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Abstract

In this paper, the idea of direct discretization via radial basis functions (RBFs)

is applied on a local Petrov-Galerkin test space of a partial differential equation

(PDE). This results in a weak-based RBF-generated finite difference (RBF-FD)

scheme that possesses some useful properties. The error and stability issues are

considered. When the PDE solution or the basis function has low smoothness, the

new method gives more accurate results than the already well-established strong-

based collocation methods. Although the method uses a Galerkin formulation, it

still remains meshless because not only the approximation process relies on scattered

point layouts but also integrations are done over non-connected, independent and

well-shaped subdomains. Some applications to potential and elasticity problems on

scattered data points support the theoretical analysis and show the efficiency of the

proposed method.
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1 Introduction

Radial basis functions (RBFs) are known as a promising tool in approximation theory

for reconstructing functions from scattered values. This tool was entered into the field

of numerical solution of partial differential equations (PDEs) since a couple of papers by

Kansa [16, 17] and continued by many other authors in engineering and sciences. RBFs

have advantages of working on scattered points in rather general geometries, being easy
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to implement, giving spectral accuracy in some situations, and allowing simple extension

to higher dimensions. On the downside, the global RBF approximations produce ill-

conditioning matrices which make them restricted for large scale problems. Whereas,

the use of local numerical scheme, such as finite differences (FD) yields much better

conditioned matrices. Thus, for scattered point layouts a combination of RBFs and FD

schemes would be a possible solution. In this direction the RBF-FD approach has been

developed for several PDE problems. The earliest reference to this approach seems to

be a conference presentation in 2000 [36]. The method then becomes more prevalent in

three simultaneous works [34, 37, 41] in 2003. As in the classical FD methods, RBF-FD

results in sparse matrices with an additional advantage that has all the flexibility of global

RBFs in terms of handling irregular geometries and scattered node layouts. Although the

RBF-FD method does not perform the same spectral accuracy (for example for Gaussian)

as global RBF scheme, it will give acceptable accuracy for large scale problems for which

the global RBF can not be implemented.

The RBF-FDmethod still requires an appropriate algorithm to avoid the ill-conditioning

at the near flat cases, i.e. for very small values of RBF shape parameters [11, 10, 8, 18, 12].

Equipping with such algorithm, the RBF-FD method has been successfully applied on a

large class of PDEs in Euclidian spaces and smooth sub-manifolds [6, 9, 7].

The testing strategy in all the previous studies is a simple collocation approach where

the test space is discretized by collocating the strong form of the PDE at a set of scattered

test points. In this paper we will use an alternative approach based on a local Petrov-

Galerkin test discretization. The PDE is first converted to a weak form over not the

global domain but some small subdomains around the scattered test points, leading to a

set of local weak-form test functionals instead of the known delta point evaluations of the

collocation method. The procedure then follows the same direction as the usual RBF-FD

methods. At the price of numerical integration, the new method requires lower order

derivatives of the RBF space leading to better convergence properties. In additions, the

method is applicable on PDE problems with low smooth solutions because the informa-

tion of the right-hand side function (source function) should only be available in a weak

sense. Moreover, a scaling property of the weak-form functionals allows to implement the

new method via polyharmonic spline RBFs in a stable and efficient way. Alongside, the

available stabilization techniques for other RBFs such as RBF-QR and RBF-RA are still

applicable in the new procedure.

Although the new method is based on a Galerkin formulation, there is a significant

improvement over some meshless Galerkin methods (such as element-free Galerkin (EFG)

method) that no triangulation or background mesh is needed for numerical integration.

In fact, in the new method integrations are done over non-connected, independent and

well-shaped subdomains. This means that no connected background mesh is required for

either approximation or integration.

The reminder parts of the paper are organized as following. In section 2, an overview
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on meshless methods and two different approaches for solving PDEs are reviewed. In

section 3, a local Petrov-Galerkin test discretization of a PDE problem is derived. In

section 4, the idea of RBF-FD approach is developed for the new testing functionals and

the available algorithms for stabilizing the resulted local matrices are reviewed. In section

6, the theoretical foundation of the method is provided and the consistency and stability

issues are considered. Finally, in section 7, some applications to potential and elasto-static

problems with numerical experiments are given.

2 An overview

Assume that we are looking for the approximate solution of a PDE problem of the form

Lu = f, in Ω, (2.1)

Bu = g, on Γ (2.2)

where Ω is a domain in Rd, Γ = ∂Ω denotes its boundary, L is a linear differential

operator, B is a linear boundary operator describing the Dirichlet and/or Neumman

boundary conditions. Meshless methods construct the approximate solution from a trial

space whose functions are parametrized “entirely in terms of nodes”. If trial points form

a set

Z = {z1, z2, . . . , zM}

then we denote the trial space by UZ and assume that the discretized problem is set up

with a vector (u(z1), u(z2), . . . , u(zM))T . Furthermore, we assume the discretized problem

consists of test functional equations

λku = bk, k = 1, . . . , N, (2.3)

where we haveN ≥M linear functionals λ1, . . . , λN andN prescribed real values b1, . . . , bN .

In collocation methods, test functionals λk are simply formed by values of Lu and Bu at

collocation points x1, . . . , xN in Ω and ∂Ω, respectively. Correspondingly, bk are f and

g values. In section 3 we will describe an alternative discretization technique to convert

(2.1)-(2.2) into semi-discrete form (2.3).

For discretization in the trial side, a standard approach uses the expansion

ũ =
M∑
j=1

aj u(zj) ≈ u

of the approximate solution in terms of a set of shape functions {a1, . . . , aM} as a Lagrange
basis for trial space UZ . Applying λk then yields

λkũ =
M∑
j=1

λkaj u(zj) ≈ λku, k = 1, . . . , N
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which describes the exact action of test functionals λk on the trial space. Putting the

λkaj into an N ×M matrix A, one has to solve the possibly overdetermined linear system

Au = b with b = (b1, . . . , bN)
T . Since “ ≈ ” is replaced by “ = ” to end up with the

final system, the vector value u may differ from nodal values (u(z1), . . . , u(zM))T . This

approach which is called the shape function approach in [32] dominates all classical collo-

cations and FEM types methods. In kernel based methods, unsymmetric and symmetric

collocation methods [13, 29, 43] as well as Galerkin RBF based methods [39, 24, 19] are

examples that use this approach. A general and comprehensive error and stability analysis

is also provided in [32].

An alternative approach, having FDM as an example, finds good estimates λ̃k of all

λk by looking for real numbers aj(λk) with

λ̃ku =
M∑
j=1

aj(λk)u(zj) ≈ λku, k = 1, . . . , N (2.4)

to get a different linear system Au = b with matrix entries aj(λk) and the same b

as before. Usually A is a sparse matrix in this case. This approach is called direct

discretization in [30] because test functionals λk are directly approximated from nodal

values u(z1), . . . , u(zM) without any detour via shape functions. It has been also used

in meshless methods like RBF-FD, local RBF collocation and generalized moving least

squares (GMLS) approximation by various authors [36, 34, 7, 25, 23, 30].

The method of this paper is of the second type and generalizes the FD methods for

weak-form functionals on scattered points using a special Petrov-Galerkin test discretiza-

tion and the RBF approximation.

3 Locally weak testing

The usual classification of numerical methods for solving a PDE obeys the classification of

PDE problem itself into strong and weak forms. The first yields the standard collocation

methods, while the second dominates all FEM and related techniques. However, there

exists an alternative approach, originally proposed in [1] as local weak form, which splits

the integral of the usual global weak form into local integrals over many small subdomains

and performs the integration by parts on all local integrals, separately.

Any such above forms constructs a testing space for the PDE and converts it to a

finite set of functional equations as (2.3). On the other side, the trial space is usually

formed via piecewise polynomials, orthogonal polynomials, spline functions, trigonometric

polynomials, moving least squares (MLS), RBFs, and etc.

In this section we derive the local weak forms associated to linear PDE problem (2.1)-

(2.2). Assume

X = {x1, x2, . . . , xnX
}
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is a set of PDE test points inside Ω and

Y = {y1, y2, . . . , ynY
}

is a set of boundary test points on Γ. Let N = nX + nY is the number of all test points.

Moreover, assume v : Rd → R is a compactly supported test function on the unit ball and

for x = xk ∈ X define

vρ,x := ρ−dv

(
· − x

ρ

)
, (3.1)

where ρ > 0 is chosen small enough to have B(xk, ρ) ⊂ Ω for all k = 1, 2, . . . , nX . In

contrast to the well-established Galerkin methods which are based on a global weak form,

we introduce the local weak forms of (2.1) by integrating Lu against test functions vρ,xk

to get

⟨Lu, vρ,xk
⟩L2(Ω) = ⟨f, vρ,xk

⟩L2(Ω), k = 1, 2, . . . , nX .

Integration by parts and using the divergence theorem on the left hand side then weaken

the strong form L to lower order derivatives of the function involved. For instance, the

local weak forms of the well-known Laplacian operator L = ∆, using the fact that vρ,xk
is

compactly supported on B = B(xk, ρ) ⊂ Ω, read as

⟨∇u,∇vρ,xk
⟩L2(B) − ⟨∇u · n(k), vρ,xk

⟩L2(∂B) = ⟨f, vρ,xk
⟩L2(B) (3.2)

where n(k) ∈ Rd is the outward normal to the boundary of ball B(xk, ρ), i.e.

n(k)(x) =
x− xk
ρ

.

Another example of local weak forms will be given in section 7 for an elasticity problem

in solid mechanics.

Test functions v are chosen independently of trial functions, the reason why we call

(3.2) a Petrov-Galerkin discretization. Two simple choices of v are as follows: 1) If v is

vanishing on B(0, 1) then the second inner product in the left hand side of (3.2) vanishes.

Wendland’s compactly supported RBFs (see Table 1) are examples. 2) If v is the constant

function on set B(0, 1) and zero otherwise, i.e. v = χB(0,1), then the second inner product

is vanishing and we have a local boundary-only integral.

It is clear from the construction that local subdomains may have other shapes than

balls if the corresponding test functions vρ,xk
are defined properly.

In general, for a given test function v, we show the local weak forms of (2.1) by

aρ,k(u, v) = ℓρ,k(v), k = 1, 2, . . . , nX , (3.3)

for unknown solution u, where aρ,k are local bilinear forms and ℓρ,k are local linear func-

tionals. Allowing local subdomains B(xk, ρ), k = 1, . . . , nX to be independent from each
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other (with or without intersection) and extending the support of approximant outside

these subdomains make the bilinear form (3.3) different from the usual Petrov-Galerkin

discretizations in the FEM setting where meshes (e.g. triangles) do not overlap and their

union should cover the whole domain Ω.

For boundary test points yk ∈ Y we introduce the collocation test functional equations

(δyk ◦B)u = g(yk), k = 1, 2, . . . , nY , (3.4)

where δy is the point evaluation functional at y.

We now define for a given v and ρ

λku := aρ,k(u, v), k = 1, . . . , nX ,

λk+nX
u := δyk ◦B(u), k = 1, . . . , nY ,

(3.5)

and
bk := ℓρ,k(v), k = 1, . . . , nX ,

bk+nX
:= g(yk), k = 1, . . . , nY ,

(3.6)

to arrive at the semi-discrete form (2.3). If the first approach of section 2 (the shape func-

tion approach) is applied on this test discretization then the well-known MLPG method

will be resulted where shape functions are usually coming from the moving least squares

(MLS) and RBF approximations [1, 24]. However, as pointed out before, we are going to

follow the second approach and give a stable and robust numerical scheme to transfer the

problem to a full-discrete linear system of equations.

4 RBF-generated FD method

The RBF-FD method arises naturally as a generalization of standard FD approximations.

FD formulas approximate a differential operator at a central point x0 in terms of function

values at distinct points z1, z2, . . . , zn in neighborhood of x0. These formulas are usually

derived only in one dimension by considering the stencil weights to be unknowns and then

enforce that the resulting FD formula becomes exact for the monomials 1, x, x2, . . . up

to as high degree as possible. Generalizations to more dimensions are mostly limited to

Cartesian-type grids by applying such one dimensional formulas in each spatial direction,

separately. In RBF-FD approach the one dimensional test functions {1, x, x2, . . .} are

replaced by d dimensional RBFs {ϕ(∥x − zj∥2)} centered at nodes zj ∈ Rd; usually no

matter how they are scattered. In certain cases, low-degree polynomials have to be added,

but we give details later. The basis function ϕ is assumed to be (conditionally) positive

definite.

Definition 4.1 A continuous radial function ϕ is conditionally positive definite of order

q on Rd if
n∑

i=1

n∑
j=1

cicjϕ(∥zi − zj∥2) > 0
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Table 1: Typical RBFs for r = ∥x∥2, x ∈ Rd.

RBF ϕ(r) Parameters Order q

Gaussian exp(ε2r2) ε > 0 0

Sobolev spline rβ−d/2Kβ−d/2(εr) β > d/2, ε > 0 0

IMQ (1 + ε2r2)−β β > 0, ε > 0 0

MQ (1 + ε2r2)β β > 0, β /∈ N, ε > 0 ⌈β⌉
Polyharmonic splines

(PHS)

{
rk log r

rk
k ∈ 2N
k /∈ 2N, k > 0

⌊k/2⌋+ 1

Wendland’s functions ϕd,k(εr) k ∈ N0, d ∈ N, ε > 0 0

for any n pairwise distinct points z1, z2, . . . , zn ∈ Rd and any vector c = [c1, c2, . . . , cn]
T ∈

Rn satisfying the side condition

n∑
j=1

cjp (zj) = 0, for all p ∈ Pd
q−1.

Function ϕ is called positive definite if it is conditionally positive definite of order q = 0.

Typical examples of RBF ϕ(r) for r = ∥x∥2, x ∈ Rd, are listed in Table 1. In the

second row of the table, Kβ is the modified Bessel function of the second kind of order

β. Shape parameter ε > 0 plays an important role in accuracy and stability of RBF

approximations. Polyharmonic splines (PHS) are examples of ε-free RBFs. For explicit

formula of Wendland’s functions ϕd,k(εr) see [38].

Although, FD formulas are usually constructed to approximate the strong derivatives

and hence FDM is known as a strong-based method, here we derive the weak-based RBF-

FD formulas based on our special Petrov-Galerkin test discretization in section 3. This

might be a little unfamiliar at first glance, but as we discussed in section 2 and we will see

below, the direct approximation of linear functionals without operating them on a trial

space, push this method to the category of FD methods.

We again assume Z = {z1, z2, . . . , zM} is a set of trial points distributed in Ω and on

Γ and X = {x1, . . . , xnX
} is a set of PDE test points inside Ω. Recall the local bilinear

forms aρ,k(u, v) =: λku corresponding to test points xk from (3.3). This functional values

can be directly and locally approximated by values of u at a subset of trial set point Z

nearing xk. This can be done by computing an RBF-generated stencil for nk points from

Z locating in neighborhood of xk denoted by Zk = Z ∩B(xk, δ) for δ > ρ. In doing so, we

are looking for weights w(k) = (w
(k)
1 , w

(k)
2 , . . . , w

(k)
nk )

T such that for a fixed test function v,

aρ,k(u, v) ≈ w(k)Tu|Zk
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where the test point xk is assumed to be located approximately at the center of stencil. By

u|Zk
we mean the vector of nodal values at Zk. To obtain the weight vector w(k), we require

the stencil to reproduce all functions spanned by the involved RBFs {ϕ(∥ · −zj∥2)}zj∈Zk
.

It happens if w(k) satisfies∑
zj∈Zk

w
(k)
j ϕ(∥zj − zi∥2) = aρ,k(ϕ(∥ · −zi∥2), v), zi ∈ Zk, (4.1)

or in matrix form

A
(k)
ϕ w(k) = b

(k)
ρ,ϕ. (4.2)

If ϕ is positive definite then (4.2) is uniquely solvable. It is beneficial to also augment

the stencil with polynomial terms and add matching constraints to the associated RBF

expansion coefficients. This corresponds to requiring the weights to further reproduce the

polynomial space Pq−1(Rd) = span{p1, . . . , pQ} where Q =
(
q−1+d

d

)
. The augmented linear

system then becomes [
A

(k)
ϕ P (k)

P (k)T 0

] [
w(k)

ν(k)

]
=

[
b
(k)
ρ,ϕ

c(k)

]
, (4.3)

where P
(k)
j,i = pi(zj), zj ∈ Zk, 1 ⩽ i ⩽ Q and c

(k)
i = aρ,k(pi, v). As a sufficient condition,

the solvability of (4.3) is guaranteed if ϕ is conditionally positive definite of order q in Rd

and Zk is a Pq−1(Rd)-unisolvent set.

Definition 4.2 A finite point set Z ⊂ Rd is Pd
m-unisolvent if the zero function is the only

polynomial from Pd
m that vanishes on Z. Equivalently, Z has polynomial reproduction of

order m+ 1 (or degree m).

After solving (4.3), we can safely ignore the weight vector ν(k) and use only w(k) to

form the kth stencil.

The same can be done for the boundary test functional (3.4) by replacing the right

hand side of (4.1) by strong functional values

(δyk ◦B)ϕ(∥ · −zi∥2)

for differential boundary operator B that will only change the right hand side of (4.2) or

(4.3).

The PDE problem (2.1)-(2.2) is now discretized to the final linear system

Au = b (4.4)

for unknown vector u ∈ RM which is the approximate vector value at trial points

z1, . . . , zM . Matrix A ∈ RM×N is a sparse matrix assembled by the computed stencil

weights; the kth row of A is formed via w(k)T together with many zeros corresponding to

points in Z \Zk. Note that in a practical computation, we do not actually store the whole
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A but only its nonzero entries. The right hand side vector b ∈ RN has entries bk = ℓρ,k(v)

for k = 1, . . . , nX , and bnX+k = g(yk) for k = 1, . . . , nY .

For postprocessing calculations, the approximate values of u and its derivatives at

any evaluation point x ∈ Ω can be obtained by calculating the stencil weight w(eval) and

computing the inner product of its zero extension with u.

In section 6, the convergence and stability properties of this method will be discussed

but before that we consider the conditioning of local systems (4.2) and (4.3) in the fol-

lowing section.

5 Ill-conditioning of local systems

Although the method uses the RBF space on local subdomains to construct the stencil

weights, it still suffers from the severe ill-conditioned local interpolation matrices for

nearly flat ε-dependent RBFs for which the results tend to become particulary accurate.

It happens when the shape parameter ε is chosen very small. On the other side, for ε-

free RBFs (such as PHS) if the stencil (with a fixed number of points) becomes localized

around the central point then the local system tends to be highly ill-conditioned. This

problem occurs in the intermediate step when the stencil weights are calculated via (4.2)

or (4.3) for different test points. The sparse final linear system (4.4) is well-conditioned

and can effectively be inverted for a large number of points.

As we know, the standard RBF interpolation works with basis{
ϕ(∥ · −z1∥2), ϕ(∥ · −z2∥2), . . . , ϕ(∥ · −zn∥2)

}
(5.1)

on trial point set Z. For infinitely smooth functions such as Gaussian, IMQ and MQ the

growth of the condition number of Aϕ depends exponentially on the decay of both shape

parameter ε and separation distance qZ = min
k ̸=j

∥zk − zj∥. For finitely smooth RBFs this

dependence is of algebraic order. See [40, Chapter 12] for proofs. However, it is well-

known that the RBF interpolants are best approximations in native spaces [40, Chapter

10]. This means the interpolation operator is stable (at least) in the native space norm.

For finitely smooth basis functions with Fourier transforms decaying only algebraically,

DeMarchi and Schaback [22] proved that the RBF interpolations are stable even in L2 and

L∞ norms. (The same proof for infinitely smooth RBFs is still an open problem!). These

all show that stable basis may exist. In this direction, for the Gaussian basis function the

RBF-QR [11, 8] and the RBF-GA [10] algorithms have been introduced to handle the flat

limit cases at the price of a more computational cost. See also [27, 28, 20, 21] for new

bases for RBF spaces.

However, the first attempt to avoid the instability for small values of ε (applicable for

all types of RBFs) may be refereed to the Contour-Padé algorithm which dose not change

the basis (5.1) but extends the computation of interpolant to complex values of ε on a
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safe path. The use of Padé approximation then allows to approximate the interpolant

at small real values of ε [12, 41]. This algorithm was significantly improved to RBF-RA

version in [42] where the vector-valued rational interpolation is used instead of the Padé

approximation.

Another approach uses the scalability and allows to construct optimal stencils in

Sobolev spaces stably and efficiently [4]. If both functional and nodal approximation are

scalable then computations can be carried out with a proper scaling parameter and finally

re-scaled to the original situation. This may be motivated by the five-point star classical

FD formula for ∆u at origin on points Z = {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)} ⊂ R2

with weights w = {4,−1,−1,−1,−1}. If points are scaled to

hZ = {(0, 0), (h, 0), (−h, 0), (0, h), (0,−h)}, h > 0

then weights are scaled to w/h2 = {4/h2,−1/h2,−1/h2,−1/h2,−1/h2}. Here 2 is the

scaling order of ∆. This scaling order also determines the convergence rate of the for-

mula. In the RBF context, this approach is applicable for PHS on scattered points and

excludes other well-known kernels. However, in [4] has been proved that scalable stencils

constructed via PHS provide optimal convergence rates in Sobolev spaces. See section 6

below.

Comparing with the strong-based RBF-FD method, since matrices A
(k)
ϕ and P (k) re-

main unchanged in the new formulation, the stabilization algorithms for ε-dependent

RBFs (such as RBF-QR and RBF-RA) can be easily modified for systems (4.2) and

(4.3). However, for PHS kernels the scaling rule of the new test functionals needs to be

determined beforehand. See equation (6.6) of the following section.

6 About the convergence analysis

Assume the PDE problem (2.1) together with boundary condition (2.2) possess a unique

true solution u∗ that lies in some regularity subspace U that carries a norm ∥ · ∥U . Ac-

cording to the outlined test discretization of section 3 we have

λku
∗ = bk, k = 1, 2, . . . , N (6.1)

where λk and bk are defined via (3.5) and (3.6), respectively. As discussed in section 4,

the method of this paper approximates each functional λku
∗ by linear combinations of

nodal values u∗(z1), . . . , u
∗(zM) by requiring

λku
∗ ≈

∑
zj∈Zk

w
(k)
j u∗(zj) =: λ̃ku

∗, k = 1, . . . , N.

Comparing with (2.4) of section 2, we have aj(λk) = w
(k)
j for {j : zj ∈ Zk} and aj(λk) = 0

otherwise. Thus, the method leads to a sparse and possibly overdetermined final lin-
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ear system (4.4) for u = (u1, . . . , uM)T if we let the true values u∗(zj) be replaced by

approximate values uj.

The error analysis of this method falls into a framework of Schaback for nodal meshless

methods [31]. Since the square system of certain meshless methods may be singular,

one can apply overtesting, i.e. choosing N (the number of test points) larger than M

(the number of trial points), to avoid singularity and to improve the stability [32]. The

resulting overdetermined linear system of equations then should be handled by standard

numerical linear algebra techniques. For solvability we assume that the matrix A is set

up by sufficiently thorough testing so that the matrix has rank M ⩽ N .

As well as any numerical PDE method, the consistency and the stability together with

the effect of the numerical linear algebra solver are three ingredients that determine the

convergence quality of this method. The consistency is analyzed by finding a sharp upper

bound for

∥Au∗ − b∥q
where ∥ · ∥q is the discrete q-norm in RN , i.e. ∥v∥qq := |v1|q + · · · + |vN |q for v =

(v1, . . . , vN)
T ∈ RN . For this we assume there is a consistency error bound

|λk(u∗)− λ̃k(u
∗)| ≤ τk∥u∗∥U , k = 1, 2, . . . , N, (6.2)

to get

∥Au∗ − b∥q ≤ ∥τ∥q∥u∗∥U .

Suppose û denotes the vector of approximate nodal values ûj that is obtained by some

numerical linear algebra method that solves the system (4.4) approximately. Then, we

assume

∥Aû− b∥q ≤ K(A)∥Au∗ − b∥q ⩽ K(A)∥τ∥q∥u∗∥U , (6.3)

which is a condition imposed by the numerical method that produces û. Note that

(6.3) can be obtained with K(A) = 1 if û is calculated via minimization of the residual

∥Au− b∥q over all u ∈ RM . Finally, for stability we define

CS(A) := sup
u ̸=0

∥u∥p
∥Au∥q

(6.4)

which is a finite constant for any q and p norms provided that A has no rank loss. Having

these, Schaback [31] proved the following theorem which gives an error bound at nodal

points.

Theorem 6.1 Under the above assumptions and notations we have

∥u∗ − û∥p ⩽ (1 +K(A))CS(A)∥τ∥q ∥u∗∥U .

This is a classical error analysis where the right hand side contains the product of the

stability constant and the consistency bound. The effect of the linear algebra solver is

also reflected by constant K(A).
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6.1 Consistency

First, we focus on the consistency error bound (6.2) and use the results of Davydov

and Schaback [3, 4] among a large list of sources concerning the error analysis of kernel

based approximations. In [3] an error bound for kernel based numerical differentiation

is provided using the new technique of growth function. This technique bypasses certain

point density assumptions that where needed in standard approach of estimating the error

in terms of the fill distance. Thus it is more suitable to apply on stencils where the number

of points is more important than having a sufficiently dense point set.

Before measuring the consistency and the stability bounds of the new method, let’s

introduce some notions and notations.

A domain Ω ⊂ Rd is scalable, if it contains the origin as an interior point and satisfies

hΩ ⊆ Ω for all 0 ⩽ h ⩽ 1, i.e. if Ω is star-shaped with respect to the origin. A space U

of functions on a scalable domain Ω is scalable, if u(h·) is in U for all 0 < h ⩽ 1 and all

u ∈ U . A functional λ ∈ U∗ on a scalable space U has scaling order or homogeneity order

s if

λ(u(h·)) = hsλ(u), for all u ∈ U. (6.5)

For example we can simply show that the standard strong functional λ(u) = Dαu(0) has

scaling order s = |α|.
More calculations are required to determine the scaling order of local weak form func-

tionals of this paper. As an example, if vρ,x is defined via (3.1) for a test function

v ∈ H1(Rd) with a compact support on B(0, 1) and vanishing on ∂B(0, 1), we have

λvρ,x(u) :=

∫
Rd

(∇Tu)(y)(∇vρ,x)(y)dy

= ρ−dρ−1

∫
Rd

(∇Tu)(y)(∇v)
(
y − x

ρ

)
dy.

Then

λvρ,x(u(h·)) = ρ−d−1

∫
Rd

(∇Tu(h·))(y)(∇v)
(
y − x

ρ

)
dy

= hρ−d−1

∫
Rd

(∇Tu)(hy)(∇v)
(
hy − hx

hρ

)
dy

= h−d+1ρ−d−1

∫
Rd

(∇Tu)(z)(∇v)
(
z − hx

hρ

)
dz.

On the other hand,

λvhρ,hx(u) = (hρ)−d−1

∫
Rd

(∇Tu)(z)(∇v)
(
z − hx

hρ

)
dz

= h−2λvρ,x(u(h·)).
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This results to scaling rule

λvρ,x(u(h·)) = h2λvhρ,hx(u). (6.6)

As another example, assume that v is the characteristic function of set B(0, 1). Then the

first inner product in (3.2) is vanished and the second one leads to the following functional

λvρ,x(u) = ρ−d

∫
∂B(x,ρ)

∇Tu(y)n(y)dy = ρ−d

∫
∂B(x,ρ)

∇Tu(y)
y − x

ρ
dy.

Scaling by h then gives

λvρ,x(u(h·)) = ρ−d

∫
∂B(x,ρ)

(∇Tu(h·))(y)y − x

ρ
dy

= hρ−d

∫
∂B(x,ρ)

(∇Tu)(hy)
hy − hx

hρ
dy

= h−d+2ρ−d

∫
∂B(hx,hρ)

(∇Tu)(z)
z − hx

hρ
dz.

On the other hand

λvhρ,hx(u) = (hρ)−d

∫
∂B(hx,hρ)

∇Tu(y)
y − hx

hρ
dy

= h−2λvρ,x(u(h·)),

which again yields the scaling rule (6.6). This rule is slightly different form (6.5) for s = 2

because the functional on the right hand side of (6.6) is the scaled version of that on the

left hand side. In the strong situation, one has a delta functional, and the scaling of the

test function disappears. Here, the scaling in u implies a scaling in v, and vice versa.

However, going to the details shows that the theory given in [4] is applicable for (6.6)

with s = 2.

The scaling rule (6.6) is also very important in computational point of view where for

a scalable approximation the stencil weights are only required to obtain for a fixed scale

number and then divide by h2.

On the other hand, although the authors of [3] consider the derivative functional

λ = δx ◦Dα, their analysis can be easily extended to our local functionals as well.

In the following we assume that Φ(x, y) := ϕ(r) where r = ∥x− y∥2. Also the native

space of Φ is denoted by NΦ with corresponding norm ∥ · ∥NΦ
. We will use the notation

∂α,βΦ(x, y) :=
∂|α|

∂xα

(
∂|β|

∂yβ
Φ(x, y)

)
for brevity. By Sx,Z we mean ∪n

j=1[x, zj] where Z = {z1, . . . , zn} and [x, z] denotes for all

real numbers lying on the line between x and z.

If su,Z is the Φ-interpolant of u on set Z then it can be shown that λ̃u = λsu,Z , allowing

us to use either one as necessary. Now, we have the following theorem form [3] which

gives the error bound on each local stencil.
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Theorem 6.2 Let Φ be a conditionally positive definite kernel of order q on Ω ⊂ Rd,

and let λ be a linear functional of scaling order s which is continuous on NΦ. Further,

assume that Z = {z1, . . . , zn} ⊆ Ω is a Pd
q−1-unisolvent set. Then for any x ∈ Ω such that

Sx,Z ⊆ Ω and any ℓ ⩾ max{q, s + 1} such that ∂α,βΦ ∈ C(Ω × Ω) for all |α|, |β| ⩽ ℓ we

have

|λu(x)− λsu,Z(x)| ⩽ ϱℓ,λ(x, Z)

√
MΦ,ℓ

ℓ!
∥u∥NΦ

for all u ∈ NΦ, where

ϱℓ,λ(x, Z) = sup
{
λp(x) : p ∈ Pd

ℓ , |p(zj)| ⩽ ∥x− zj∥ℓ2, j = 1, . . . , n
}

is the growth function and

M2
Φ,ℓ =

∑
|α|,|β|⩽ℓ

(
ℓ

α

)(
ℓ

β

)
∥∂α,βΦ∥C(Ω×Ω).

Assume that zhj := x + hzj and hZ = {zh1 , . . . , zhn} for any h > 0. Then along the line of

[3] we can show the growth function satisfies

ϱℓ,λ(x, hZ) = hℓ−sϱℓ,λ(x, Z),

where s is the scaling order of λ. Therefore we obtain from Theorem 6.2 for the scaled

centers hZ

|λu(x)− λsu,hZ(x)| ⩽ hℓ−sϱℓ,λ(x, Z)

√
MΦ,ℓ

ℓ!
∥u∥Nϕ

. (6.7)

The stencil weights generated by hZ will not be in general the scaled version of the weights

generated by Z. However, the error bound (6.7) works for both scalable and nonscalable

stencils because we only use the scalability of λ on the right hand side.

We importantly note that in the above error bounds, if Φ is smooth enough, integer ℓ =

ℓmax is the maximal possible order of polynomial unisolvency that set Z (or equivalently

hZ) allows. The stencil may not reproduce any polynomial at all. In additions, the

assumptions on Φ guarantee an enough smoothness to get the maximum rate ℓmax − s

without any limitation from function u ∈ NΦ. To make it more precise, we point that

Davydov and Schaback [4] prove that the approximation of pointwise functionals of order

s of functions in Sobolev space

Hm(Rd) :=
{
f ∈ L2(Rd) : Dαf ∈ L2(Rd), ∀α ∈ Nd

0 with |α| ⩽ m
}

by linear combination of function values can not have a convergence rate better than

m − s − d/2, no matter how many nodes are used and how large ℓ is. They prove that

this rate can be attained by any scalable approximation that are exact on polynomials of
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order at least ⌊m − d/2⌋ + 1. The unique stencil constructed by k = 2m − d > 0 PHS

kernel

Hm,d(r) :=

{
r2m−d log r, 2m− d even

r2m−d, 2m− d odd
(6.8)

by adding polynomials of some order ℓ ≥ ⌊m − d/2⌋ + 1 has optimal convergence rate

m− s− d/2 = k/2− s in Beppo-Levi space

BLm(Rd) :=
{
f ∈ C(Rd) : Dαf ∈ L2(Rd), ∀α ∈ Nd

0 with |α| = m
}
.

The above results of [4] show that this optimal rate will be also realized in Sobolev space

Hm(Rd). We note here that Hm,d are conditionally positive definite of order ⌊m−d/2⌋+1

and have the Beppo–Levi spaces BLm(Rd) as their native spaces. More details can be

found in [40, Chapters 8 and 10]. If ℓ < m − d/2 then the convergence rate in Hm(Rd)

cannot be better than ℓ− s. We refer the reader to [4] for proofs and some more details

including the crucial case ℓ = m− d/2.

Since the approximation via PHS is scalable, one can form the stencil for a fixed set

Z around the origin and then rescale the obtained weights for set hZ by dividing by hs.

This allows avoiding the ill-conditioning of the interpolation matrix for small values of h.

This simple idea was first reported in [15] for a pure interpolation problem with s = 0.

For nonscalable stencils other tricks which are described in section 5 might be used. For

example the RBF-QR or the RBF-GA algorithms can be used when Φ is a Gaussian

kernel.

Authors of [4] prove further that the renormalized weights of an optimal nonscalable

approximation in Sobolev space converge to the weights of a scalable approximation as h

goes to zero. Thus, if Φ hasHm(Rd) as its native space then the unique stencil constructed

by Φ (with or without polynomial reproduction, scalable or nonscalable) is nearly optimal

in Sobolev space Hm(Rd) with approximate rate min{m − s − d/2, ℓmax − s} for small

values of h. For infinitely smooth kernels such as Gaussian, the convergence rates will be

ℓmax − s for smooth functions in their native spaces. However, if that error is measured

for finitely smooth functions in Hm(Rd) then the convergence rate cannot be better than

m− s− d/2, as it is pointed before.

6.2 Stability

We turn to the stability issue by measuring the stability constant CS(A). Despite the

lack of a theoretical bound, Schaback [31] has proposed some numerical estimators for

this constant. For example, in case p = q = 2,

CS(A) =

(
min

1⩽j⩽N
σj

)−1
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for the N positive singular values σ1, . . . , σN of A, and these are obtainable by singular

value decomposition (SVD). Also, the (q, p)-norm of the pseudoinverse of A, defined by

∥A†∥q,p := sup
v ̸=0

∥A†v∥q
∥v∥p

,

overestimates CS(A). Finally, a simple possibility, restricted to square systems, is to use

the fact that MATLAB’s condest command estimates the L1 condition number, which

is the L∞ condition number of the transpose. Thus

C̃S(A) :=
condest(A′)

∥A∥∞

is an estimate of the L∞ norm of A−1. This is computationally very cheap for sparse

matrices and turns out to work fine on the examples in section 7, but an extension to

non-square matrices is missing.

The above postprocessing estimators may give some insight into how the method works

in the numerical stability point of view.

6.3 Eigenvalue stability

For time dependent PDEs, a necessary condition for stability of the Method of Lines

(MOL) is that the eigenvalues of the discretization matrices must be in the stability

domain of the ODE solver used for advancing the system in time. For instance, the

forward time difference scheme for the well-known parabolic equation ut = Lu in Ω ⊂ Rd

with boundary condition u = 0 on Γ and a prescribed nonzero initial condition is

u
(n+1)
Ω = (I +∆tA)u

(n)
Ω

u
(n+1)
Γ = 0

for n = 0, 1, . . . , NT and ∆t = tfinal/NT . Here uΩ and uΓ are vectors of interior and

boundary nodal values, respectively, and u(n) = u(n∆t). A is the differentiation matrix

of operator L. If λ = λ(A) stands for an eigenvalue1 of A, a time stability condition is

|1 + ∆tλ| < 1 which is equivalent to

Re(λ) < 0, (6.9)

∆t < 2
|Re(λ)|
|λ|2

. (6.10)

Unfortunately, there exists no theoretical proof for (6.9) for RBF-FD discretizations. For

strong-based methods, experimental results of [2, 14, 26] and others show that it is satisfied

1Despite the notation in the whole paper that λ (with or without subscripts) is used for functionals,

here λ stands for eigenvalues.
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for some kinds of kernels and point distributions. In other cases, eigenvalues with positive

real parts can cause spurious growth in the numerical solutions of advection-diffusion

equations [5, 6, 8, 33]. This problem might be resolved by adding small vanishing amount

of artificial hyperviscosity (−1)p−1γh∆
pu to the model to gain ut = Lu + (−1)p−1γh∆

pu.

Here γh is a small positive number going rapidly to zero as h (the fill distance) decreases.

In the weak-based method, the hyperviscosity term can be easily applied after a recursively

use of the Gauss divergence theorem to obtain∫
B

∆pu v dx =

∫
B

∆⌈p/2⌉u∆⌊p/2⌋v dx, v ∈ H
2⌊p/2⌋
0 (B), (6.11)

where

Hp
0 (B) :=

{
v ∈ Hp(B) : ∆kv =

∂∆kv

∂n
= 0 on ∂B, for k = 0, 1, . . . ,

p

2
− 1

}
.

In our local bilinear forms on B = B(xk, ρ), any smooth, compactly supported on B and

radial basis function satisfies the boundary conditions in the definition of Hp
0 (B). For

example, the Wendland’s function ϕ3,2(r) := (1− r)6+(35r
2 + 18r+ 3) lies on H5

0 (B(0, 1))

for r = ∥x∥, x ∈ R2, allowing to use v = ϕ3,2(∥ · ∥2) to weaken the hyperviscosity terms

∆pu for p = 1, 2, 3, 4, 5 as in (6.11)2. Of course, reducing to a half-order derivative is

an advantage of the new method when a hyperviscosity term needs to be added. We do

not pursue this further and leave it for a future paper on advection-diffusion problems,

instead we will give some experimental results in section 7.

7 Applications

In this section, first the method is tested on the well-known elliptic problem of Poisson

equation and then an application is given for a two dimensional elasticity problem.

7.1 Poisson equation

Let Ω = (0, 1)2. We are going to examine the proposed numerical scheme for PDEs with

true solutions that lie on Sobolev spaces. Since such solutions are not explicitly at hand,

a manipulated solution is constructed below using the smoothness properties of Sobolev

kernel. Assume {ξ1, . . . , ξn} is a set of points in Ω and define

u(x) :=
n∑

k=1

ckψβ(ε∥x− ξk∥2), x ∈ Ω, ε = 5, (7.1)

for some known coefficients ck, where ψβ(r) = rβ−1Kβ−1(εr), β > 1 is the Sobolev spline of

Table 1 with d = 2. Since the Fourier Transform of Ψ = ψ(∥·∥2) behaves like (1+∥·∥22)−β

2Wendland’s function ϕ3,2(∥ · ∥2) lies actually on Hτ (R2) for all τ < 6.

17



we can prove that Ψ belongs to H t(Ω) for all t < 2β − 1, so does u. We can play with

β to construct various finitely smooth solutions. The right hand side functions f and g

in (2.1)-(2.2) with L = ∆ and B = Id are calculated, accordingly. In experiments we use

{ξ1, . . . , ξ121} random points in Ω and

c̃ = (0.1,−0.2, 0.4, 0.3,−0.1,−0.4, 0.3,−0.5, 0.1, 0.7,−0.4), c = (c̃,−c̃, . . . , c̃,−c̃︸ ︷︷ ︸
11 times

).

The surface and contour plots of this function for β = 1.5 and β = 2 are shown in Figure 1.

Note that, we just use the Sobolev kernel to construct a true solution for the PDE to test

the proposed method. Other kernels (Gaussian and PHS) are used for the approximation

process.

To compute the stencil weights stably and efficiently, the RBF-QR algorithm is used

for Gaussian and the scaling rule (6.6) is employed for PHS. Besides, the experimental

results are obtained via:

• a sequence of regular or Halton point sets X with fill distance h on [0, 1]2 (see Figure

2 for N = 841 and h ≈ 0.036),

• shape parameter ε = 0.1 for Gaussian RBF,

• RBF parameters k = 2, 3, 4, 5, 6, 8 for PHS,

• the radius of local subdomains ρ = c1h where c1 = 0.25,

• the radius of stencils δ = c2h where c2 ⩾ 4 is chosen (per any test point) enough

large to have at least 21 points in each Gaussian stencil and (ℓ+ 2)(ℓ+ 1)/2 points

in PHS stencils where ℓ = ⌊k/2⌋+ 1,

• a 15-point Gauss-Legendre quadrature and its corresponding tensor product rule for

computing the boundary and domain integrals in local bilinear forms λk = aρ,k(·, v)
and local linear forms bk = ℓρ,k(v).

From here on, Gaussian is abbreviated to GA, PHS with parameter k to PHSk, Halton

points to Hpoints and regular points to Rpoints.

First, we run the strong-based and the weak-based algorithms for four cases β = 1.5

(u ∈ H2−(Ω)), β = 2 (u ∈ H3−(Ω)), β = 3 (u ∈ H5−(Ω)) and β = 4 (u ∈ H7−(Ω)) for

comparison. By u ∈ Hτ− we mean u ∈ H t for any t < τ . Results of the absolute errors in

discrete norm infinity (on a fine point set with fill distance h = 1/30) are plotted for GA,

PHS2 and PHS5 in Figures 3, 4 and 5, respectively. Information about parameters and

discussions are appeared in titles and captions of figures. Since PHS2 has a low smoothness

as a basis function, the results of the weak-based method are superior, regardless the

smoothness of true solutions. In other cases (GA and PHS5), where no limitation is
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caused by the smoothness of the basis function itself, for less smooth solutions the new

method works much better while for smooth solutions both methods have approximately

the same rates of convergence. The above results are obtained for scattered Hpoints. In

Figure 6 the results on Rpoints with GA kernel are presented. Comparing with that on

Hpoints, we observe some (slightly) more accurate results for smooth solutions. We omit

the corresponding figures for PHS2 and PHS5 on Rpoints.

The absolute errors in discrete norm infinity (on trial points) of the weak-based RBF-

FD method and the classical five-point FD method are compared in Figure 7. We have

to use only Rpoints in this experiment because the classical FD method does not work

on arbitrary scattered points. Since the native space of PHSk, k even, is BLk/2+1(R2),

the true solution u ∈ H5−(Ω) is chosen for k = 2, 4, 6, 8. For these choices of k the native

space BLk/2+1(R2) is a subset of H5−(R2). As is shown in Figure 7, classical FD is more

accurate than RBF-FD with PHS2 while it is less accurate than RBF-FD with other PHS

kernels. The average computational order of convergence of the classical FD is 1.85 while

it is 0.13, 1.56, 2.00 and 2.68 for PHSk for k = 2, 4, 6 and 8, respectively. Remember

that polynomials of orders q = 2, 3, 4, 5 need to be added to the PHSk expansion for

k = 2, 4, 6, 8, respectively.

The effect of shape parameter ε of GA on accuracy is shown in Figure 8 where the

absolute norm infinity of errors are plotted in terms of ε values for true solution u ∈
H7−(Ω). Smaller values of ε (values between 10−3 and 1.0) produce approximately the

same results while bigger values fail to give a desirable accuracy. All other GA numerical

experiments of this paper are obtained with ε = 0.1.

To analyze the effect of the smoothness of true solutions, in Figure 9 the results of the

weak-based method for various β values are compared on Rpoints with GA kernel. In this

case, stencils contain, at least, 21 points which is corresponded to polynomial consistency

of order ℓ = 6 in R2. As we see, for less smooth solutions the rate of convergence is

controlled by the smoothness of u which is increased as β increases until touching the

maximum polynomial consistency order ℓ. Thereafter, the higher smoothness dose not

essentially improve the convergence rate; it remain at ℓ− s = ℓ− 2 ≈ 4.

In Figure 10 the stability constants CS and C̃S of the new method are plotted in terms

of h. These constants measure the conditioning of the final linear system (4.4) which is

different from the conditioning of local problems (4.2) or (4.3) which were improved by

either the RBF-QR algorithm for GA or the scaling property for PHS. As expected, the

method possesses an excellent stability as well as any sparse FD scheme. The (approx-

imately) same stability results are obtained for the strong-based method which are not

given here.

Figures 11, 12 and 13 show the spectrum of the discrete Laplacian for PHS2, PHS6

and GA kernels, respectively, on 841 Rpoints (left profiles) and Hpoints (right profiles).

In all cases, except that of GA on Hpoints, eigenvalues all fall in the left half plane. While

not presented here, similar behaviours were obtained for other PHS kernels and various
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values of N .

As shown in Figure 13 (right side), in the case of GA on Hpoints, few eigenvalues have

positive real parts. As discussed in section 6.3, the hyperviscosity stabilization procedure

can be used for shifting the eigenvalues to the left half plane without a reduction in

accuracy. Results are rather sensitive to the choice of both hyperviscosity order p and

hyperviscosity amount γh. Some criteria are given in [33] for strong-based methods. Here

we apply the hyperviscosity term ∆5u, weaken it according to (6.11) and discretize it

by PHS9 kernel. Values γh = O(h12) seem to give convincing results in this case. The

spectrum of the differentiation matrix on 841 Hpoints is given in Figure 14. As we see,

all eigenvalues now lie on the left half plane. However, a more deep investigation on

hyperviscosity stabilization of weak-based method is required that we leave it for a future

study.

7.2 Elasticity problem

Let Ω ⊂ R2 is a bounded domain with boundary Γ. In a tensorial notation, we consider

the following two dimensional elasto-static problem

σij,j + fi = 0, in Ω, (7.2)

where [σ11, σ22, σ12]
T =: σ is the stress tensor, which corresponds to the displacement field

[u1, u2]
T =: u, and [f1, f2]

T =: f is the body force. In the above formulation σ = DLu

where the derivative matrix L is defined as

L =

 ∂
∂x1 0

0 ∂
∂x2

∂
∂x2

∂
∂x1


and for a problem of isotropic material, the stress-strain matrix D is defined by

D =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

 ,
where

E =

{
E for plane stress
E

1−ν2
for plane strain

ν =

{
ν for plane stress
ν

1−ν
for plane strain

,

in which E and ν are Young’s modulus and Poisson’s ratio, respectively. The correspond-

ing boundary conditions for (7.2) are given by

ui = ui, on Γu,

ti = σijnj = ti, on Γt,
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where [u1, u2]
T =: u and [t1, t2]

T =: t are the prescribed displacement and traction,

respectively, and [n1, n2]
T =: n is the unit outward normal to the boundary Γ = Γu ∪ Γt.

Taking integration with respect to the spatial variable from both sides of equation

(7.2) against a proper test function v and then applying the Gauss divergence theorem,

the local weak forms∫
∂B(xk,ρ)

vNDLudx−
∫
B(xk,ρ)

εvDLudx =

∫
B(xk,ρ)

fv dx, ρ > 0 (7.3)

are derived for k = 1, 2, . . . , nX where nX is the number of points inside Ω, and

N =

[
n1 0 n2

0 n2 n1

]
, εv =

[
v,1 0 v,2
0 v,2 v,1

]
.

The boundary conditions may be imposed using a proper collocation method by defining

the identity functional

λku := u(yk) yk ∈ Γu

for essential boundary conditions and

λku := (NDLu)(yk), yk ∈ Γt

for traction boundary conditions. On the other side, we define for internal points xk,

λku := −
∫
B(xk,ρ)

εvDLudx+

∫
∂B(xk,ρ)

vNDLudx.

The right hand side is defined accordingly by

bk =


u(yk), yk ∈ Γu

t(yk), yk ∈ Γt∫
B(xk,ρ)

fvdx, xk ∈ int(Ω)

to finally get the following abstract functional forms

λku = bk, k = 1, 2, . . . , N.

The problem takes the appropriate form for applying the RBF-FD method. We omit the

implementation details and just give the results of a benchmark problem in 2D elasticity.

Consider an infinite plate with a central hole (x1)2 + (x2)2 ⩽ a2 of radius a, subjected

to a unidirectional tensile load of σ0 = 1 in the x1-direction at infinity [35]. There is an

analytical solution for stress in the polar coordinate (r, θ)

σ11 =σ0

[
1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3a4

2r4
cos 4θ

]
,

σ12 =σ0

[
−a

2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3a4

2r4
sin 4θ

]
,

σ22 =σ0

[
−a

2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3a4

2r4
cos 4θ

]
,
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with the corresponding displacements

u1 =
1 + ν

E
σ0

[
1

1 + ν
r cos θ +

2

1 + ν

a2

r
cos θ +

1

2

a2

r
cos 3θ − 1

2

a4

r3
cos 3θ

]
,

u2 =
1 + ν

E
σ0

[
−ν
1 + ν

r sin θ − 1− ν

1 + ν

a2

r
sin θ +

1

2

a2

r
sin 3θ − 1

2

a4

r3
sin 3θ

]
.

In computations we consider a finite plate, a disk of radius b = 4 with a circular hole of

radius a = 1, where the solution is very close to that of the infinite plate [35]. Due to

symmetry, only the upper right quadrant of the plate, as is shown with a set of 990 points

in Figure 15, is modelled. The traction boundary conditions given by the exact solution

are imposed on the outer circular boundary. Symmetry conditions are imposed on the left

and bottom edges, i.e., u1 = 0, t2 = 0 are prescribed on the left edge and u2 = 0, t1 = 0

on the bottom edge, and the inner boundary at a = 1 is traction free, i.e. t1 = t2 = 0.

Numerical results are presented for a plane stress case with E = 1.0 and ν = 0.25.

The GA basis function and a sequence of sets points X of sizes N = 81, 272, 990, 3770

with fill distances h ≈ 0.2, 0.1, 0.05, 0.025, where the third set is depicted in Figure 15,

are used in this example. We use a finer discretization near the inner circle because the

most action of the problem takes place there. This will send the distribution of points out

of the quasi-uniformity. However, our localized meshless method still works properly. The

same integration rule as that is used in the previous example is employed here. Results

of the relative discrete 2-norm errors (at a very fine set points) of the displacement field

and normal/shear stresses are shown in Figure 16. Since both displacement field and its

derivatives are smooth, the rates are determined by the maximum order of polynomial

recovery that stencil points allow; here ℓ− 2 = 4. Moreover, the exact normal stress σ11
at x1 = 0 is compared with the numerical solution (by using the set point in Figure 15)

in Figure 17.

8 Conclusion

In this paper, a new weak-based RBF-generated finite difference method is proposed. The

PDE and its boundary conditions are discretized to a set of testing functionals consisting

of local weak forms. The stencil weights for approximating the local functionals are

obtained by a local RBF approximation method. The convergence properties and the

stability issues are considered and some useful features of the method are outlined. In

particular, the method can be applied on problems with low smooth solutions. Also,

lower derivatives of the RBF space are required. Some experimental results are given to

illustrate the performance of the new method. Although we believe that the method can

be applied to a large class of PDE problems in engineering and sciences, an application

to time-dependent PDEs still needs more considerations. In subsection 6.3, an eigenvalue
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analysis for the time stability is discussed and in section 7 some experimental results are

given. However, theoretical or (at least) experimental investigations are still required to

estimate the amount of hyperviscosity and to show the effect of the degree of polynomials

in PHS kernels. These are left for a future study.
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Figure 1: Exact solutions defined in (7.1) for two values β = 1.5 (left) and β = 2 (right).

Figure 2: Regular (left) and Halton (right) points (N = 841).
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Figure 3: Comparing the absolute errors (discrete norm infinity) of the strong- and the weak-

based methods for various true solutions of different smoothness; GA on Halton points.
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Figure 4: Comparing the absolute errors (discrete norm infinity) of the strong- and the weak-

based methods for various true solutions of different smoothness; PHS2 on Halton points.
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Figure 5: Comparing the absolute errors (discrete norm infinity) of the strong- and the weak-

based methods for various true solutions of different smoothness; PHS5 on Halton points.
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Figure 6: Comparing the absolute errors (discrete norm infinity) of the strong- and the weak-

based methods for various true solutions of different smoothness; GA on regular points.

Figure 7: Comparing the absolute errors (discrete norm infinity) of the classical five-point star

FD method with the weak-based RBF-FD method on regular points.
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Figure 8: Absolute errors of the weak-based method as a function of ε using GA kernel on two

Halton sets.

Figure 9: Convergence rates with respect to the smoothness of true solutions: the weak-based

method with GA on regular points.
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Figure 10: The growth of the stability constants CS(A) and C̃S(A) in terms of h; A is the final

matrix in (4.4).

Figure 11: Spectrum of the discrete Laplacian by PHS2 kernel; regular (left) and Halton (right)

points.

Figure 12: Spectrum of the discrete Laplacian by PHS6 kernel; regular (left) and Halton (right)

points.
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Figure 13: Spectrum of the discrete Laplacian by GA; regular (left) and Halton (right) points.

Few eigenvalues have positive real parts on Halton points.

Figure 14: Spectrum of the discrete form of ∆ + γh∆
5 where the Laplacian term is discretized

by GA and the hyperviscosity term by PHS9; Halton points.
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Figure 15: The computational domain of the elasticity problem and a set of 990 points.

Figure 16: The relative discrete 2-norm errors of the displacement field (left) and normal/shear

stresses (right) at different h levels.
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Figure 17: The exact normal stress σ11 at x1 = 0 compared with the numerical solution.
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