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Abstract
In this paper a numerical simulation based on radial basis functions is presented for the
time-dependent Allen–Cahn equation on surfaces with no boundary. In order to approximate
the temporal variable, a first-order time splitting technique is applied. The error analysis is
given when the true solution lies on appropriate Sobolev spaces defined on surfaces. The
method only requires a set of scattered points on a given surface and an approximation
to the surface normal vectors at these points. Besides, the approach is based on Cartesian
coordinates and thus any coordinate singularity has been omitted. Some numerical results
are given to illustrate the ability of the technique on sphere, torus and red blood cell as three
well-known surfaces.

Keywords Allen–Cahn equation · Radial basis functions · Laplace–Beltrami operator ·
Time splitting scheme · Error estimate

1 Introduction

There are many phenomena in the applied and natural sciences which can be described
as partial differential equations (PDEs) on surfaces. Such problems have received growing
interest over the last years due to a variety of applications in meteorology, image processing,
geometry, phycology, cell-biology, solidification, gravitation, and etc.
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Finding an analytical solution for a PDE problem defined on a surface is not simple and
in many situations it is impossible. Therefore, numerical techniques play an important role
in this area of applied mathematics. Among all numerical methods, the role of meshless
methods is prominent for problems on surfaces. The reason is clear: in these methods no
backgroundmesh and triangulation is required for approximation. This property will become
more important when the information and known quantities are only available at scattered
points on the surface. Thus, in the past two decades, the use of meshless methods has received
much attention from researchers which are working in the field of numerical methods for
solving PDEs on surfaces. The main advantage of these methods is easy implementation in
high-dimension with arbitrary domain geometry. According to the choice of testing space,
meshless methods (as well as the other methods) for PDEs can be divided into methods based
on strong, weak and local weak forms. On the other side, the trial space should necessarily
be constructed via a scattered data approximationmethod. The moving least squares (MLS)
and the radial basis functions (RBF) can be addressed as two examples.

In these directions, there exists a resealable number of publications where a few of them
are addressed below. For solving elliptic spherical PDEs, the kernel collocation method has
been used in [29,36], the Galerkin method has been employed in [28,40] and a Petrov–
Galerkin kernel approximation has been introduced in [35]. For solving reaction–diffusion
equations on surfaces, a global RBF based method has been introduced in [20], the RBF-
finite difference (RBF-FD) method has been implemented in [41] and the compact RBF-FD
technique has been employed in [30]. Besides, the generalized moving least squares method
was applied for spherical PDEs in [34]. This list is of course incomplete and thus we refer
the reader to the bibliographies outlined in the above mentioned references.

In addition to the meshless methods, different methods such as finite differences, finite
elements andfinite volumes have been developed for solvingPDEson surfaces in recent years.
Many of them can be classified into two types, intrinsic methods and embedded, narrow-band
methods [20]. In the first group, coordinates intrinsic to the surface and a surface-based mesh
to discretize the PDE will be used [8,13–15]. While in the second group, the PDE is first
extended into a narrow band domain around the surface and then the extrinsic coordinates
and an Euclidean-based mesh are used for discretization [1,7,32,33]. The intrinsic methods
suffer from coordinate singularities but solve the PDE on its right dimension. The embedded,
narrow-band methods, however, avoid coordinate singularities at the price of adding artificial
boundary conditions and solving the PDE in a dimension at least one greater than that in
which the PDE is posed. More details and comparisons can be found in [20].

According to the above discussion, Flyer and Wright [18,19] and Fuselier and Wright
[20] proposed a new numerical scheme based on radial basis functions (RBFs) to solve PDE
problems on surfaces which inherits the advantages of both intrinsic and embedded, narrow-
bandmethods. Themethod uses RBFs and approximates the differential operators directly on
the surface. This means that there is no need to extend quantities off the surface. Furthermore,
it does not rely on any surface-based metric or intrinsic coordinate system.

In this paper, using the approach of [20] and an explicit time splitting scheme, we numer-
ically solve the Allen–Cahn (AC) equation on a smooth, 2-dimensional compact manifold
M embedded in R

3. The error analysis of the method is also given when the true solutions
lie in arbitrary Sobolev spaces. The AC equation is read as [4]

∂u(x, t)

∂t
= − F ′(u(x, t))

E2 + �Mu(x, t), x ∈ M, 0 < t ≤ T , (1.1)

123



Journal of Scientific Computing

where �M is the well-known Laplace–Beltrami operator, u(x, t) represents the difference
between the concentrations of the two mixture components, and F(u) = 0.25(u2 − 1)2. The
constant parameter E denotes the gradient energy coefficient related to the interfacial energy.

The AC equation was first introduced by Allen and Cahn in 1979 for antiphase domain
coarsening in a binary alloy [4]. This model has many applications in crystal growth [9,10],
image in painting [17,31], image segmentation [5,23], and tumor growth [47] on flat surfaces.

Authors of [11] proposed a numerical method for motion by mean curvature of curves on
a surface in three-dimensional space using the AC equation. A finite difference scheme has
been developed for a conservative AC equation on non-flat surfaces in [25]. The conservative
AC equation is also solved on flat surfaces in [24,26,42,43].

In this work, the Laplace–Beltrami operator in (1.1) is approximated using the attractive
RBF technique of [20]. We complete the error analysis of this approximation for target
functions in Sobolev spaces Hσ (M) for all real values of σ with 3 < σ ≤ 2s, where s
determines the smoothness of the underlying kernel. Moreover, we apply a time integration
schemewhich splits the nonlinear AC equation into a linear and a nonlinear subproblems. The
linear problem is solved numerically while the nonlinear problem is handled analytically. For
stability of the method, we prove some new results helping us to estimate the error bound for
the full-discretized problem. The stability analysis is partly based on an important conjecture.

The outline of this manuscript can be expressed as follows: in Sect. 2, a first-order time
splitting method and its application to AC equation are explained. In Sect. 3, the RBF collo-
cation method on surfaces is reviewed. In Sect. 4, the details of the numerical simulation are
provided. In Sect. 5, the stability and the error estimate of the proposed technique are given.
Finally, in Sect. 6 some numerical results on sphere, torus and red blood cell are reported.

2 The Time Splitting Scheme

In this section, we apply the sequential time splitting technique [6,12,48] on Eq. (1.1). To be
more precise, we first consider the following problem

{ du(t)

dt
= Au(t) = (A1 + A2) u(t), t ∈ (0, T ],

u(0) = u0,
(2.1)

where u : (0, T ] → R and u0 ∈ R. Here the operator A : U → R is split into operators A1

and A2 and U is a solution space. Suppose further that Eq. (2.1) has a unique solution in U .
By dividing the time interval [0, T ] into M sub-intervals such that T = M�t where �t is
the time step and by defining tn := n�t , the sequential splitting method can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dv(t)

dt
= A1v(t), t ∈ (tn, tn+1],

v(tn) = uspl(tn),
du(t)

dt
= A2u(t), t ∈ (tn, tn+1],

u(tn) = v(tn+1),

uspl(tn+1) := u(tn+1),

(2.2)

for n = 0, 1, 2, . . . , M − 1 and uspl(0) = u(0). Finally, uspl(tn+1) is the time difference
solution of (2.1) at t = tn+1. The sequential splitting scheme for Eq. (1.1) can now be
expressed as
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dv(·, t)
dt

= �Mv(·, t), t ∈ (tn, tn+1],
v(·, tn) = uspl(·, tn),
du(·, t)

dt
= −F ′(u(·, t))/E2, t ∈ (tn, tn+1],

u(·, tn) = v(·, tn+1),

uspl(·, tn+1) := u(·, tn+1),

(2.3)

where n = 0, 1, 2, . . . , M −1 and uspl(·, 0) = u(·, 0). The first initial value problem in (2.3)
is discretized by the first-order explicit (the Euler time stepping) method, and the close-form
solution of the second initial value problem is used to obtain the following two-step scheme:

un∗ = un + �t�Mun, (2.4)

un+1 = un∗√
exp

(
− 2�t

E2

)
+ (un∗)2

(
1 − exp

(
− 2�t

E2

)) , n = 0, 1, . . . , M − 1, (2.5)

where un is the approximate value of u(·, tn), and un∗ is the intermediate solution. We will
come back to this time stepping scheme after discussing a meshless technique based on RBFs
for approximating the spatial variables in the next section.

3 RBFs Method on Surfaces

In this section, we briefly review a beautiful RBF method on surfaces for approximating the
Laplace–Beltrami operator. For further details the interested reader is refereed to [20], where
most materials of this section are adopted from this reference.

3.1 Continuous Surface Differential Operators

LetM be an embedded manifold inR3 with no boundary. The surface gradient is defined by

∇M := P∇ = (I − nnT )∇, (3.1)

where n(x) := (nx , ny, nz)T is the normal vector at point x = (x, y, z). In an extensive
form, ∇M is written as

∇M =

⎡
⎢⎢⎢⎢⎢⎣

(1 − nxnx )
∂

∂x
− nxny

∂

∂ y
− nxnz

∂

∂z

−nxny
∂

∂x
+ (1 − nyny)

∂

∂ y
− nynz

∂

∂z

−nxnz
∂

∂x
− nynz

∂

∂ y
+ (1 − nznz)

∂

∂z

⎤
⎥⎥⎥⎥⎥⎦ =:

⎡
⎣Gx

G y

Gz

⎤
⎦ , (3.2)

in whichP projects vectors inR3 to TxM, the tangent vector ofM at x. The Laplace–Beltrami
operator �M is then defined by

�M := ∇M · ∇M = (P∇) · (P∇) = GxGx + G yG y + GzGz . (3.3)

Note that, all expressions above are in Cartesian coordinates. To obtain an analogue
discrete version of the gradient and Laplace–Beltrami operators, we use a scattered data
approximation method based on restricted radial basis functions on manifoldM.
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3.2 Restricted Kernels onManifolds

The restriction of a positive definite kernel from R
d to any submanifold M is a simple and

straightforwardway for obtaining a positive definite kernel onM because the restricted kernel
inherits the property of positive definiteness from the original one, making it well-suited for
scattered data interpolation problems [22]. Assume that � : Rd → R is a positive definite
basis function satisfying

c(1 + ‖ω‖2)−τ ≤ �̂(ω) ≤ C(1 + ‖ω‖2)−τ , ω ∈ R
d , (3.4)

for τ > d/2. Here �̂ represents the Fourier transform of� inRd . Condition (3.4) means that
�̂ decays algebraically in ω, and τ > d/2 ensures the integrability of �̂. A basis function
� of this kind is necessarily finitely smooth and its native space in R

d is N� = H τ (Rd).
Details can be found in [44, Chapter 10]. The restriction of� on a k-dimensional submanifold
M has H τ−(d−k)/2(M) as its native space. (See Sect. 5 for definition of Sobolev spaces on
compact manifolds.) The proof of this important result is given in [22]. See also [37,39] for
the special case M = S

d−1. Further, we assume that � is radial that means that there exists
a continuous function φ : R≥0 → R such that �(x) = φ(‖x‖2) for all x ∈ R

d . Two kinds
of such basis functions are listed below with their main properties:

• The Matérn (or Sobolev) function on Rd is defined by

φν(r) = Cνr
ν−d/2Kν−d/2(r), ν > d/2, (3.5)

whereCν = 21−(ν−d/2)


(ν−d/2) and Kν is the modified Bessel function of the second kind of order
ν. The smoothness of φν is controlled by ν. The Fourier transform of Matérn kernel
�ν = φν(‖ · ‖2) is

�̂ν(ω) = (1 + ‖ω‖2)−ν,

which means that N�ν (M) = H ν−(d−k)/2(M).
• The compactly supported positive definite Wendland’s functions φd,� ∈ C2�(Rd) have

Fourier transforms satisfying (3.4) with τ = � + d/2 + 1/2 [44, Chapter 10]. Their
restrictions to any k-dimensional submanifold M have Nφd,�

(M) = H �+k/2+1/2(M) as
native space.

3.3 Discrete Surface Differential Operators

In this section, the discrete analogues of continuous operators∇M and�M are obtained using
the kernel interpolation problem onM. As pointed before, the idea comes from [20]. Assume
that

X = {x1, x2, . . . , xN }
is a set of N scattered points on M, and u : M ⊂ R

3 → R is a continuous function. The
RBF interpolant of u on M is denoted by Iφu := IX ,φu and can be written as

Iφu(x) :=
N∑
j=1

c jφ(r j (x)), x ∈ M, (3.6)
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where r j (x) = ‖x − x j‖2. According to (3.6), we have

∇M Iφu(x) =
N∑
j=1

c j∇Mφ(r j (x)), x ∈ M, (3.7)

where ∇Mφ = [Gxφ, G yφ, Gzφ]T is calculated via (3.2) thereat

∂φ(r j (x))

∂x
= (

x − x j
) φ′(r j (x))

r j (x)
, and so on,

where ′ denotes differentiation with respect to r . Next, we define the following N -by-N
matrices

Bx
X =

[
Gxφ(r j (x))

∣∣
x=xk

]
, k, j = 1, . . . , N ,

By
X =

[
G yφ(r j (x))

∣∣
x=xk

]
, k, j = 1, . . . , N ,

Bz
X =

[
Gzφ(r j (x))

∣∣
x=xk

]
, k, j = 1, . . . , N ,

to obtain (Gx Iφu
) |X = Bx

X c =
(
Bx
X A

−1
X

)
uX =: Gx

XuX ,(G y Iφu
) |X = By

X c =
(
By
X A

−1
X

)
uX =: Gy

XuX ,(Gz Iφu
) |X = Bz

X c =
(
Bz
X A

−1
X

)
uX =: Gz

XuX ,

(3.8)

where AX = [
φ(r j (xk))

]
, j, k = 1, . . . , N , c = [c1, . . . , cN ]T and uX is a column vector

containing values u(x j ) for j = 1, . . . , N . Now, a discrete Laplace–Beltramimatrix is define
by

LX := Gx
XG

x
X + Gy

XG
y
X + Gz

XG
z
X ,

which approximates the operator �M on data set X . Theoretical results will be reviewed in
Sect. 5 to show how well LX approximates �M.

4 The Full-Discrete Problem

In Sect. 2, Eq. (1.1)was converted to two-step semi-discrete Eqs. (2.4)–(2.5). The full-discrete
system of equations can be obtained as

Un∗
X = Un

X + �t L XU
n
X , (4.1)

Un+1
X = Un∗

X√
exp

(
− 2�t

E2

)
+ (Un∗

X )2
(
1 − exp

(
− 2�t

E2

)) , n = 0, 1, . . . , M − 1, (4.2)

where the continuous operator�M is replaced by matrix LX and the continuous functions un

are replaced by N -vectors Un
X . Note that, in (4.2) all mathematical operators are interpreted

componentwise. Equation (4.1) is the usual forward Euler scheme and thus should be con-
ditionally stable, instead no matrix inversion or assumption on solvability is required. The
stability condition as well as the full order of convergence of the method will be derived in
the next section.
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5 Error Estimate

This section provides an error estimate for the proposed method. First, we need some defi-
nitions and preliminaries. The following definition expresses Sobolev spaces on a compact
manifold M [20]. For the special case M = S

d−1 see [27].

Definition 5.1 Suppose that M ⊂ R
d be a compact manifold of dimension k. Let Ã =

{(�̃ j , Ũ j )}, j = 1, 2, . . . , J be an atlas of slice charts forM, and let A = {(� j ,Uj )} be the
associated intrinsic atlas. Now let {χ j } be a partition of unity subordinate to {Ũ j }. If u is a
function defined onM, the projection π j (u) : Rk −→ R is defined by

π j (u) =
{

χ j u(�−1
j (y)), y ∈ B ′(0, 1),

0, otherwise

in which B ′(0, 1) = { y = (y1, . . . , yd)T ∈ B(0, 1) : yk+1 = · · · = yd = 0} can be viewed
as a copy of an open ball in R

k . With this construction, Sobolev spaces for 1 ≤ p < ∞ and
s ≥ 0 can be defined via the following norms

‖u‖Ws
p(M) :=

⎛
⎝ J∑

j=1

∥∥π j (u)
∥∥2
Ws

p(R
k )

⎞
⎠

1
2

,

and the Sobolev spaces Ws
p(M) can be defined as follows

Ws
p(M) =

{
u ∈ L p(M) : π j (u) ∈ Ws

p(R
k), j = 1, 2, . . . , J

}
,

where Ws
p(R

k) is the Sobolev spaces of order s with respect to p-norm on R
k . The case

p = ∞ can be defined in similar manner. In case p = 2, the space is Hilbert and the notation
Hs(M) is usually used instead of Ws

2 (M) and its norm is induced by the inner product

〈u, v〉Hs (M) :=
J∑

j=1

〈π j (u), π j (v)〉Hs (Rk ).

The order of convergence of kernel methods is mainly based on the density and the
quality of trial and test points. There are three geometrical quantities associated with X . The
fill distance of X on M is defined by

hX ,M = sup
x ∈M

min
1≤ j≤N

dM(x, x j ),

where dM(x, x j ) denotes the geodesic distance between x and x j on M. The separation
distance of X onM is defined by

qX ,M = 1

2
min
i �= j

dM(xi , x j ),

and finally the mesh ration ρX ,M of set X is defined by

ρX ,M = hX ,M

qX ,M

,

which measures how uniformly the points are placed on M. When ρX ,M is close to 1 then
the distribution of points is said to be quasi-uniform. For R > 1, let XR = XR(M) be the
family of all sets of centers X with ρX ,M ≤ R; we will say that the family XR is R-uniform.
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Weneed a sampling inequality (or zeros theoremwhen u|X = 0) to derive an error estimate
for the above mentioned meshfree method. Sampling inequalities in Sobolev spaces estimate
theWβ

q -norm of a function u by its strongerW σ
p -norm times certain powers of fill distance h

of a set X plus a discrete norm of the function’s sampled values at X . In [38,46], a sampling
inequality in bounded domains in R

d has been proved for σ ∈ R, p ∈ [1,∞), q ∈ [1,∞],
�σ� > d/p if p > 1 or �σ� ≥ d if p = 1, and for non-negative integer values of β up to
�σ� − d/p. In [2] the admissible values of β, σ and p have been enlarged and the following
sampling inequality has been derived

|u|
Wβ

q (�)
≤ C

(
h

σ−β−d(1/p−1/q)+
X ,� |u|W σ

p (�) + h−β
X ,�‖u|X‖�∞

)
(5.1)

where p, q ∈ [1,∞], σ ∈ R, σ > d/p if p > 1 or σ ≥ d if p = 1, and β ∈ N0 satisfies
0 ≤ β ≤ �σ − d(1/p − 1/q)+� − 1. Here � ⊂ R

d has a Lipschitz continuous boundary.
In [22] (5.1) has been employed on charts to find the following sampling inequality on a
k-dimensional submanifoldM:

|u|
Wβ

q (M)
≤ Ch

σ−β−k(1/p−1/q)+
X ,M

|u|W σ
p (M), (5.2)

where u|X = 0. Here, p, q ∈ [1,∞], σ > k/p if p > 1 or σ ≥ k if p = 1 and β ∈ N0 with
0 ≤ β ≤ �σ −k(1/p−1/q)+�−1. In [3] the sampling inequality (5.1) has been generalized
for real values of β but excluding the case q = ∞.

By applying the strategy of [22] and [27] (the latter concerns the case M = S
d−1), (5.2)

can be extended to

|u|
Wβ

q (M)
≤ C

(
h

σ−β−k(1/p−1/q)+
X ,M

|u|W σ
p (M) + h−β

X ,M
‖u|X‖�∞

)
, (5.3)

for well-distributed point set X on M. Although (5.3) will be used in the sequel, we further
need a zeros theorem for values of β ranging from zero to σ in the case where both β and
σ are real and p = q = 2. Fortunately, [45, Theorem 4.6] proves such case for bounded
domains in R

d . Again applying the strategy of [22] and using [45, Theorem 4.6] instead of
(5.1) we have the following result.

Theorem 5.2 Let M be a smooth manifold of dimension k, and let p, q ∈ (1,∞) and σ >

k/p. Assume β ∈ R satisfies 0 ≤ β ≤ σ − k(1/p − 1/q)+. Also, let X ⊂ M be a discrete
set with sufficiently small fill distance hX ,M. Then we have

|u|
Wβ

q (M)
≤ Chσ−β−k(1/p−1/q)+

X ,M
|u|W σ

p (M) , (5.4)

provided that u ∈ W σ
p (M) and u|X = 0.

Noting that, in the all above sampling inequalities the semi-norms can be replaced by full
Sobolev norms on the left and right sides.

In the rest of this section, we will show howwell LX approximates�M. We need to define
the continuous analogues of discrete differential matrices GX and LX . Following [20] we
define

GMu := ∇M Iφu, DMu = ∇M · Iφu, LMu = DMGMu,

where Iu = (I ux , I uy, I uz) is the vector-valued kernel interpolant of u. We note that the
function LMu sampled at X is equivalent to associated differential matrix LX acting on uX ,
i.e.

(LMu)X = LXuX . (5.5)
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Our results below (Theorem 5.4) complete the results of [20, Theorems 1 and 2] for target
functions in Sobolev spaces Hσ (M) for all real values of σ with 3 < σ ≤ 2s. For this
purpose, we need to generalize the kernel interpolation error estimate given in [22, Theorem
17].

Theorem 5.3 Let M be a smooth k-dimensional submanifold of Rd . Assume � = φ(‖ · ‖2)
satisfies (3.4) for τ > d/2, and define s = τ − (d − k)/2. Let X ⊂ M be a discrete set
having fill distance h = hX ,M sufficiently small and mesh ratio ρ = ρX ,M. Then we have

‖u − Iφu‖Hβ (M) ≤
{
Chσ−βρs−σ ‖u‖Hσ (M), k/2 < σ ≤ s,
Chσ−β‖u‖Hσ (M), s ≤ σ ≤ 2s,

(5.6)

for all u ∈ Hσ (M) and 0 ≤ β ≤ s. Here, both σ and β are real parameters.

Proof The proof of the first estimate for k/2 < σ ≤ s follows from the proof of [22, Theorem
17] by applying the sampling inequality (5.4) instead of (5.2) for p = q = 2. In additions,
[22, Corollary 15] concerns the case σ = 2s. Here we prove the second estimate in (5.6), for
s ≤ σ ≤ 2s, by using a duality trick as follows: The minimal property of Iφu in the native
space of φ implies 〈u − Iφu, Iφu〉Hs (M) = 0 leading to

‖u − Iφu‖2Hs (M) = 〈u − Iφu, u〉Hs (M).

Let v := u − Iφu. Using the definition of inner products and norms by the Fourier transform
(up to a constant factor) we have for any α ∈ [0, s],

‖u − Iφu‖2Hs (M) = 〈u, v〉Hs (M) =
J∑

j=1

〈u j , v j 〉Hs (Rk )

=
J∑

j=1

∫
Rk

(1 + ‖ω‖22)s û j (ω)̂v j (ω)dω

≤
J∑

j=1

∫
Rk

(1 + ‖ω‖22)s/2+α/2 |̂u j (ω)|(1 + ‖ω‖22)s/2−α/2 |̂v j (ω)|dω

≤
J∑

j=1

(∫
Rk

(1 + ‖ω‖22)s+α |̂u j (ω)|2dω

)1/2

×
(∫

Rk
(1 + ‖ω‖22)s−α |̂v j (ω)|2dω

)1/2

=
J∑

j=1

‖u j‖Hs+α(Rk )‖v j‖Hs−α(Rk )

≤
⎛
⎝ J∑

j=1

‖u j‖2Hs+α(Rk )

⎞
⎠

1/2⎛
⎝ J∑

j=1

‖v j‖2Hs−α(Rk )

⎞
⎠

1/2

= ‖u‖Hs+α(M)‖v‖Hs−α(M),

where u j = π j (u) and v j = π j (v) are defined in Definition 5.1. The Cauchy-Schwartz
inequalities in L2(Rk) and R

J have been used in the fourth and seventh lines, respectively.
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To bound the last term, an application of inequality (5.4) for p = q = 2 yields

‖v‖Hs−α(M) = ‖u − Iφu‖Hs−α(M)

≤ Chα‖u − Iφu‖Hs (M),

because u − Iφu is zero on X . Setting α = σ − s gives

‖u − Iφu‖Hs (M) ≤ Chσ−s‖u‖Hσ (M), s ≤ σ ≤ 2s.

Another application of (5.4) for p = q = 2 then leads to the second error bound in (5.6).
��

With this, we can prove the following result.

Theorem 5.4 LetMbea smooth2-dimensional submanifold of R3. Assume that� = φ(‖·‖2)
satisfies (3.4) with τ > 3/2 + 2 and s = τ − 1/2. Let X ⊂ M be a discrete set having fill
distance h = hX ,M sufficiently small and mesh ratio ρ = ρX ,M. Then

‖LMu − �Mu‖Lq (M) ≤
{
Chσ−2−2(1/2−1/q)+ρ2(s−σ)+1‖u‖Hσ (M), 3 < σ ≤ s,
Chσ−2−2(1/2−1/q)+ρ‖u‖Hσ (M), s ≤ σ ≤ 2s,

(5.7)

for all u ∈ Hσ (M) and 1 ≤ q ≤ ∞.

Proof The estimate for 3 < σ ≤ s is exactly that of [20, Theorem 1]. Theorem 2 of this
reference concerns the error bound for functions at least twice smoother than those in the
native space of �. Here, we complete this for functions in Hσ (M), where s ≤ σ ≤ 2s. The
argument is mainly based on the error estimate (5.6) for s ≤ σ ≤ 2s for pure interpolation
problem. First, since s > 3 we have �s − 2(1/2 − 1/q)+� − 1 ≥ �s − 1� − 1 = �s� − 2 ≥
4 − 2 = 2. Thus, from sampling inequality (5.3) together with error bound (5.6) we obtain

‖u − Iφu‖W 2
q (M) ≤ Chs−2−2(1/2−1/q)+‖u − Iφu‖Hs (M)

≤ Chσ−2−2(1/2−1/q)+‖u‖Hσ (M),
(5.8)

for s ≤ σ ≤ 2s. Next, we can write

‖�Mu − LMu‖Lq (M) ≤ ‖�Mu − �M Iφu‖Lq (M) + ‖LMu − �M Iφu‖Lq (M). (5.9)

The first term on the right hand side of (5.9) can be estimated via (5.8) by

‖�Mu − �M Iφu‖Lq (M) ≤ C‖u − Iφu‖W 2
q (M)

≤ Chσ−2−2(1/2−1/q)+‖u‖Hσ (M),

for all s ≤ σ ≤ 2s. We note that Iφu ∈ H ν(M) for all ν < 2s − 1, ∇M Iφu ∈ Hν(M) for all
ν < 2s − 2 and ∇Mu ∈ Hs−1(M) for u ∈ Hσ (M) for all σ ≥ s. HereHν(M) = (H ν(M))3.
With these and from the details of the proof of [20, Theorem 2], the second term on the right
hand side of (5.9) can be estimated by

‖LMu − �M Iφu‖Lq (M) ≤ Chs−2−2(1/2−1/q)+
[
(ρ + 1)‖∇Mu − ∇M Iφu‖Hs−1(M)

+ ‖Iφ(∇Mu) − ∇Mu‖Hs−1(M)

]
.

The first norm on the right hand side in the above inequality can be bounded via (5.6) as

‖∇Mu − ∇M Iφu‖Hs−1(M) ≤ C‖u − Iφu‖Hs (M)
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≤ Chσ−s‖u‖Hσ (M),

which is valid for s ≤ σ ≤ 2s. The second norm can be treated as

‖Iφ(∇Mu) − ∇Mu‖Hs−1(M) ≤ Ch(σ−1)−(s−1)‖∇Mu‖Hσ−1(M)

≤ Chσ−s‖u‖Hσ (M),

for s ≤ σ ≤ 2s. Summarizing all, we finally get

‖�Mu − LMu‖Lq (M) ≤ C(ρ + 2)hσ−2−2(1/2−1/q)+‖u‖Hσ (M),

which completes the proof. ��
The error estimate (5.7) can be easily generalized for the case whereM is a k-dimensional

submanifold of Rd .

5.1 Stability Analysis

According to (4.1), in order to prevent the instability in numerical solution Un∗
X , time step

�t and fill distance hX ,M might be chosen such that ρ(IN + �t L X ) � 1, where ρ(A) is the
spectral radius of matrix A, and IN is the identity matrix of size N . If λ is any eigenvalue of
LX this requires Re(λ) < 0 and �t ≤ 2|Re(λ)|/|λ|2. Numerous experimental results in [20]
show that if the surface M is well-discretized, i.e., for sufficiently small values of hX ,M, all
eigenvalues of LX lie in the left half plane. In additions, the imaginary part is much smaller
than the real part in magnitude. No analytical proof is yet available for this assertion. Thus,
following [20] and our own observations, we conjecture that:

Conjecture 1 All diagonal elements of LX arenegative and if the surfaceM iswell-discretized
then all eigenvalues λ of LX lie in the left half plane. Moreover, |λ| = O(|Re(λ)|).

However, for the second requirement �t ≤ 2|Re(λ)|/|λ|2 which, by accepting Conjec-
ture 1, is now become�t ≤ c/ρ(LX ), for a sufficiently small constant c, we estimate ρ(LX )

in terms of fill distance hX ,M.

Theorem 5.5 Assume that LX is formed via X = {x1, . . . , xN } ∈ XR with sufficiently
small fill distance h = hX ,M, and assume that the kernel � = φ(‖ · ‖2) satisfies (3.4) for
τ > 3/2 + 2. Then

ρ(LX ) ≤ ‖LX‖∞ ≤ Ch−2, (5.10)

where ρ(LX ) is the spectral radius of matrix LX .

Proof The first inequality in (5.10) is an elementary result in linear algebra. For the second
inequality suppose that c ∈ R

N\{0} is given. For a σ ∈ R with 3 < σ � 2s, s = τ − 1/2,
choose a function v ∈ Hσ (M) such that v(xk) = ck for k = 1, 2, . . . , N . (For example,
the φ-interpolant of ck-values can be chosen. In this case, σ might be any real number with
3 < σ < 2s − 1). According to (5.5)

LX c = (LMv)X .

Using this and by applying Theorem 5.4 and sampling inequality (5.3) and using the
assumption on quasi-uniformity, we have

‖LX c‖�∞ � ‖LMv‖L∞(M)
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� ‖�Mv‖L∞(M) + ‖�Mv − LMv‖L∞(M)

� ‖v‖W 2∞(M) + Chσ−3‖v‖Hσ (M)

� Chσ−3‖v‖Hσ (M) + Ch−2‖vX‖�∞ .

Thus for sufficiently small values of h and using the fact that vX = cwe have ‖LX c‖�∞ ≤
Ch−2‖c‖�∞ which leads to the desired bound. ��
Corollary 1 Accepting Conjecture 1, the uniform stability condition for Eq. (4.1) is

�t = ch2X ,M, (5.11)

where c is a sufficiently small constant.

So far we have used the notation un , n ≥ 0, as an approximation for u(·, tn) which is a
function continuous in x but discrete in t . The notation Un

X ∈ R
N has been also denoted

for the approximate solution of full-discrete Eqs. (4.1) and (4.2). From here on, the notation
unX ∈ R

N will be used when un is sampled at set point X .
Assume that SL and SN represent the linear and the nonlinear operators in (2.4) and (2.5),

respectively, such that

un+1 = SNSLu
n, n = 0, 1, . . . . (5.12)

The discrete analogues of these operators are denoted by SX
L and SX

N leading to a refor-
mulation of (4.1) and (4.2) as below

Un+1
X = SX

N SX
L U

n
X , n = 0, 1, . . . . (5.13)

Since the exact time integration solution has been applied for the nonlinear part, we have

(SNu
n)X = SX

N u
n
X (5.14)

for all continuous functions un . Now, the following lemmas concern the stability of the
approximate solution Un+1

X .

Lemma 5.6 Under the assumptions of Theorem 5.5 and Corollary 1, we have

‖Un∗
X ‖�∞ = ‖SX

L U
n
X‖�∞ ≤ ‖Un

X‖�∞ ,

provided that 2�t ≥ (
min

1≤k≤N
|�kk |

)−1
where �kk are diagonal elements of LX .

Proof Using the last assumption and the fact that LX has negative diagonal elements, we
have ‖SX

L ‖∞ = ‖IN + �t L X‖∞ ≤ �t‖LX‖∞. From Theorem 5.5 and using the stability
condition (5.11) we have �t‖LX‖∞ ≤ C�th−2

X ,M
≤ 1 for appropriate choices of �t . This

leads to the desired bound. ��
Many experimental results show |�kk | behave like h−2

X ,M
which suggests some accessible

values for �t in Lemma 5.6. However, experiments show that this restriction on �t is not
actually required. Thus, a new analysis which ignores this restriction will be welcome in
future studies.

Lemma 5.7 Under the assumptions of Theorem 5.5, we have

‖Un+1
X ‖�∞ ≤ e

T
E2 ‖U 0

X‖�∞ ,

provided that (5.11) holds.
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Proof First, for n ≥ 0 and k = 1, . . . , N we have

∣∣ (Un+1
X

)
k

∣∣ =

∣∣∣∣∣∣∣∣∣∣

(
Un∗

X

)
k√

e− 2�t
E2 +

(
1 − e− 2�t

E2

) (
Un∗

X

)2
k

∣∣∣∣∣∣∣∣∣∣
≤ e

�t
E2

∣∣(Un∗
X

)
k

∣∣ ,

leading to

‖Un+1
X ‖�∞ ≤ e

�t
E2 ‖Un∗

X ‖�∞ .

Then Lemma 5.6 and a recursive application for n ≥ 0 yield the desired bound. ��

5.2 Convergence Analysis

The convergence analysis at nodal points X is given here. First, we prove the following
lemma.

Lemma 5.8 Let M be a smooth 2-dimensional submanifold of R3. Assume that � satisfies
(3.4) for τ > 3/2 + 2 and let s = τ − 1/2. For n ≥ 0 suppose that un ∈ Hσ (M) for
3 < σ ≤ 2s. For X ∈ XR with sufficiently small fill distance h = hX ,M we have

‖(SLun)X − SX
L u

n
X‖�∞ � C�t hσ−3‖un‖Hσ (M).

Proof Remember that SL = I + �t�M and SX
L = IN + �t L X , where I is the identity

operator and IN is the N -by-N identity matrix. We can write

‖(SLun)X − SX
L u

n
X‖�∞ = ‖unX + �t(�Mun)X − unX − �t L Xu

n
X‖�∞

= �t‖(�Mun)X − LXu
n
X‖�∞

≤ �t‖�Mun − LMun‖L∞(M)

≤ C�t hσ−3‖un‖Hσ (M),

where in the third and in the last lines we have used Eq. (5.5) and Theorem 5.4, respectively.
��

Theorem 5.9 Under the assumptions of Lemma 5.8 we have

‖uX (tn+1) −Un+1
X ‖�∞ � C(‖u0‖H2(M))�t + Chσ−3 max

0≤k≤n
‖uk‖Hσ (M).

provided that the stability condition (5.11) holds.

Proof First, by adding and subtracting un+1
X , we have

‖uX (tn+1) −Un+1
X ‖�∞ ≤ ‖uX (tn+1) − un+1

X ‖�∞ + ‖un+1
X −Un+1

X ‖�∞ .

The first term in the right hand side is the total error of the time difference approximation
which itself contains the error of splitting (1.1) into (2.2) and the error of discretizations (2.4)–
(2.5). According to [12] and [6, Theorem 4.1] both errors are of order �t . More precisely,
we have

‖uX (tn+1) − un+1
X ‖�∞ � C(‖u0‖H2(M))�t,
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where u0 is the initial data function. The second term can be treated as

‖un+1
X −Un+1

X ‖�∞ = ‖(SNSLun)X − SX
N SX

L U
n
X‖�∞

≤ ‖(SNSLun)X − SX
N (SLu

n
X )X‖�∞ + ‖SX

N (SLu
n)X − SX

N SX
L U

n
X‖�∞

≤ 0 + e
�t
E2 ‖(SLun)X − SX

L U
n
X‖�∞ ,

where in the last line, Eq. (5.14) and Lemma 5.7 are used. To bound the right hand side, we
have

‖(SLun)X − SX
L U

n
X‖�∞ ≤ ‖(SLun)X − SX

L u
n
X‖�∞ + ‖SX

L u
n
X − SX

L U
n
X‖�∞

≤ C�t hσ−3‖un‖Hσ (M) + ‖unX −Un
X‖�∞ ,

where Lemmas 5.6 and 5.8 and the assumption on quasi-uniformity have been used. Conse-
quently, we have

‖un+1
X −Un+1

X ‖�∞ ≤ e
�t
E2

(
C�t hσ−3‖un‖Hσ (M) + ‖unX −Un

X‖�∞
)
.

By induction and using the fact that u0X = U 0
X we get

‖un+1
X −Un+1

X ‖�∞ ≤ C�t hσ−3 max
0≤k≤n

‖uk‖Hσ (M)

{
n+1∑
k=1

e
k�t
E2

}

= C�t hσ−3 max
0≤k≤n

‖uk‖Hσ (M)

{
e

�t
E2

(
e
tn+1
E2 − 1

)
1

e
�t
E2 − 1

}

≤ Chσ−3 max
0≤k≤n

‖uk‖Hσ (M),

where in the last line the inequality 1/(ex −1) ≤ 1/x for x > 0 has been used. Summarizing
all, we get the desired bound. ��

6 Numerical Simulations

This section is devoted to some numerical simulations using the proposed method for the AC
model (1.1). In numerical simulations the sphere, the torus and the red blood cell are used as
surfaces. These 2-dimensional manifolds are defined as below:

M = {
(x, y, z) ∈ R

3 : x2 + y2 + z2 = r20
}
,

M =
{

(x, y, z) ∈ R
3 :

(
c1 −

√
x2 + y2

)2

+ z2 = r21

}
,

M =

⎧⎪⎨
⎪⎩(x, y, z) ∈ R

3 :
(
1 − x2 + y2

r22

)⎛
⎝c0 + c2

(
x2 + y2

r22

)
+ c4

(
x2 + y2

r22

)2
⎞
⎠

2

− 4z2 = 0

⎫⎪⎬
⎪⎭ .

For problems in Sects. 6.1 and 6.2 we set r0 = 1, r1 = 0.3, r2 = 3.91/3.39, c0 = 0.81/3.39,
c1 = 0.7, c2 = 7.83/3.39, c4 = −4.39/3.39, while for that in Sect. 6.3 we set r0 = 0.3,
r1 = 1/16, r2 = 3.39/0.3, c1 = 0.4 with the same c0, c2 and c4 as before. The unit sphere,
the torus and the red blood cell will be denoted by S2, T2 and B2, respectively.
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Fig. 1 PTS points (left) and ME
points (right) on S

2

The Matérn kernel (3.5) with ν = 5 is employed as a trial kernel. This kernel satisfies
(3.4) with τ = 5 which means that it has H5(R3) as its native space [16]. Thus, the native
space of its restriction to the above 2-dimensional submanifoldsM is H4.5(M).

In experiments the shape parameter ε = 10 is used. The numerical order of convergence
in spatial and time domains is computed via the following formula

log
(

eold
enew

)
log

(
hold
hnew

) ,

where e and h represent the numerical error and the fill distance, respectively. The errors are
measured in �∞(X)-norm where X is a set of scattered points onM. The numerical order of
growth of ρ(LX ) is calculated similarly.

6.1 Test Problems

To show the order of convergence of the proposed scheme, we consider Eq. (1.1) with exact
solution

u(x, y, z, t) = tanh(x + y + z − t), (6.1)

for (x, y, z) ∈ S
2, t ≥ 0 and E = 1. The right hand side function f is calculated accordingly.

The minimum energy (ME) and the phyllotaxis spiral (PTS) points are used in this example.
These sets of points are quasi-uniform and their fill distance h is of order N−1/2. In Fig. 1
a set of 2601 ME and a set of 2601 PTS points are shown. In Fig. 2, the �∞ errors and the
orders of convergence in the spatial domain (in terms of h) have been shown for ME and PTS
points with �t = 10−8 at time T = 0.0001. Theorem 5.4 predicts the rate h2s−3 = h6 for
smooth solutions. However, numerical results show a better order of convergence. In Fig. 3,
the errors and the numerical orders of convergence with respect to the time discretization are
plotted for both ME and PTS points at different time levels. The theoretical order (�t)1 is
confirmed for both cases. In “Appendix”, the MATLAB code of this test problem is given.

Now, we consider the AC equation on torus T2 with the same exact solution (6.1) and
E = 1. To generate (

√
n − 1)2 points on T

2, we first consider the natural parameterization
for T2 as follows:

x=(c1 + r1 cos(θ)) cos(ϕ), y = (c1 + r1 cos(θ)) cos(ϕ), z=r1 sin(θ), 0 ≤ θ, ϕ ≤ 2π.

In the second round, we have considered
√
n − 1 equally spaced angles w ∈ [0, 2π) and

v ∈ [0, 2π), and then take a direct product to gain (
√
n − 1)2 points [21]. Figure 4 shows a

set of gridded points on T2. In Fig. 5, the errors and the orders of convergence in both spatial
and time domains are drawn. The numerical order in spatial domain is much better than the
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Fig. 2 The maximum errors and orders of convergence in terms of h using ME points (left) and PTS points
(right)

Fig. 3 The maximum errors and orders of convergence on S
2 in terms of �t using ME points (left) and PTS

points (right)

Fig. 4 Gridded points on T
2

theoretical order h6. We observe the same phenomenon in [21] which has been related to
a kind of supperconvergence at collocation points. This requires more in-depth study in a
future work.

Table 1 shows the order of growth of ρ(LX ) for different values of N . Results show that
it grows approximately by h−2, which confirm the theoretical bound (5.10).

Here, we support Conjecture 1 in Figs. 6, 7 and 8 where the eigenvalues of differentiation
matrix LX are plotted for three considered manifolds at different number of collocation
points. We observe that, for fine discretizations, all eigenvalues lie in the left half plane, and
the magnitude of them is of order of the magnitude of their real parts.
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Fig. 5 The maximum errors and orders of convergence on torus in terms of h (left) and �t (right)

Table 1 The numerical order of
growth of ρ(LX ) for different set
points X

ME points PTS points
N ρ(LX ) orders ρ(LX ) orders

121 3.84e+1 – 3.94e+1 –

484 2.44e+2 − 2.67 2.56e+2 − 2.70

1936 1.07e+3 − 2.13 1.19e+3 − 2.22

7744 4.38e+3 − 2.04 5.04e+3 − 2.08

Fig. 6 Eigenvalues of LX on the
unit sphere and PTS points

6.2 Motion byMean Curvature on Surfaces

As first example, consider Eq. (1.1) on S
2 with the following initial condition [11].

u(x, y, z, 0) = tanh

(√
x2 + y2 − z√

2E

)
, (x, y, z) ∈ S

2, (6.2)

for E = 0.1. This test is an example of the well-known motion by mean curvature on the unit
sphere [11]. According to (5.11), to guarantee the stability of time discretization, and to have
a comparison with the results of [11], we set �t = 0.416h2. Figure 9 shows the numerical
solution at t = 800�t and t = 1600�t with N = 2601 ME points. The plots for PTS points
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Fig. 7 Eigenvalues of LX on the red blood cell and PTS points

Fig. 8 Eigenvalues of LX on the torus and gridded points

Fig. 9 Motion by mean curvature on S2 with initial condition (6.2)
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Fig. 10 Motion by mean curvature on T2 with initial condition (6.3)

Fig. 11 Motion by mean curvature on T2 with initial condition (6.4)

which are not shown here are the same. These results are in good agreement with those given
in [11].

In the second example, we consider Eq. (1.1) on T
2 with the following initial condition

[11].

u(x, y, z, 0) =
{+1,

√
x2 + z2 < 1.2 & y + z > 0.1,

−1, otherwise
(6.3)

Numerical results are obtained for E = 0.0384, �t = 1.05h2, 6561 gridded points, and
depicted in Fig. 10 at t = 2�t , t = 300�t , t = 600�t , t = 1500�t and t = 1800�t . Our
results are in good agreement with those given in [11].

In the third example, we consider Eq. (1.1) on T
2 and on B

2 with the following initial
condition [11]:

u(x, y, z, 0) =
{+1,

√
(x − 0.7)2 + 0.25y2 < 0.25 & z > 0,

−1, otherwise.
(6.4)

Numerical solutions are obtained on T
2 for same parameters as in the second example, but

given in time levels t = 120�t , t = 280�t , t = 360�t , t = 400�t and t = 600�t in
Fig. 11. The results on B2 are obtained with N = 6561 ME points (see Fig. 12) and depicted
in Fig. 13. According to the results here and those in [11], the motion by mean curvature can
be described as the interface approaches a circle before disappearing, when the steady state
is approached.

In the fourth example, we consider Eq. (1.1) on T
2 with the following initial condition

[11]:

u(x, y, z, 0) =
⎧⎨
⎩

+1,
√
x2 + y2 < 0.9 & z > 0,

+1,
√
x2 + y2 > 0.7 & z < 0,

−1, otherwise.
(6.5)

Numerical solutions are obtained for the same values of numerical parameters as in the
second example, but given at time levels t = �t , t = 1500�t , t = 2100�t , t = 5700�t
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Fig. 12 ME points on red blood
cell B2

Fig. 13 Motion by mean curvature on red blood cell B2 with initial condition (6.4)

Fig. 14 Motion by mean curvature on torus T2 with initial condition (6.5)

and t = 6000�t in Fig. 14. Results are in good agreement with [11]. By increasing time, the
interfaces shrink by mean curvature, and it reaches to the steady state solution.

6.3 Phase Ordering on Surfaces

In this example, we consider Eq. (1.1) on sphere, torus and red blood cell surfaces with the
following initial condition [48]:

u(x, y, z, 0) = 0.01 · rand(x, y, z),

where rand(x, y, z) denotes for a uniformly distributed random number between −1 and 1.
This example shows the phase ordering on surfaces which can be observed in ranging from
nonequilibrium statistical physics and hydrodynamic theories to cell biology [11]. We set
E = 0.02 and �t = 10−5. In Figs. 15 and 16 the processes of phase separation at times
t = 0.005, t = 0.025 and t = 0.05 are shown with N = 2601 PTS points on sphere and
torus, respectively. These numerical simulations can be verified by the analogous results in
[48].

In additions, we obtain the numerical solution with N = 3721ME points on the red blood
cell. Figure 17 illustrates the phase separation at times t = 0.005, t = 0.025 and t = 0.05.
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Fig. 15 Phase separation on sphere with a random initial condition

Fig. 16 Phase separation on torus with a random initial condition

Fig. 17 Phase separation on red blood cell with a random initial condition

7 Conclusion

A numerical solution for the nonlinear time-dependent Allen–Cahn equation on surfaces was
obtained using a kernel collocation method in combination with an explicit time splitting
algorithm. The convergence analysis of the method was given for functions in appropriate
Sobolev spaces defined on surfaces. Some numerical simulations on spheres, toruses and red
blood cells were performed to confirm the capability of the presented method.

Acknowledgements The second author was in part supported by a Grant from IPM, No. 96650427. The
authors are very grateful to reviewers for carefully reading this paper and for their comments and suggestions
which have improved the paper.

Appendix

Here, we provide a sample MATLAB code for simulating the Allen–Cahn equation on the
unit sphere. Parts related to the approximation of the Laplace–Beltrami operator are borrowed
from [20]. The subroutine for generating the minimum energy points should be provided by
user.
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