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Abstract

This paper concerns a numerical solution for the diffusion equation on the unit sphere.
The given method is based on the spherical basis function (SBF) approximation and the
Petrov-Galerkin test discretization. The method is meshless because spherical triangula-
tion is not required neither for approximation nor for numerical integration. This feature
is achieved through the SBF approximation and the use of local weak forms instead of a
global variational formulation. The local Petrov-Galerkin formulation allows to compute
the integrals on small independent spherical caps without any dependence on a connected
background mesh. Experimental results show the accuracy and the efficiency of the new
method.

Keywords: Spherical basis functions, Radial basis functions, Meshless methods, Petrov-
Galerkin method, Diffusion on the sphere.

1 Introduction

A popular and interesting tool in computational sciences, which has received a lot of
attention from researchers in recent years, is the meshless method that is based on dis-
cretizing a continuum by a set of nodal points without any mesh constraints. Some
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examples of meshless approximation methods are the moving least squares (MLS), de-
veloped by Lancaster and Salkauskas [18] after the initial work of Shepard [40], and the
kernels –in particular the radial basis functions (RBF)– introduced (in some special cases)
by Hardy [11] and Harder and Desmarais [10]. Both of these approximation techniques
are extensively used in various fields of computational sciences and engineering. In par-
ticular, some meshless methods based on the MLS and the RBF approximations have
been developed for solving partial differential equations (PDEs) after the leading papers
by Kansa [16, 17] on the RBF collocation and Belytschko et. al. [4] on the MLS-based
Galerkin methods. As some, we can mention the symmetric collocation method [32, 46],
the Galerkin RBF method [43], the meshless local Petrov-Galerkin (MLPG) method [3],
the direct meshless local Petrov-Galerkin (DMLPG) method [26], and etc. In a point of
view, these methods are alternatives to some mesh-based methods such as finite elements
and finite volume methods because they do not rely on a predefined and connected tri-
angulation. Instead, meshless methods write the unknown solution in terms of scattered
nodes. Being independent from the dimension, working on more complicated geometries
and easily adapting with smoothness are some important advantages of the RBF based
meshless methods.

When the underlying domain (for pure approximation or PDE solution) is a non-planar
submanifold (a general surface), the kernel based methods become much superior because
mesh generation and mesh refinement on such domains are absolutely non trivial. While,
working with scattered points is obviously simpler.

The unit sphere is an example of a surface domain for problems from various mathe-
matical modelings such as a physical modeling in a geodesic region. Usually, such models
lead to a PDE problem on the whole surface of the sphere. Approximation theory on the
unit sphere has a rather long history in the context of meshless methods. Positive definite
kernels on the sphere were already characterized by Schoenberg [38] many years ago, but
the issue to determine what kind of positive definite kernels are actually strictly positive
definite was initiated by Xu and Cheney [47] and continued by [5,8,34,39]. These kernels
are called spherical basis functions (SBF). Also, error estimates of scattered data inter-
polation on spheres are given in [15]. Approximation by zonal basis functions and error
estimates were studied in [13, 14, 33]. Sampling inequalities were proved in [9, 21]. SBFs
were also applied successfully for PDE problems on the sphere [7, 19, 20, 22, 24, 29, 30].
In particular, in [24] a SBF based method in combination with a Petrov-Galerkin test
discretization was proposed for solving spherical PDEs. The idea of local Petrov-Galerkin
method dates back to [2, 3] for solving problems in solid mechanics. The combination
with RBFs in Euclidean spaces can be found in [35, 37, 41]. In this paper we extend the
method of [24] for solving diffusion problems on the sphere.

SBF approximation is not the only meshless tool for spherical problems. Wendland
in [44] developed the MLS method for approximating the real-valued functions defined on
spheres. For solving a spherical PDE by MLS, the PDE operator should act on compli-
cated spherical MLS shape functions. Recently, in [23] a generalized MLS approximation
was introduced to approximate differential operators on the sphere and hence to solve
spherical PDEs. For a recent application see [6].

This paper is organized as follows. Approximation by kernels on the sphere and
some related definitions are stated in section 2. In section 3, some results on differential
operators on the sphere are reviewed. The extension of the Petrov-Galerkin method for
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diffusion problems is given in section 4, and the stability of the time integration method
is discussed in section 5. Finally, in section 6, some test examples are given to show the
efficiency of the proposed method.

2 Kernels on Spheres

Consider the Euclidean space Rd+1 and let Sd for d ≥ 1 be the unit sphere in Rd+1 i.e.,

Sd = {x ∈ Rd+1 : ‖x‖2
2 := xTx = 1}.

The geodesic distance between two points x, ξ ∈ Sd which is denoted by dist(x, ξ), is the
shortest curve on Sd connecting these points and is defined as

dist(x, ξ) = cos−1(xTξ).

The spherical cap with radius δ ∈ (0, π) and center x on Sd is defined as

Cδ(x) = {ξ ∈ Sd : dist(x, ξ) ≤ δ}. (2.1)

Spherical harmonics play the role of polynomials on Sd which are very important for
analysis and approximation theory on Sd. The space of spherical harmonics of degree ` is
the restriction of the space of all harmonic and homogeneous polynomials of degree ` on
Rd+1 to Sd and denoted by H`(Sd). The dimension of H`(Sd) can be obtained as

N(d, `) =

{
1 ` = 0,

(2`+d−1)Γ(`+d−1)
Γ(`+1)Γ(d)

` ≥ 0,

where Γ is the Gamma function. The space of spherical harmonics of order at most n
then is defined as

Pn(Sd) :=
n⊕
`=0

H`(Sd),

which is of dimension N(d+ 1, n). The corresponding orthonormal basis for Pn(Sd) is

{Y`k, ` = 1, 2, . . . , n, k = 1, 2, . . . , N(d, `)},

with the following orthonormal property∫
Sd
Yij(x)Y`k(x) dx = δi`δjk.

In additions, the spherical harmonics Y`k are eigenfunctions of the Laplace-Beltrami op-
erator ∆∗ (see the next section) in the sense that

∆∗Y`k − λ`Y`k = 0, λ` = −`(`+ d− 1), k = 1, 2, . . . , N(d, `), ` = 0, 1, 2, . . . , (2.2)

where λ` is the eigenvalue of Laplace-Beltrami operator corresponding to eigenfunction
Y`k. So, a function f ∈ L2(Sd) can be expanded in terms of spherical harmonics as

f(x) =
∞∑
`=0

N(d,`)∑
k=1

f̂`kY`k(x), f̂`k = 〈f, Y`k〉L2(Sd).
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Kernels are a powerful tool for approximation on spheres. By a kernel we mean a
function Φ : Sd × Sd → R which is at least continuous in both its arguments. Assume
that a set of scattered points X = {x1,x2, . . . ,xN} ⊂ Sd and values u1, u2, . . . , uN ∈ R
are given. The kernel interpolant sX of this data is coming from the data-dependent
approximation space

VX,Φ := span{Φ(·,x1),Φ(·,x2), . . . ,Φ(·,xN)}.

If sX is expanded as

sX(x) =
N∑
j=1

cjΦ(x,xj)

and the interpolation constrains sX(xk) = u(xk), k = 1, . . . , N are imposed, then the
linear system

Ac = u, (2.3)

is resulted where Akj = Φ(xk,xj) for k, j = 1, . . . , N , and u = (u(x1), . . . , u(xN))T . For
any choice of set of points X on Sd the interpolation matrix A is positive definite provided
that Φ is a positive definite kernel on Sd.

We are interested in spherical kernels of the form

Φ(x,y) =
∞∑
`=0

N(d,`)∑
k=1

φ̂`Y` k(x)Y` k(y) (2.4)

for positive Fourier coefficients φ̂`. Although the intrinsic positive definite kernels on Sd
are well studied and have a rather long history in mathematics [38,45,47], in this paper we
use the restriction of positive definite kernels from Rd+1 to Sd. The restriction of a positive
definite kernel from Rd+1 to any embedded submanifold M ⊂ Rd+1 is a simple way for
obtaining a positive definite kernel on M. It is clear that if the original kernel is positive
definite, so its restriction to the submanifold is. There exist some other issues, such as
corresponding kernel spaces and approximation properties of the restricted kernels on the
submanifold that come up with this approach. The case M = Sd has been studied in [31],
while the general case has been investigated in [9]. Before all, a variation of compactly
supported RBFs of Wendland’s type on the sphere was introduced in [33].

If the original kernel on Rd+1 is a radial function, i.e. it is a univariate function of
Euclidian distance ‖x−ξ‖2 then the restricted kernel is a univariate function of xTξ. The

reason is clear, because for x, ξ ∈ Sd we have ‖x − ξ‖2 =
√

2− 2xTξ. A kernel Φ(x, ξ)
on Sd for which there exists a univariate and continuous function ψ : [−1, 1] → R such
that Φ(x, ξ) = ψ(xTξ) is called a zonal kernel. The value of a zonal kernel depends only
to the angle between to vectors x and ξ.

3 Differential operators on spheres

In this section we briefly review the surface gradient and Laplacian operators which play
an important role in diffusion and advection models on the sphere.
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The Laplace-Beltrami operator ∆∗ is the spherical part of the Euclidean Laplace op-
erator ∆. In fact, in the spherical-polar coordinated we have

∆ =
∂

∂r2
+
d

r

∂

∂r
+

1

r2
∆∗,

where ∆∗ is independent of derivatives with respect to r. For example on S2 in spherical
coordinates (θ, φ, r)

∆∗ =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
.

Laplace-Beltrami can also be expressed in extrinsic (or Cartesian) coordinates. Here we
again restrict ourselves to case d = 2, because the extension to other dimensions and even
other smooth embedded sub-manifolds will be obvious. For x = (x, y, z) ∈ S2 denotes
the unit normal vector to S2 at x by n(x) = n = (nx, ny, nz)T . Obviously on S2 we have
n(x) = x. We define Π := I3×3 − nnT which projects vectors in R3 to space of tangent
vectors to S2 at x. Then, the surface gradient on S2 at x is defined as

∇∗ := Π∇ = (I3×3 − nnT )∇ = (I3×3 − xxT )∇,

where ∇ is the usual gradient in R3 and I3×3 is the identity matrix of size 3. In an
extensive form ∇∗ at x ∈ S2 is written as

∇∗ =


(1− x2)

∂

∂x
− xy ∂

∂y
− xz ∂

∂z

−xy ∂
∂x

+ (1− y2)
∂

∂y
− yz ∂

∂z

−xz ∂
∂x
− yz ∂

∂y
+ (1− z2)

∂

∂z

 =:

 GxGy
Gz

 , (3.5)

and the surface divergence of a vector field v = (vx, vy, vz) : S2 → R3 at x ∈ S2 is
expressed as

∇∗ · v = Gxvx + Gyvy + Gzvz.
Now the Laplace-Beltrami operator ∆∗ can be define as

∆∗ := ∇∗ · ∇∗ = GxGx + GyGy + GzGz.

If the involved functions are zonal then the expressions become rather simpler. Assume
Φ : S2 × S2 → R is a zonal function that means there exists a continuous function
ψ : [−1, 1]→ R such that

Φ(x, ξ) = ψ(s), s = xTξ, x, ξ ∈ S2.

If we fix ξ = (ξ, η, ζ) and differentiate with respect to x = (x, y, z) then

∂Φ

∂x
(x, ξ) = ξψ′(s),

∂Φ

∂y
(x, ξ) = ηψ′(s),

∂Φ

∂z
(x, ξ) = ζψ′(s).

Using the definition of Gx, Gx and Gz in (3.5) we have

GxΦ(x, ξ) = [1− x2,−xy,−xz]Tξψ′(s) = ξ − xsψ′(s)
GyΦ(x, ξ) = [−xy, 1− y2,−yz]Tξψ′(s) = η − ysψ′(s)
GzΦ(x, ξ) = [−xz,−yz, 1− z2]Tξψ′(s) = ζ − zsψ′(s),
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that simply give
∇∗Φ(x, ξ) = ξ − sψ′(s)x, s = xTξ. (3.6)

If we proceed with the same argument we would have

∆∗Φ(x, ξ) = ((1− s2)ψ′(s))′, s = xTξ. (3.7)

Obviously ′ represents the differentiation with respect to s.
Finally we note that the Green-Beltrami identity on Sd [1] leads to∫

Sd
v(x)∆∗u(x) dx = −

∫
Sd
∇∗v(x) · ∇∗u(x) dx (3.8)

for u ∈ H2(Sd) and v ∈ H1(Sd). This will be important in the sequel for constructing a
Petrov-Galerkin test discretization for the spherical PDE of this paper.

4 The Petrov-Galerkin method

Consider the diffusion equation

∂u

∂t
(x, t) = κ∆∗u(x, t) + f(x, t), x ∈ Sd, t > 0, (4.9)

with the initial condition

u(x, 0) = u0(x), x ∈ Sd,

for the given diffusion constant κ, initial function u0 and the source function f . Although
we only consider the above equation, the method of this paper can be easily extended for
other time dependent spherical PDEs such as advection-diffusion problems. This method
has been originally proposed in [24] and uses the idea of local Petrov-Galerkin methods [3]
in Euclidian spaces.

Consider a set of scattered points X = {x1, . . . ,xN} ⊂ Sd and let ϑ(x,y) be a
compactly supported positive definite kernel with a support on spherical cap Cδ(y) where
δ ∈ (0, π). Integrating (4.9) against test functions ϑ(·,xk), k = 1, . . . , N and applying the
divergence theorem (3.8) yield

d

dt

∫
Sd
u(x, t)ϑ(x,xk)dx+κ

∫
Sd
∇∗u(x, t) ·∇∗ϑ(x,xk)dx =

∫
Sd
f(x, t)ϑ(x,xk)dx, (4.10)

for k = 1, . . . , N . Since ϑ(·,xk) are assumed to be compactly supported on caps Cδ(xk),
the integrations on whole Sd can of course be replaced by local integrations on Cδ(xk).
This is a local Petrov-Galerkin test discretization which leads to a semi-discrete system
of equations. The discretization in spatial domain will be completed by approximating u
in kernel space VX,Φ via

u(x, t) ≈ uX(x, t) =
N∑
j=1

cj(t)Φ(x,xj), (4.11)
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for another positive definite kernel Φ on Sd. Substituting uX instead of u into (4.10) then
gives

M ċ(t) = Sc(t) + f(t), (4.12)

for mass and stiffness matrices

Mkj =

∫
Cδ(xk)

Φ(x,xj)ϑ(x,xk)dx, (4.13)

Skj = −κ
∫
Cδ(xk)

∇∗Φ(x,xj) · ∇∗ϑ(x,xk)dx, (4.14)

and source vector

fk(t) =

∫
Cδ(xk)

f(x, t)ϑ(x,xk)dx,

for k, j = 1, . . . , N . ċ(t) denotes the first derivative of the vector c(t) with respect to the
time variable. We need a numerical integration formula on spherical caps. Recently, a class
of quadratures with degree of polynomial (spherical harmonics) exactness for numerical
integration over spherical caps on S2 is presented in [12]. According to the following
lemma, these quadratures are only required to be constructed for north cap Cδ([0, 0, 1])
and then rotate to other caps of the same radius.

Lemma 4.1. (see [12]) Let Cδ(x0) ⊂ Sd be the spherical cap with center x0 ∈ Sd and
radius δ ∈ (0, π). Let QCδ(x 0),n, given by

QCδ(x 0),n(f) :=
n∑
j=1

wjf(zj) ≈
∫
Cδ(x 0)

f(x)dx, f ∈ C(Cδ(x0)),

where z1, z2, . . . ,zn ∈ Cδ(x0) and w1, w2, . . . , wn ∈ R, be a rule for numerical integration
over the spherical cap Cδ(x0) that is exact on Pn(Cδ(x0)). Let Cδ(x′0) ⊂ Sd be another
spherical cap with center x′0 ∈ Sd and the same radius δ, and let R denotes any rotation
on Rd+1 such that x′0 = Rx0. Then the rule QCδ(x 0),n, defined by

QCδ(x′0),n(f) :=
n∑
j=1

wjf(Rzj), f ∈ C(Cδ(x′0)),

is a rule for numerical integration over Cδ(x′0), with nodes Rz1, Rz2, . . . , Rzn ∈ Cδ(x′0).

Remark 4.2. Using the change of variables x = (
√

1− τ 2 cos θ,
√

1− τ 2 sin θ, τ) for τ ∈
[−1, 1] and θ ∈ [0, 2π] we simply have∫

Cδ([0,0,1])

f(x)dx =

∫ 2π

0

∫ 1

cos δ

F (τ, θ)dτ dθ, (4.15)

allowing to use any available quadrature rules for both τ and θ directions on the right-hand
side. In numerical examples of section 6 we use the Gauss-Legendre quadrature in both τ
and θ variables.

7



Coming back to (4.12), this is a linear system of first order initial value problems
that can be solved by various time integration methods. We will analyze the Crank-
Nicolson and the fully implicit methods. In numerical results, for some comparisons, we
may use the explicit 4th order Runge-Kutta (RK4) and the implicit 4th order backward
differentiation formula (BDF4) schemes. For time stabilities the properties of mass and
stiffness matrices M and S are important. In [24] it is proved that if the test kernel ϑ is
zonal then both mass and stiffness integrals take a convolution form on the sphere and if,
in addition, both Φ and ϑ are positive definite kernels then M and −S are positive definite
matrices. The Petrov-Galerkin method in bounded Euclidean domains is usually known
as an unsymmetric method. But thanks to the symmetrical properties of the sphere and
the test and the trial kernels, the method of this paper produces symmetric matrices for
symmetric PDE operators. For instance, for kernel Ψ corresponding to the matrix M , we
may write

Ψ(z,y) =

∫
Cδ(z)

Φ(x,y)ϑ(x, z)dx =

∫
Sd

Φ(x,y)ϑ(x, z)dx

=

∫
Sd

( ∞∑
`=0

N(d,`)∑
k=1

φ̂`Y` k(x)Y` k(y)
)( ∞∑

`′=0

N(d,`′)∑
k′=1

θ̂`′Y`′ k′(x)Y`′ k′(z)
)
dx

=
∞∑
`=0

N(d,`)∑
k=1

∞∑
`′=0

N(d,`′)∑
k′=1

φ̂`θ̂`′Y` k(y)Y`′ k′(z)

∫
Sd
Y` k(x)Y`′ k′(x)dx

=
∞∑
`=0

N(d,`)∑
k=1

∞∑
`′=0

N(d,`′)∑
k′=1

φ̂`θ̂`′Y` k(y)Y`′ k′(z)δ` `′δk k′

=
∞∑
`=0

N(d,`)∑
k=1

φ̂`θ̂`Y` k(y)Y` k(z).

This shows that Ψ(y, z) = Ψ(z,y) and thusM is a symmetric matrix. The same argument
is true for the matrix S, since by using (2.2) we have

−∆∗Φ(x,y) =
∞∑
`=0

N(d,`)∑
k=1

φ̂``(`+ d− 1)Y` k(x)Y` k(y).

There exists another issue concerning the size of local caps Cδ(xk) in the above Petrov-
Galerkin method. Two strategies are described in [24] for choosing δ. Let hX,Sd be the
fill distance of points in X defined by

hX,Sd := sup
x∈Sd

min
1≤j≤N

dist(x,xj).

If δ is chosen to be proportional to hX,Sd , i.e. δ = ccaphX,Sd for a constant ccap, then
the method is called the stationary Petrov-Galerkin. While the nonstationary Petrov-
Galerkin method addresses the case δ = ccap for a constant ccap ∈ (0, π). Theoretical and
numerical results of [24] show that the stationary method has no significant advantage
over the collocation method. This is the reason why we only use the nonstationary
method in numerical results of section 6.
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We will compare the method of this paper with the classical collocation method that
is briefly discussed here. The numerical solution uX in (4.11) could be determined by
collocating (4.9) in trial points X as

N∑
j=1

dcj(t)

dt
Φ(xk,xj) = κ

N∑
j=1

cj(t)∆∗Φ(xk,xj) + f(xk, t), k = 1, . . . , N, t > 0, (4.16)

which yields a linear system same as (4.12) with the following stiffness and mass matrices

Mkj = Φ(xk,xj),

Skj = κ∆∗Φ(xk,xj), k, j = 1, 2, . . . , N, (4.17)

and the source vector
fk(t) = f(xk, t), k = 1, 2, . . . , N.

Both collocation matrices M and −S are positive definite [25].

5 Stability of time integration

Using the Crank-Nicolson scheme for (4.12) we get

M
cn+1 − cn

∆t
=

1

2
S
(
cn+1 + cn

)
+

1

2

(
fn + fn+1

)
,

where cn and fn are the values of the coefficient vectors c(t) and f(t) at n’th time level.
This yields

cn+1 =
(
I − ∆t

2
M−1S

)−1
((
I +

∆t

2
M−1S

)
cn +

1

2
∆tM−1

(
fn + fn+1

))
, (5.18)

where I is the identity matrix.

Remark 5.1. Recall that in [24] it is proved that both matrices −S and M which are
corresponded to the Laplace-Beltrami and identity operators, respectively, are positive def-
inite. This implies that I − ∆t

2
M−1S is positive definite with eigenvalues all bigger than

1. In particular, the inverse matrix in (5.18) exists.

The L2 stability is resulted if∣∣∣λ((I − ∆t

2
M−1S

)−1(
I +

∆t

2
M−1S

))∣∣∣ =

∣∣∣∣1 + ∆t
2
λ
(
M−1S

)
1− ∆t

2
λ
(
M−1S

)∣∣∣∣ ≤ 1,

or, equivalently

−1 ≤
1 + ∆t

2
λ
(
M−1S

)
1− ∆t

2
λ
(
M−1S

) ≤ 1, (5.19)

where λ(A) stands for any eigenvalue of matrix A. According to Remark 5.1, (5.19) is sat-
isfied regardless of the size of time step ∆t. This proves that the scheme is unconditionally
stable.
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The fully implicit time integration can also be used as

M
cn+1 − cn

∆t
= Scn+1 + fn+1.

A similar eigenvalue analysis gives

−1 ≤
1 + ∆tλ

(
M−1S

)
1−∆tλ

(
M−1S

) ≤ 1.

which means that this method is also unconditionally stable.

Remark 5.2. For the nonstationary Petrov-Galerkin method on quasi-uniform points, as

is proved in [24], for a trial kernel Φ with Fourier coefficients φ̂`, and a test kernel ϑ

with Fourier coefficients θ̂` that decay at infinity as φ̂` ∼ (1 + `)−2σ and θ̂` ∼ (1 + `)−2µ,
respectively, the spatial error bound

‖u− uX‖Hβ(Sd) 6 Chγ−β
X,Sd‖u‖Hγ(Sd),

holds for all u ∈ Hγ(Sd), where γ > d/2, γ ≥ 2, γ ≤ 2 + 2σ − 2µ, and 0 ≤ β ≤ γ.
Here, Hγ(Sd) stands for the Sobolev space of order γ on Sd. If an unconditionally stable
time integration method of order (∆t)k is employed for the diffusion equation, the order
of convergence O((∆t)k, hγ

X,Sd) should be obtained provided that the error is measured in

the L2 norm. Note that, since the solution of the diffusion equation is smoothed out after
a time instance, the full order hγ

X,Sd for γ = 2 + 2σ − 2µ should be attained regardless of

the smoothness of the initial heat profile.

6 Numerical Examples

Algorithms are implemented in MATLAB and executed on a machine with an Intel Core
i7 processor, 4.00 GHz and 16 GB RAM. In experiments we use the restricted compactly
supported Wendland’s function

φ3,1(r) = (1− r)4
+(4r + 1), r = ‖x‖2, x ∈ R3

on S2 as a test kernel to define ϑ(x,y) = φ3,1(
√

2− 2xTy) =: υ(s) for s = xTy. The
radius of local spherical caps (support size of test functions) is fixed at δ = 0.1 in all
experiments which addresses the nonstationary Petrov-Galerkin method. Different types
(globally or compactly supported) of restricted positive definite functions can be employed
as trial kernels. Here, the globally supported Matérn’s functions

φ(r) = φ2.5(r) = exp(−r)(1 + r),

φ(r) = φ3.5(r) = exp(−r)(3 + 3r + r2),

and the compactly supported Wendland’s function

φ(r) = φ3,2(r) = (1− r)6
+(35r2 + 18r + 3),
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for r = ‖x‖2 and x ∈ R3, are used to define the zonal kernels

Φ(x, ξ) = φ(
√

2− 2xTξ).

In experiments we use φ(εr) where ε is the shape parameter. For the compactly supported
function, 1/ε defines the size of the SBF support. Although numerical results are affected
by ε, we do not aim to numerically optimize this parameter. In experiments, we use
ε = 1, 5, 7 for φ3,2, φ2.5 and φ3.5, respectively. Quasi-uniformly scattered points on S2 are
obtained by the equal area partitioning algorithm of [36]. Figure 1 shows sets of N = 500
and N = 1500 points generated by this algorithm.

Figure 1: The unit sphere with 500 (left) and 1500 (right) quasi-uniform scattered points.

For numerical integration on spherical caps, as is discussed in Remark 4.2, we use
80 = 8× 10 Gauss-Legendre points in τ and θ variables, respectively.

For comparison, in some examples the results of both collocation and nonstationary
Petrov-Galerkin methods are reported. Since the trial points are quasi-uniformly dis-
tributed on S2, the numerical convergence orders are computed via

log

(
errorold

errornew

)/
log

(√
Nnew

Nold

)
.

The approximate orders are obtained by the linear least squares fitting to error values in
terms of hX,S2 in the logarithmic scale. Since h = O(N−1/2), we plot the errors and the

stability numbers vs.
√
N . All convergence plots are on a log-log scale.

In the time domain, the backward Euler (BDF1) and the Crank-Nicolson (CN) schemes
are used in almost all experiments. However, for comparison with higher order schemes,
we also employ the 4th order Runge-Kutta method (RK4) and the 4th order backward
differentiation formula (BDF4). The RK4 scheme is an explicit formula with a small
stability region, while the BDF4 is an implicit scheme with a relatively large stability
region. Time steps ∆t = 2 × 10−5, 5 × 10−3, 10−2 are used for BDF1, CN and BDF4
schemes, respectively. The MATLAB’s command ode45 for relative and absolute errors
of 10−10 is employed for the RK4 scheme.

Example 6.1. In this example, we consider equation (4.9) with κ = 1 and the exact
solution

u(x, t) = exp(−t)
23∑
i=1

cos4
(π

2
xTξi

)

11



where {ξ1, . . . , ξ23} is a set of scattered points on S2 generated by the equal area parti-
tioning algorithm. The forcing term that makes this solution hold is given by

f(x, t) = −4 exp(−t)
23∑
k=1

cos2
(π

2
xTξk

)[(
0.25− π2

(
1− (xTξk)

2
))

cos2
(π

2
xTξk

)
+πxTξk cos

(π
2
xTξk

)
sin
(π

2
xTξk

)
+ 0.75π2

(
1− (xTξk)

2
)]
.

In the results that follow we estimate the order of convergence of the Petrov-Galerkin and
the collocation methods versus N , the number of trial points. In Figure 2 the error plots
for the Matérn’s kernels φ2.5 and φ3.5, and the Wendland’s kernel φ3,2 are shown where
BDF1, CN, RK4 and BDF4 schemes are used in the time domain. The convergence rate of
Petrov-Galerkin method outperforms that of collocation method for all three trial kernels.
Since these kernels produce H2.5(S2), H3.5(S2) and H3.5(S2), respectively, as their native
spaces on the unit sphere, the observed numerical orders 5, 7 and 7 are expectable for the
Petrov-Galerkin method.

In Table 1, the CPU times of both methods to achieve the same accuracy are com-
pared. As we observe, the desired relative errors are obtained using the Petrov-Galerkin
method with much fewer (approximately halved) number of trial points than that for the
collocation method, leading to smaller CPU times. The results of this table are obtained
by trial kernel φ3,2 and the CN scheme with time step ∆t = 0.0001.

Relative Error → ≤ 10−2 ≤ 10−3 ≤ 10−4

Petrov-Galerkin (500, 1.0) (1000, 5.0) (1850, 24.0)
Collocation (700, 1.0) (1700, 10.0) (4950, 82.0)

Table 1: Comparing the CPU times (sec.) of the Petrov-Galerkin and the collocation methods to obtain
the same accuracy; The kernel φ3,2 and the CN scheme with ∆t = 10−4 are used. Here, (N, s) =
(number of trial points,CPU time).

Finally, Figures 3 shows the eigenvalues of −S and M (mass and stiffness matrices)
for N = 1000. Both M and −S are theoretically positive definite. Small imaginary parts
appeared in numerical eigenvalues can be reduced to the machine’s precision by using
more integration points on spherical caps. See the bottom plots of the figure.

In the numerical algorithm, the mass matrix M , the matrix I − 1
2
∆tM−1S in the CN

scheme, the matrix I−∆tM−1S in the the BDF1 scheme and the matrix I− 12
25

∆tM−1S
in the BDF4 scheme should be inverted. In Table 2 we report the 2-norm condition
numbers of M and I− 1

2
∆tM−1S for ∆t = 0.005 when the Wendland’s kernel φ3,2 is used

for trial discretization. A computational numerical order around −4 is observed for the
mass matrix. The condition number of the CN matrix is extremely small and enjoys a
mildly increasing order. The same holds true for BDF matrices which are not presented
here.

Example 6.2. Consider the function

G(s) =
K∑
`=1

P`(s)

`(`+ 1)
, K ∈ N, s ∈ R, (6.20)

12



Figure 2: Errors and convergence orders of the Petrov-Galerkin and the collocation methods by using
the Matérn’s kernel φ2.5 (first row), the Matérn’s kernel φ3.5 (second row) and the Wendland’s kernel
φ3,2 (last row). In the time domain the backward Euler scheme with ∆t = 2 × 10−5 (first column), the
Crank-Nicolson scheme with ∆t = 5 × 10−3 (second column), the 4th order Runge-Kutta command of
Matlab (third column) and the BDF4 scheme with ∆t = 10−2 (last column) are used.

where P` is the Legendre polynomial of degree `. The exact solution of problem (4.9), for
f(x, t) = 0, κ = 1 and u(x, 0) = G(xTp) is

u(x, t) =
K∑
`=1

e−`(`+1)t

`(`+ 1)
P`(x

Tp),

where p = (0, 0, 1)T is the north pole of the unit sphere. When K → ∞, this solution
describes the heat diffusion on the unit sphere from its north pole onto its whole surface
[20]. Here we set K = 160.

Errors and numerical convergence orders with respect to N are shown in Figure 4 for
the Mat’ern’s kernel φ2.5. Though not illustrated here, the results of the other kernels are

13



Figure 3: The eigenvalue patterns of positive definite matrices −S (left) and M (right) with N = 1000
scattered points. Small imaginary parts in the top plots are due to the error of the numerical integration.
In the bottom plots the size of imaginary part is reduced to the machine’s precision by using a quadrature
with more integration points.

Table 2: Condition numbers of mass matrix M and Crank-Nicolson matrix ACN = I − dt
2 M

−1S and
numerical orders.

N cond(M) order cond(ACN ) order
100 1.96e+ 3 1.34e+ 0
200 2.45e+ 4 −3.6 1.65e+ 0 −0.3
400 3.12e+ 5 −3.7 2.35e+ 0 −0.5
800 4.25e+ 6 −3.8 3.69e+ 0 −0.7
1600 6.77e+ 7 −4.0 6.27e+ 0 −0.8
3200 1.74e+ 9 −4.7 1.14e+ 1 −0.9

more or less the same as those in the first example.
In Figure 5, the diffusion of the initial heat density u(x, 0) to the sphere is drawn at

some different time levels.
In Figure 6, the errors and convergence rates of the Petrov-Galerkin method versus ∆t

are plotted for BDF1 and CN schemes. In this case, to eliminate the error of the space
discretization, we use a fine point density with N = 3000. Theoretically, the orders should
be 1 and 2 for BDF1 and CN schemes, respectively. Experiments show better results in
some cases.

Finally, in Table 3 the CPU times for obtaining the same accuracy are compared. The
Petrov-Galerkin method uses a fewer number of points and a less CPU time to reach a
prescribed accuracy.

Example 6.3. In this example we consider f = 0 and κ = 1/42 with an initial condition
for which there is no closed form solution. We set the initial heat profile to a sum of five

14



Figure 4: Errors and convergence orders of the Petrov-Galerkin and the collocation methods by using the
Matérn’s kernel φ2.5 In the time domain the backward Euler scheme with ∆t = 2× 10−5 (first column),
the Crank-Nicolson scheme with ∆t = 5× 10−3 (second column), the 4th order Runge-Kutta command
of Matlab (third column) and the BDF4 scheme with ∆t = 10−2 (last column) are used.

Figure 5: The diffusion of initial heat density u(x, 0) = G(z) at some time values.

Figure 6: Convergence of the Petrov-Galerkin method with respect to the time step ∆t for backward
Euler and Crank-Nicolson schemes with Matérn’s kernel φ3.5 and Wendland’s kernels φ3,2 at N = 3000
scattered points.
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Relative Error → ≤ 10−2 ≤ 10−3 ≤ 10−4 ≤ 10−5

Petrov-Galerkin (500, 1.0) (700, 2.0) (1250, 10.0) (5300, 206.0)
Collocation (650, 1.0) (1400, 7.0) (3750, 46.0) (9150, 307.0)

Table 3: Comparing the CPU times (sec.) of the Petrov-Galerkin and the collocation methods to obtain
the same accuracy; The kernel φ3,2 and the CN scheme with ∆t = 10−4 are used. Here, (N, s) =
(number of trial points,CPU time).

Gaussian bumps

u(x, 0) =
5∑

k=1

e−30((x−ξk)2+(y−ηk)2+(z−ζk)2),

where x = (x, y, z) ∈ S2, (ξk, ηk, ζk) = ξk ∈ S2 and {ξ1, . . . , ξ5} is a set of 5 random
points [42]. For this problem the total amount of heat is conserved because

∂

∂t

∫
Sd
u(x, t)dx =

∫
Sd

∂

∂t
u(x, t)dx = κ

∫
Sd

∆∗u(x, t)dx = 0.

The last equality is immediately followed form the Green-Beltrami identity (3.8) by choos-
ing v = 1. Thus, if we define the mean value

m(t) :=
1

vol(Sd)

∫
Sd
u(x, t)dx

then m(t) = m(0) for t ≥ 0. This conservation property can be used to verify the accuracy
of the numerical method. For computing m(t), we employ a Gauss-Legendre quadrature
with 104 integration points on the whole S2.

Figure 7: The diffusion of Gaussian bumps at some different time values, and contours to track the
mean of the initial solution.

The Wendland’s kernel φ3,2 and N = 2000 trial points are used for spatial discretiza-
tion, and the CN scheme with ∆t = 0.005 is applied for time integration. In Figure 7,
the diffusion of the heat profile is shown at times t = 0, 0.25, 0.5 and 1. We also plot
a contour that tracks the mean of the initial condition solution which is obtained as
m(0)

.
= 4.1667× 10−2. As is shown in Figure 8, the numerical scheme preserves the mean

value property.
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Figure 8: Conservation of the heat amount.

7 Conclusion

In this paper, we present the Petrov-Galerkin SBF approximation for solving the diffusion
equation on the unit sphere. The method uses a Petrov-Galerkin test discretization which
is different from the well-considered collocation and Galerkin methods on the sphere.
For each testing functional equation, numerical integration is simply done on a local
spherical cap. This means that spherical caps are used as local integration supports
and play the role of spherical triangles in the standard Galerkin finite element. Here,
the spherical caps may overlap but they are used independent from each other without
any connectivity assumption. In the time domain, the Crank-Nicolson and fully implicit
schemes are analyzed. In numerical results the 4th order Runge-Kutta method (RK4) and
the 4th order backward differentiation formula (BDF4) are also employed. At the price
of numerical integration, numerical results show that the new method is more accurate
than the classical collocation method.

The proposed method can also be applied for nonlinear diffusion equations on the unit
sphere. For this purpose, one can use the semi-implicit (implicit for linear and explicit for
nonlinear terms) time difference scheme that still leads to a final linear system. Another
technique is to use a time splitting scheme to separate the PDE into the linear and the
nonlinear terms, and then use the method of this paper for the linear part, and an exact
ODE solution for the nonlinear part. As some examples of such schemes in the context
of meshless methods, we refer the reader to [27,28].
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