the order of ‖u− uN‖Hβ is reduced by (at most)
−4ν, although the numerical results of section 11 predict a better order of conver-
gence. On the other hand, the order of convergence in the nonstationary case is
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more than what one should expect since the solution u in (4.1) is in general κ times
smoother than the data function f .

In [16, Theorem 1] the error bound for the collocation solution uCN of (4.1) with
the same kernel Φ for u ∈ Hγ , γ = σ + κ/2, has been obtained as

(8.22) ‖u− uCN‖L2 6 ‖Lu− LuCN‖L2 6 Chγ−κX ‖u‖Hγ .
The first inequality above is sharp and [16] proves that (in general) there is no leeway
for a better estimate.

In [21, Theorem 6.2] the error bound for the Galerkin solution uGN of (4.1) for
κ = 2 and d = 2 with the same kernel Φ has been obtained using the Nietsche trick as

‖u− uGN‖L2 6 ChγX‖u‖Hγ ,
provided that u ∈ Hγ for 2 6 γ 6 2σ.

Compared with the above estimates, the order of convergence of the nonstationary
Petrov–Galerkin method improves that of the collocation method at least for the
special case β = 0 and u ∈ Hσ+κ/2. On the other hand, for the special case d = 2,
κ = 2, and β = 0 and for a common range of smoothness index γ, the same order
of convergence is observed for the Galerkin and the nonstationary Petrov–Galerkin
methods.

9. Condition numbers. The final matrix A in (8.4) is symmetric and positive
definite, thus

cond2(A) =
λmax(A)
λmin(A)

.

To bound the condition number it is enough to find suitable lower and upper bounds
for λmin(A) and λmax(A), respectively. The lower bound of λmin(A) depends on
the smoothness of kernel Λ and the geodesic separation distance qX of set X. The
smoothness of Λ goes back to the smoothness of Φ and vρ and the order of differential
operator L.

Our approach to bound λmin(A) is the use of an inverse inequality in the trial
space to turn the conditioning of the PDE matrix back to one of the approximation
theory. Thus we first review the conditioning of the pure interpolation by kernel Φ,
and then we give some inverse inequalities on the sphere.

Lemma 9.1. Assume Φ satisfies (5.2) for σ > d/2 and BΦ,X = (Φ(xj , xk))Nj,k=1

is the kernel interpolation matrix on Sd. Then the minimum eigenvalue of BΦ,X can
be bounded by

λmin(BΦ,X) > Cq2σ−d
X .

Proof. First define the Euclidean separation distance q̃X by

q̃X :=
1
2

min
k 6=j
‖xk − xj‖2,

and then apply Theorem 3.1 of [28] (see also [32, Theorem 12.3]) when X is viewed
as a subset of Rd+1. Note that qX and q̃X are comparable.

The Bernstein-type inequalities control stronger Sobolev norms of trial functions
by the weaker ones via the separation distance qX . A global form of such inequalities
on Rd was proved in [20] which bounds a stronger norm by the L2-norm. An analogous
inequality on Sd was established in [23] which reads as

(9.1) ‖u‖Hα 6 Cq−αX ‖u‖L2
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for all u ∈ VΦ,X and 0 6 α 6 σ. Moreover, a Bernstein inequality which estimates
the Lp Bessel-potential Sobolev norms of functions in this space in terms of qX and
the Lp norm of the function itself was proved in [17].

Here we need a generalization of (9.1) holding for Sobolev norms of order µ,
µ 6 α, instead of the L2-norm on the right-hand side.

Lemma 9.2. Assume Φ satisfies (5.2) for σ > d/2+µ/2, where µ 6 α 6 σ. Then

(9.2) ‖u‖Hα 6 Cqµ−αX ‖u‖Hµ

holds for all u ∈ VΦ,X .

Proof. Assume that

u = uΦ,b =
N∑
j=1

bjΦ(·, xj).

If u is expanded in the Fourier series (2.1), then û`k = φ̂(`)
∑N
j=1 bjY`k(xj) =: φ̂(`)̃b`k.

On the other hand assume Ψ is a zonal positive definite kernel satisfying

cψ(1 + `)−2σ+µ 6 ψ̂(`) 6 c̃ψ(1 + `)−2σ+µ

for σ − µ/2 > d/2. Then we get

‖uΦ,b‖2Hµ =
∞∑
`=0

N(d,`)∑
k=1

û2
`k(1 + `)2µ

=
∞∑
`=0

N(d,`)∑
k=1

b̃2`kφ̂(`)2(1 + `)2µ

> c2φ

∞∑
`=0

N(d,`)∑
k=1

b̃2`k(1 + `)2µ−4σ

> c2φc̃
−2
ψ

∞∑
`=0

N(d,`)∑
k=1

b̃2`kψ̂(`)2

= c2φc̃
−2
ψ ‖uΨ,b‖2L2

.

Now we invoke (9.1) for kernel Ψ under the condition 0 6 β 6 σ − µ/2 to find

‖uΨ,b‖Hβ 6 Cq−βX ‖uΨ,b‖L2 .

The left-hand side can be treated as

‖uΨ,b‖2Hβ =
∞∑
`=0

N(d,`)∑
k=1

b̃2`k(1 + `)−4σ+2µ+2β

> c̃−2
φ

∞∑
`=0

N(d,`)∑
k=1

b̃2`kφ̂(`)2(1 + `)2µ+2β

= c̃−2
φ ‖uΦ,b‖2Hµ+β ,

which is feasible for µ+ β < 2σ − d/2. Summarizing all, we have
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‖uΦ,b‖2Hµ+β 6 c̃2φ‖uΨ,b‖2Hβ
6 C2c̃2φq

−2β
X ‖uΦ,b‖2L2

6 C2c̃ 2
φc
−2
φ c̃ 2

ψq
−2β
X ‖uΦ,b‖2Hµ .

Setting α = µ+ β completes the proof.

If we proceed with the proof of Theorem 6.6 of [15] we see that for a given ρ < 1
and for sufficiently large values of `, say, ` > 1/ρ− (d−1)/2, the lower bound of v̂ρ(`)
is indeed given by c(ρ`)−2ν , which leads to

(9.3) Cρ−2ν‖u‖Hσ−ν+κ/2 6 ‖Lu ∗ vρ‖Hσ+ν−κ/2

by modifying the proof of Theorem 8.2.

Theorem 9.3. Under the assumptions of Theorem 8.4, for a given ρ < 1, the
minimum eigenvalue of A can be bounded by

λmin(A) > Cρ−2νq2σ+2ν−κ−d
X .

Proof. An appropriate formula for λmin(A) is

λmin(A) = min
06=b∈RN

bTAb

‖b‖22
.

For a given b ∈ RN assume that uΛ,b :=
∑N
j=1 bjΛ(·, xj) and uΦ,b :=

∑N
j=1 bjΦ(·, xj).

It is clear from (8.9) that uΛ,b = LuΦ,b ∗ vρ. Now we can write

bTAb = ‖uΛ,b‖2Λ
> Cρ2ν‖uΛ,b‖2Hσ+ν−κ/2 (using (8.21))
= Cρ2ν‖LuΦ,b ∗ vρ‖2Hσ+ν−κ/2

> Cρ−2ν‖uΦ,b‖2Hσ−ν+κ/2 (using (9.3))
> Cρ−2νq2ν−κ

X ‖uΦ,b‖2Hσ (using Lemma 9.2)
> Cρ−2νq2ν−κ

X ‖uΦ,b‖2Φ
= Cρ−2νq2ν−κ

X bTBΦ,Xb

> Cρ−2νq2ν−κ
X q2σ−d

X ‖b‖22 (using Lemma 9.1),

which completes the proof. In the fifth line above the inverse inequality in Lemma 9.2
for α = σ and µ = σ − ν + κ/2 was applied. This application requires, due to the
assumption of Lemma 9.2, σ − µ/2 > d/2 or σ > d − ν + κ/2. But this imposes no
additional condition because we have σ > ν+κ/2 from Theorem 8.4 and, on the other
hand, ν + κ/2 > d− ν + κ/2 holds since ν > d/2.

To bound λmax(A), using the Gershgorin’s theorem there exists an index j ∈
{1, 2, . . . , N} such that

|λmax(A)− Λ(xj , xj)| 6
N∑

k=1,k 6=j

|Λ(xj , xk)|,

which becomes
λmax(A) 6 N max

x,y∈Sd
|Λ(x, y)|.

Due to the definition of Λ via the convolution with factor ρ−d instead of ρ−(d+1) the
maximum value of Λ is of O(ρ−1). Moreover, if X ∈ XR, then N = O(h−dX ). Thus
the upper bound for λmax(A) is given by
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λmax(A) 6 Cρ−1h−dX .

By inserting the bounds of minimum and maximum eigenvalues into the formula of
the condition number, we have the following corollary.

Corollary 9.4. The condition number of the final linear system of the Petrov–
Galerkin method is bounded by

(9.4) cond2(A) 6 Cρ2ν−1h−2σ+κ−2ν
X ,

where hX is the geodesic fill distance of set X ∈ XR on Sd and σ, ν, and κ are those
given in Theorem 8.4.

One can see that the stability of the scheme depends on the distribution of points
and the smoothness of Λ, where the latter is determined by the smoothness of the
trial and the test functions via σ and ν, respectively. The condition number grows
polynomially when hX goes to zero.

The condition number of the collocation method with the same kernel Φ can be
bounded as [16, Theorem 5]

cond2(A) 6 Ch−2σ+κ−1
X .

Compared with (9.4), this bound is the same as the bound of the condition number
of the stationary Petrov–Galerkin method. However, the condition number of the
nonstationary Petrov–Galerkin method is increased by factor h1−2ν

X .

10. Numerical integration on spherical caps. Although the analysis in the
previous sections is presented for exact computations of involved integrals, in practice
the scheme requires numerical integration over spherical caps B(xk, ρ) for all test
points xk from scattered data set X. Spherical caps may overlap each other, but we
integrate independently over all of them. In fact, each spherical cap is the support of
a test functional introduced in section 4 and it is independent of the other functionals.
This is in contrast with the Galerkin methods where either integration over whole Sd
is required for computing each element of the final matrix or a connected and non-
overlapping spherical triangulation and then integration over triangles are needed.

Thanks to the work of Hesse and Womersly [10], numerical integrations over caps
can be easily performed. Due to the following lemma it is sufficient to construct rules
for spherical caps for one given fixed test point, and then rotate it to the other points.
The proof uses the fact that the space of spherical harmonics on Sd is invariant under
rotation.

Lemma 10.1 (see [10]). Let B(z; ρ) ⊂ Sd be the spherical cap with center z ∈ Sd
and radius ρ ∈ (0, π). Let QB(z;ρ),m given by

QB(z;ρ),m(f) :=
M∑
j=1

wjf(zj), f ∈ C(B(z; ρ)),

where z1, z2, . . . , zM ∈ B(z; ρ) and w1, w2, . . . , wM ∈ R, be a rule for numerical inte-
gration over the spherical cap B(z; ρ) that is exact on Pdm(B(z; ρ)). Let B(z′; ρ) ⊂ Sd
be another spherical cap with center z′ ∈ Sd and the same radius ρ, and let R denote
any rotation on Rd+1 such that z′ = Rz. Then the rule QB(z′;ρ),m defined by

QB(z′;ρ),m(f) :=
M∑
j=1

wjf(Rzj), f ∈ C(B(z′; ρ)),D
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is a rule for numerical integration over B(z′; ρ), with nodes Rz1, Rz2, . . . , RzM ∈
B(z′; ρ), and this rule is exact on Pdm(B(z′; ρ)).

Lemma 10.1 shows that it is sufficient to construct only rules for numerical inte-
gration over the north polar cap. We refer the reader to [10] for explicit formulas.

Finally, we note that the numerical integration will be a more difficult task if f
is known only at a finite number of scattered points. This can be considered as a
shortcoming of this and the Galerkin methods.

11. Numerical results. In this section we present the results of a numerical
experiment for approximating the solution of differential equation (4.1) on S2, where
L = −∆0 + I. To construct a finitely smooth true solution, let {ξ1, . . . , ξn} be a set
of n points on S2 and define

u(x) :=
n∑
k=1

bkψ4(
√

2− 2xT ξk), x ∈ S2,

for some known coefficients bk, where

(11.1) ψβ(r) = (εr)β−3/2Kβ−3/2(εr)

is the well-known Matérn kernel. Here Kβ is the modified Bessel function of the
second kind of order β. Since ψ4 produces H4(R3), its restriction to S2 produces
H3.5(S2). Theorem 8.3 can be applied to show that u ∈ Hγ(S2) for any γ < 6. In this
experiment the shape parameter ε = 2 and a set {ξ1, . . . , ξ100} of scattered points on
S2 [27] are used. Moreover, we set

b̃ = (0.1,−0.2, 0.4, 0.3,−0.1,−0.4, 0.3,−0.5, 0.1, 0.2), b = (b̃,−b̃, b̃, . . . ,−b̃︸ ︷︷ ︸
10 times

).

The right-hand-side function f is calculated using the fact that ∆0ϕ(xT ξ) = Lϕ(t)
for t = xT ξ with

L =
d

dt
(1− t2)

d

dt
.

The test function vρ is chosen to be the restriction of the compactly supported RBF
(1− r/ρ)2

+ to S2. This kernel satisfies (7.1) with ν = 1.5. The Matérn kernel Φ(x) =
ψ5.5(‖x‖2), where ψβ is defined in (11.1), with ε = 5 is employed to form the trial
space. This kernel satisfies (5.2) with σ = 5. The equal area partitioning algorithm
[27] is used to generate the sets of scattered quasi-uniform points on S2.

The results of the collocation, the Galerkin, the stationary Petrov–Galerkin, and
the nonstationary Petrov–Galerkin methods are given in Tables 1, 2, 3, and 4, re-
spectively. The L2 errors are computed via a quadrature (with many points) on S2

by evaluating the discrete solution on the set of quadrature points. Since for X in
a family of R-uniform sets on S2 we have hX = O(N−1/2), the numerical orders are
computed (for example, for errors) via

log
(
‖eold‖L2

‖enew‖L2

)/
log

(√
Nnew

Nold

)
.

The results of the collocation method (Table 1) are approximately the same as the
results of the stationary Petrov–Galerkin method (Table 3). Although the orders
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Table 1
The collocation method: the relative L2-norm of e = u− uN , the minimum and the maximum

eigenvalues of the final matrix A, together with the numerical orders.

Errors Min. eigs. Max. eigs.
N ‖e‖L2 Orders λmin(A) Orders λmax(A) Orders
100 4.30e− 1 − 3.08e + 1 − 1.76e + 3 −
200 8.50e− 2 4.68 5.91e− 0 4.77 3.41e + 3 −1.90
400 1.06e− 2 6.01 9.08e− 1 5.40 6.73e + 3 −1.96
800 2.34e− 3 4.35 1.25e− 1 5.72 1.34e + 4 −1.98
1600 5.90e− 4 3.97 1.64e− 2 5.86 2.67e + 4 −1.99
3200 1.27e− 4 4.42 1.10e− 3 5.93 5.33e + 4 −2.00

Table 2
The Galerkin method: the relative L2-norm of e = u − uN , the minimum and the maximum

eigenvalues of the final matrix A, together with the numerical orders.

Errors Min. eigs. Max. eigs.
N ‖e‖L2 Orders λmin(A) Orders λmax(A) Orders
100 1.21e− 1 − 8.91e + 2 − 2.56e + 5 −
200 2.40e− 2 4.66 1.21e + 2 5.76 5.05e + 5 −1.96
400 4.25e− 3 4.99 1.31e + 1 6.40 1.00e + 6 −1.98
800 6.97e− 4 5.22 1.22e− 0 6.86 2.00e + 6 −1.99
1600 1.03e− 4 5.51 1.12e− 1 6.91 4.00e + 6 −2.00
3200 1.78e− 5 5.08 2.59e− 3 10.85 8.00e + 6 −2.00

Table 3
The stationary Petrov–Galerkin method with ρ = π/8hX : the relative L2-norm of e = u− uN ,

the minimum and the maximum eigenvalues of the final matrix A, together with the numerical
orders.

Errors Min. eigs. Max. eigs.
N ‖e‖L2 Orders λmin(A) Orders λmax(A) Orders
100 3.94e− 1 − 6.39e + 2 − 3.76e + 4 −
200 8.01e− 2 4.59 1.73e + 2 3.77 1.03e + 5 −2.90
400 1.02e− 2 5.95 3.76e + 1 4.40 2.87e + 5 −2.97
800 2.14e− 3 4.50 7.34e− 0 4.72 8.08e + 5 −2.98
1600 5.48e− 4 3.93 1.36e− 0 4.86 2.28e + 6 −2.99
3200 1.18e− 4 4.43 2.46e− 1 4.93 6.44e + 6 −3.00

Table 4
The nonstationary Petrov–Galerkin method with ρ = π/8: the relative L2-norm of e = u−uN ,

the minimum and the maximum eigenvalues of the final matrix A, together with the numerical
orders.

Errors Min. eigs. Max. eigs.
N ‖e‖L2 Orders λmin(A) Orders λmax(A) Orders
100 8.14e− 1 − 1.10e + 2 − 9.24e + 3 −
200 1.45e− 1 4.97 1.61e + 1 5.55 1.79e + 4 −1.91
400 1.82e− 2 6.00 1.76e− 0 6.39 3.54e + 4 −1.97
800 2.90e− 3 5.30 1.66e− 1 6.81 7.04e + 4 −1.98
1600 4.41e− 4 5.43 1.53e− 2 6.87 1.40e + 5 −1.99
3200 5.93e− 5 5.79 1.35e− 3 7.01 2.80e + 5 −2.00

of λmin and λmax are different, the order of cond(A) = λmax/λmin is the same for
both methods. We can roughly say, at the price of a more computational cost, the
stationary Petrov–Galerkin method adds nothing to the simple and easily handled
collocation method.

On the other hand the results of the Galerkin (Table 2) and the nonstationary
Petrov–Galerkin (Table 4) methods are comparable. Both methods improve the errors
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and the order of convergence of the previous methods, while they have worse numer-
ical conditioning. Numerical results (approximately) confirm the theoretical order of
convergence of the collocation method which is γ − κ ≈ 4 from (8.22) and the non-
stationary Petrov–Galerkin method which is γ ≈ 6 from (8.19). On the other hand,
the numerical order of convergence of the stationary Petrov–Galerkin method is much
better than the theoretical order γ − 4ν. This would leave some leeway for a better
estimate in a future work.

In [21] the Galerkin method is implemented via spatially well-localized “small
footprint” bases for the associated kernel space on S2. This leads to a well-conditioned
numerical method with a condition number of order h−2

X . The idea can, of course, be
applied to the method of this paper. We do not pursue this further but leave it for a
future study.

12. Final remarks and future research. An alternative approach for solving
PDEs on the unit sphere was presented and analyzed in this work. Compared with the
well-established collocation and Galerkin methods, a Petrov–Galerkin test discretiza-
tion was applied to generate a set of convolution-form test functionals. The trial space
was constructed by rotations of a restricted kernel on the unit sphere. The final error
bounds were given for functions in Sobolev space Hγ(Sd) for max{d/2−ε, κ} 6 γ 6 2τ
with τ = σ + κ/2− ν, where σ and ν are smoothness parameters of the trial and the
test functions, respectively, and κ is the order of differential operator L. On the
other hand, by applying an inverse inequality, the condition number of the final lin-
ear system was estimated. It was proved that the condition number depends on the
smoothness of the underlying trial and test kernels, the scaling test parameter, and
the distribution of scattered points, as it should be. New research can focus on theo-
retical and computational tricks to improve the condition number. For example, one
can implement the present method in a multiscale setting, as has been done for the
collocation method on spheres in [16] and on bounded Euclidean domains in [6]. Or,
one can use the approach introduced in [8] which leads to a sparse final linear system
by employing spatially well-localized “small footprint” bases for the associated kernel
space.

Acknowledgment. The proof of Lemma 9.2 borrows an idea from an unpub-
lished draft by Robert Schaback in Euclidean spaces and private communications
with him.
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