
Adv Comput Math           (2021) 47:74 
https://doi.org/10.1007/s10444-021-09900-8

A rational RBF interpolation with conditionally
positive definite kernels

Elham Farazandeh1 ·DavoudMirzaei1,2

Received: 19 March 2021 / Accepted: 31 August 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
In this paper, we present a rational RBF interpolation method to approximate
multivariate functions with poles or other singularities on or near the domain of
approximation. The method is based on scattered point layouts and is flexible with
respect to the geometry of the problem’s domain. Despite the existing rational RBF-
based techniques, the new method allows the use of conditionally positive definite
kernels as basis functions. In particular, we use polyharmonic kernels and prove that
the rational polyharmonic interpolation is scalable. The scaling property results in a
stable algorithm provided that the method be implemented in a localized form. To this
aim, we combine the rational polyharmonic interpolation with the partition of unity
method. Sufficient number of numerical examples in one, two and three dimensions
are given to show the efficiency and the accuracy of the method.
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1 Introduction

Rational approximations are known to be much more effective than the standard (lin-
ear) ones for functions with poles or other singularities on or near the domain of
approximation, or on unbounded domains. Univariate rational approximations with
polynomials have a long history, but some new robust algorithms are recently being
developed [10, 17, 21]. However, not much research has been devoted to multivariate
rational approximations. In recent decades, the radial basis function (RBF) approx-
imation has evolved into an excellent tool for solving multidimensional problems
[4, 9, 23]. It is natural to ask for a multivariate rational RBF approximation for func-
tions with steep gradients and/or singularities. In this direction, the first RBF-based
rational interpolation algorithm was introduced in [14] with an application to approx-
imation of antenna data. Then, a combination of this rational method with partition of
unity (PU) approximation and a use of variably scaled kernels (VSK) [3] were done
in [8] to improve the performance of the method. In [19] an application to discontinu-
ous and steep gradient functions was provided, and in [5] the so-called eigen-rational
kernel-based scheme was proposed which consists of a fractional RBF expansion
with a denominator depending on the eigenvector associated to the largest eigenvalue
of the kernel matrix.

The poles and singularities may be well captured if polynomial terms are appended
to RBF expansions in numerator and denominator. Thus, conditionally positive defi-
nite kernels with respect to polynomial spaces, such as polyharmonic splines, should
play an important role to enrich the available rational RBF approximations. However,
the proposed rational RBF method in [14] (and then in [8, 19]) has some limitations
in using conditionally positive definite kernels, which will be addressed in Section 2
after a brief review of the method. In this paper, a reformulation of the rational
method for conditionally positive definite kernels is given which avoids those limita-
tions and allows to implement the rational polyharmonic-based algorithm on scaled
data to prevent the instability of the involved RBF systems. Following [8], the new
rational interpolation is combined with the PU method by introducing some new sim-
ple weight functions. However, the main difference between the work of [8] and the
present work addresses the rational part where the former uses the formulation of
[14] for (strictly) positive definite kernels in a VSK setting while the later (the present
work) focuses on conditionally positive definite kernels. Note that the rational inter-
polation of [5] allows the conditionally positive definite kernels as well, albeit in
another formulation.

Here, we review the standard RBF interpolation. Assume that a conditionally
positive definite function φ of order m + 1 (with respect to polynomial space P

d
m)

is given. The RBF interpolation of a function f : Ω → R on a discrete set
X = {x1, . . . , xN } ⊂ Ω is given by

sf,X(x) =
N∑

j=1

αjφ(x − xj ) +
Q∑

n=1

an�n(x) (1)
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where {�1, . . . , �Q} is a basis for Pd
m, and α = (α1, . . . , αN)T and a = (a1, . . . , aQ)T

satisfy [
K P

P T 0

] [
α

a

]
=

[
f

0

]

where

K = (φ(xj − xk)) ∈ R
N×N,

P = (�n(xj )) ∈ R
N×Q,

f = (f (x1), . . . , f (xN))T ∈ R
N .

We also need to assume N � Q and X is Pd
m-unisolvent to have a full rank matrix

P . On the other hand, since φ is conditionally positive definite of order m + 1, the
symmetric matrix K is positive definite on ker(P T ) as a subspace of RN . These all
guarantee that the interpolation system is uniquely solvable. The interpolant sf,X can
also be written in the Lagrange form as

sf,X(x) =
N∑

j=1

uj (x)f (xj ), (2)

where (u1(x), . . . , uN(x))T =: u(x) satisfies
[

K P

P T 0

] [
u(x)

v(x)

]
=

[
φ(x)

�(x)

]
, (3)

for φ(x) = (φ(x − x1), . . . , φ(x − xN))T and �(x) = [�1(x), . . . , �Q(x)]T . The
Lagrange functions possess the property uj (xk) = δkj .

The above-mentioned RBF interpolation will be used to compute numerator and
denominator of the rational RBF interpolation of the next section.

2 Rational RBF interpolation

The rational RBF interpolation method of this section is an improvement of the
method given in [14] in order to enrich it for conditionally positive definite kernels.

Assume that a set of points X = {x1, x2, . . . , xN } ⊂ Ω and a function f : Ω → R

are given, and we want to determine a rational interpolation

σf,X(x) = p(x)

q(x)
=

∑N
j=1 αjφ(x − xj ) + ∑Q

n=1 an�n(x)
∑N

j=1 βjφ(x − xj ) + ∑Q
n=1 bn�n(x)

of f such that σf,X(xk) = f (xk) for all xk ∈ X. We assume that f , at least,
is defined on set X. This problem has 2(N + Q) unknowns while N interpola-
tion conditions, giving a flexibility to impose extra conditions on p and q. In [14]
a condition is imposed on the native space semi-norms of p and q to be as small
as possible relative to the size of their values at the data points to obtain sufficient
smooth numerator and denominator functions. To give a precise formulation, assume
that p = (p(x1), . . . , p(xN))T , q = (q(x1), . . . , q(xN))T , and ‖p‖2 denotes the
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2-norm of vector p in R
N . Then, [14] suggests the following minimization problem

to determine the rational interpolation:

min
{
a|p|2Nφ

+ b|q|2Nφ
: p, q ∈ Nφ, p(xk) = f (xk)q(xk), c‖p‖2

2 + d‖q‖2
2 = 1

}
,

(4)
where a, b, c and d are four positive constants, Nφ is the native space corresponding
to the (conditionally) positive definite kernel φ, and | · |Nφ

is the usual (semi-) norm
defined on this space. Of course, in the case of positive definite kernels, the semi-
norm | · |Nφ

is replaced by the norm ‖ · ‖Nφ
. The minimizers p and q of the above

problem determine the rational interpolant σf,X = p/q of function f . In [14], by
assuming the existence of the inverse matrix K−1, the solution of the minimization
problem (4) is recast to generalized eigenvalue problem Aq = λBq where

A = aDSD + bS,

B = cD2 + dI,

in which D = diag{f (x1), . . . , f (xN)}, I is the identity matrix, and

S = K−1
(

I − P
(
P T K−1P

)−1
P T K−1

)
.

Then the optimal vector p is given by p = Dq, and the rational RBF interpolation
is obtained by computing the standard RBF interpolations of nodal vectors p and q.

This procedure works only for positive definite RBFs because the inverse of K

may not exist for a conditionally positive definite function φ. Even if the inverse
matrix exists for a special distribution of data points, the minimization problem (4)
results in polynomial solutions p and q and neglects the radial parts in both numerator
and denominator because the native space norm of a polynomial of degree at most m

is necessarily zero.
In this paper, we improve the argument to fix these problems, and in particular

we apply polyharmonic splines in order to benefit from their scalability property for
a stable implementation. Apart from the rational interpolation, some parts of this
section can be used to improve the exact expression of the standard RBF plus poly-
nomial interpolation of [1] which is depending in the same way on existence of K−1.
First, we give some properties of the saddle point matrix

[
K P

P T 0

]
(5)

where P has full rank and K is symmetric and positive definite on ker(P T ). For
more details about saddle point matrices we refer the reader to [2] and the references
therein.

Lemma 1 If P ∈ R
N×Q has full rank, K ∈ R

N×N is symmetric and positive definite
on ker(P T ) and Z ∈ R

N×(N−Q) is any matrix whose columns form a basis for
ker(P T ) then:

(1) The matrixZT KZ is positive definite onRN−Q and in particular it is invertible.
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(2) The matrix
Z(ZT KZ)−1ZT =: S

is positive semi-definite on RN and positive definite on ker(P T ).
(3) The saddle point matrix (5) is invertible and its inverse is given by

[
K P

P T 0

]−1

=
[

S E

ET G

]
.

where E = (I − SK)P (P T P )−1 and G = −(P T P )−1P T KE.

Proof The proof of (1) follows immediately from the fact that K is positive definite
on ker(P T ). The proof of (2) follows from the fact that the left null space of Z (the
null space of ZT ) is the orthogonal complement to the column space of Z. Item (3)
can be verified by a direct computation, keeping in mind that P T P is invertible and
P(P T P )−1P T = I − ZZT .

Item (2) of Lemma 5 shows that S has exactly Q zero and N − Q non-zero eigen-
values because the dimension of ker(P T ) is N − Q. From here on, we assume that
X is a P

d
m-unisolvent set to have a full rank polynomial matrix P T .

Lemma 2 If sf,X is the standard interpolant of f on set X using a conditionally
positive definite function φ, then its native space norm is given by

|sf,X|2Nφ
= f T Sf

where f = (f (x1), . . . , f (xN))T and S is defined in Lemma 1.

Proof Since sf,X has the form (1), its semi-norm is given by |sf,X|2Nφ
= αT Kα

and since sf,X interpolates f , using Lemma 1 the coefficient vector α satisfies α =
Sf . This shows that |sf,X|2Nφ

= f T SKSf . It is then straightforward to show that
SKS = S using the special representation of S.

From Lemma 2 it is clear that if s is any function on the finite dimensional space
Hφ(Ω)

⊕
P

d
m, where Hφ(Ω) is the span of φ(·−xj ) with coefficients αj that satisfy

P T α = 0, then |s|2Nφ
= sT Ss where s is vector of s(xj ) values.

In order to obtain a quadratic target function with a positive definite matrix, we
replace the native space norms in the minimization problem (4) by

‖ · ‖2
Nφ,X := | · |2Nφ

+ γ | · |2X, γ > 0, (6)

where | · |X is the discrete L2 semi-norm on the Pd
m-unisolvent set X. The above norm

is induced by inner product

(f, g)Nφ,X := (f, g)Nφ
+ γ

N∑

k=1

f (xk)g(xk), f, g ∈ Nφ .
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Indeed, (6) defines a norm on Nφ because ‖f ‖Nφ,X = 0 implies that |f |Nφ
= 0

and |f |X = 0, where the former gives f ∈ P
d
m which together with the later shows

f = 0 because X is assumed to be a unisolvent set for Pd
m. Later on, we shall use

some special γ values to obtain an scalable numerical algorithm. Now, we define the
new minimization problem

min
{
a‖p‖2

Nφ,X + b‖q‖2
Nφ,X : p, q ∈ Nφ, p = Dq, c‖p‖2

2 + d‖q‖2
2 = 1

}
, (7)

for positive constants a, b, c and d .

Theorem 1 The solution of the minimization problem (7) is the least eigenvalue and
the optimal solution q is the corresponding eigenvector to the generalized eigenvalue
problem

Aq = λBq (8)

where

A := aD(S + γ I)D + b(S + γ I),

B := cD2 + dI

in which D = diag{f (x1), . . . , f (xN)}, I is the identity matrix, and S is defined in
Lemma 1. The optimal vector p is given by p = Dq. The rational RBF interpolation
is obtained by σf,X = p/q where p and q are the standard RBF interpolants of
vectors p and q, respectively.

Proof The proof of this theorem is the same as that of [14, Theorem 3.1]. According
to Lemma 2 and norm definition (6), ‖q‖2

Nφ,X
= qT (S + γ I)q and ‖p‖2

Nφ,X
=

qT D(S + γ I)Dq because p = Dq. Besides, it is clear that c‖p‖2
2 + d‖q‖2

2 =
qT (cD2 + dI)q. Thus, the minimization problem (7) is identical with

min
{
qT Aq : qT Bq = 1

}
.

In this formulation, S + γ I is positive definite because S is positive semi-definite.
Since we do not care about the f values, D(S + γ I)D is (in general) positive semi-
definite, but A = aD(S +γ I)D+b(S +γ I) is necessarily positive definite, keeping
in mind that a, b and γ are positive numbers. Moreover, B is a diagonal matrix with
positive on-diagonal elements. It is obvious that the solution is the least eigenvector
(corresponding to the least eigenvalue) of problem (8).

In [19], the method of diagonal increments (MDI) is used to regularize the matrix
K (obtained from the inverse multiquadric (IMQ) kernel) to remain numerically pos-
itive definite and to avoid the ill-conditioning. Then the matrix K + μI is inverted
instead of K where μ > 0 is a small smoothing parameter. This regularization is dif-
ferent from our approach where γ I is finally added to S, the counterpart of K−1 for
positive definite kernels. Besides, γ may not be a small number, at all. To stabilize
the algorithm for matrix inversions we will apply an efficient scaling technique. See
Section 3.
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In [14], some choices for constants a, b, c and d are discussed. In this paper we use
a = c = 1/‖f ‖2 and b = d = 1. This choice normalizes the two terms in definitions
of both matrices A and B, and results in a homogeneous rational interpolation, i.e.,
σαf,X = ασf,X for all real values α. See [14] for more details and other choices.

3 Polyharmonic kernels and scaling

Although all (conditionally) positive definite RBFs in the market [4, 9, 23] can be
used, in this paper we employ the polyharmonic kernel

ϕβ(r) := (−1)�β/2�+1 ×
{

rβ log r, β even
rβ, otherwise

(9)

for real number β > 0 and assume φ(x) = ϕβ(‖x‖2) for x ∈ R
d . The polyharmonic

kernel ϕβ is conditionally positive definite of order m + 1 = �β/2� + 1.
We are encouraged by the scalability property of polyharmonic kernels to use them

in the rational interpolation algorithm. This property allows avoiding the instability of
RBF systems. The rational interpolation of the previous section could be subdivided
into two phases (i) forming and solving the eigenvalue problem (8) for nodal vector q,
and (ii) solving the standard RBF system (3) and using (2) to obtain the denominator
q and the numerator p from nodal vectors q and p = Dq, respectively. The scaling
can be applied in both phases. Indeed, for the standard polyharmonic interpolation
(the second phase) the scaling idea is not new and can be traced back to [11]. See also
[7, 12, 13, 16] for applications to numerical solution of PDEs. After reviewing the
scaling property for the standard interpolation, we will show that the scaling works
in the first phase of the rational interpolation as well.

It is proved in [11] that the polyharmonic Lagrange functions uj from (3) are
invariant under the scaling. Let’s describe this in more detail. Assume that Xh is
a set of points in Ω with maximum pairwise distance h. Assume further that the
polyharmonic interpolation (2) on Xh at a fixed evaluation point xh ∈ Ω is sought.
The kernel matrix K (as well as the interpolation matrix in (3)) becomes algebraically
ill-conditioned as h decreases [23, chap. 12]. To fix this problem, we can divide
(scale) the trial points Xh and the evaluation point xh both by h to get a new blown-
up set X of average pairwise distance 1 and a new evaluation point x. Let’s denote the
Lagrange functions on Xh by uh,j . We can prove that Lagrange functions uj obtained
by solving (3) are identical with Lagrange functions of the original situation, i.e.,
uj (x) = uj,h(xh). See [11] for details. It is clear that in the blown-up situation the
conditioning of (3) behaves as O(1). This scaling approach works much better if the
RBF interpolation is implemented in a localized form. In this case, if the monomials
{xμ}|μ|�m are used as a basis for P

d
m, then it is highly recommended to shift the

points by the center of the local domain and then scale by h to benefit from the local
behavior of the monomial basis functions around the origin. Note that, on behalf of
the radial part, we are allowed to shift because our approximation space is shift (and
rotation) invariant.
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However, it is not the whole story and we can show further that the optimal
solution q of the minimization problem (7), which is obtained from the general-
ized eigenvalue problem (8), is invariant under the scaling. In doing so, we recall
[23, Proposition 8.4].

Proposition 1 Every polynomial p of degree at most 2m+1 is conditionally positive
definite of order m + 1. More precisely, for all N , all sets X = {x1, . . . , xN } ⊂ R

d

and all α ∈ R
N with P T α = 0, the quadratic form αT K̃α is identically zero. Here

K̃ = (p(xk − xj )) for k, j = 1, . . . , N .

Theorem 2 Let h > 0 be an arbitrary real number. The optimal solution q of the
generalized eigenvalue problem (8) is invariant under h-scaling provided that the
polyharmonic kernel (9) is used, and γ = h−β in (6).

Proof Let X be a fixed set of points in Ω and K be the kernel interpolation matrix
on X. Assume Kh and Ph are kernel and polynomial matrices on the scaled set
hX= {hx1, . . . , hxN } for h > 0. Using this notation, K1 = K and P1 = P . If the
monomial basis {xα}|α|�m is used for polynomial space P

d
m then Ph = PH with

H = diag
{

1, h, . . . , h︸ ︷︷ ︸
( d
d−1) times

, h2, . . . , h2
︸ ︷︷ ︸
(d+1
d−1) times

, . . . , hm, . . . , hm

︸ ︷︷ ︸
(d+m−1

d−1 ) times

}
∈ R

Q×Q,

keeping in mind that #{xα : |α| = k} = (
d+k−1
d−1

)
for k = 0, 1, . . . , m. As H is a full

rank diagonal matrix, we simply have Zh := ker(P T
h ) = ker(P T ) = Z.

For power kernel ϕβ(r) = rβ it is clear that Kh = hβK . Thus

Sh = Zh

(
ZT

h KhZh

)−1
ZT

h = h−βZ
(
ZT KZ

)−1
ZT = h−βS

and

Ah = aD(Sh + γ I)D + b(Sh + γ I) = h−β(aD(S + I )D + b(S + I )) = h−βA1.

The diagonal matrix B in (8) is independent of h. These show that qh = q and
λh = h−βλ.

For thin plate spline ϕβ(r) = rβ log r , β ∈ 2N, we have ϕβ(hr) = hβϕβ(r) +
hβ log h rβ =: hβϕβ(r)+p where p is a polynomial of degree at most β. According
to Proposition 1, since ϕβ(‖ · ‖2) is conditionally positive definite of order β/2 + 1
and columns of Z form a basis for ker(P T ) = ker(P T

h ) we have ZT K̃Z = 0 where
K̃ is the kernel matrix of polynomial p ∈ Pβ(Rd). By a direct computation, we again
have Sh = h−βS, Ah = h−βA1, qh = q and λh = h−βλ.

According to Theorem 2, for a set of interpolation points with fill distance h on a
local domain D, first we shift the points by the center of D and then divide them by
h to get a new blown-up set around the origin. Then we only need to form

A = aD(S + I )D + b(S + I ), B = cD2 + dI,
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where S is constructed on the blown-up situation. The least eigenvector q of the
eigenvalue problem Aq = λBq and p = Dq give the nodal values of the denom-
inator and the numerator, respectively. Finally, according to the discussions before
Theorem 2, the standard RBF interpolants p and q can be similarly computed via the
Lagrange functions on the blown-up situation.

It is important to note that the scaling strategy prevents the instability in two lines
of the rational algorithm: (i) in computing the matrix S where ZT K−1Z needs to
be formed, and (ii) in computing the numerator p and the denominator q where the
saddle point matrix (5) needs to be inverted. However, the scaling is computationally
more efficient for local interpolation problems where h is decreased while the number
of points in each local domain is fixed. To this aim, in the next section, we implement
the rational RBF interpolation in a partition of unity setting.

4 Partition of unity rational interpolation

The global RBF approximations, standard or rational, suffer from the problem of
producing full and ill-conditioned matrices. This makes them restricted for applica-
tion on large scale problems, specially in multivariate cases. A possible solution to
this problem is to implement them in a localized form, such as in combination with a
partition of unity (PU) method [8, 22]. Here we use the rational polyharmonic inter-
polation of the preceding section in a PU setting to obtain a localized rational RBF
method. We also introduce a new constant-generated PU weight that simplifies the
computations regarded to the PU approximation. In local patches we use the scaled
polyharmonic interpolation (Section 3) to stabilize the local systems.

Let {Ω�}Nc

�=1 be an open and bounded covering of Ω ⊂ R
d that means all Ω�

are open and bounded and Ω ⊂ ⋃Nc

�=1 Ω�. This grantees that every point x ∈ Ω

is necessarily covered by at least one patch Ω�. A family of nonnegative functions
{w�}Nc

�=1 is called a partition of unity with respect to the covering {Ω�} if

(1) supp(w�) ⊆ Ω�,

(2)
Nc∑

�=1

w�(x) = 1, ∀x ∈ Ω .

We start with an overlapping covering {Ω�}Nc

�=1 of Ω . If σ� are local rational RBF
interpolations of function u on discrete sets X� ⊂ Ω�, then it is clear that

σ =
Nc∑

�=1

w�σ� (10)

is a global interpolation of u on X = ⋃Nc

�=1 X� ⊂ Ω . A possible choice for w� is the
Shepard’s weights [20]

w�(x) = ψ�(x)
∑Nc

j=1 ψj(x)
, 1 � � � Nc, (11)

where ψ� are nonnegative, nonvanishing and compactly supported functions on Ω�.
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The PU approach allows to compute small rational RBF interpolants on patches
Ω�, and then join them by PU weights to form a global rational approximation on
the whole Ω . This leads to a computationally more efficient algorithm which avoids
handling a single but very large system in favor of solving several small systems.

A simple covering for Ω can be constructed via a set of overlapped balls Ω� =
B(ω�, ρ�) where ω� ∈ R

d are patch centers and ρ� are patch radii. We use the
following setup for points, parameters and domain sizes for the rational RBF-PU
interpolation algorithm. We assume that X = {x1, . . . , xN } is a set of interpolation
points in Ω with fill distance

h = hX,Ω = max
x∈Ω

min
xk∈X

‖x − xk‖2.

The fill distance indicates how well the points in the set X fill out the domain Ω .
Geometrically, h is the radius of the largest possible empty ball that can be placed
among the data locations X inside Ω . A grid point set {ω1, . . . , ωNc } with space
distance

hcov = Ccovh, Ccov > 1 (12)

is used for patch centers. The constant Ccov controls the number of patches compared
with the number of interpolation points. If points in X are distributed quasi-uniformly
then Nc ≈ N/Cd

cov because in this case h ≈ N−1/d . The radii ρ� control the amount
of covering’s overlap. Although light overlaps result in a faster algorithm, these radii
should be large enough to guarantee the inclusion Ω ⊂ ∪B(ω�, ρ�) and to allow
enough trial points in each patch for a well-defined and accurate local interpolation.
Thus, we let

ρ� = Covlphcov, Covlp >
√

d/2, (13)

and we assume the overlap constant Covlp is large enough to ensure the above require-
ments. We may use larger Covlp for one-sided patches whose centers are close to the
boundary of Ω . The settings (12) and (13) for the space distance between covering
centers and radius of patches allow to have a local and regular covering {Ω�} with
respect to set X. Note that for a given set X ⊂ Ω a covering {Ω�} is called local
with respect to X if there exists a global constant C such that diam(Ω�) � ChX,Ω .
And the covering is called regular if there exists a global constant L such that every
x ∈ Ω is covered by at most L patches. The performance of a PU method is highly
increased if the underlying covering is both local and regular [23, chap. 15].

To define a Shepard weight on B(ω�, ρ�), we assume that ϕ : R�0 → R�0 is
a compactly supported function with a support on [0, 1], and we define ψ�(x) =
ϕ(‖x‖2/ρ�) in (11). As an example, the C2 Wendland’s function ϕ(r) = (1 −
r)4+(4r + 1) can be used that leads to a set of smooth PU weights w� ∈ C2(Ω). Such
smooth weight functions are frequently used in PU approximations; see for example
[6, 15, 18, 22]. Some discontinuous PU weights are also suggested in [16] that highly
simplify the RBF-PU algorithms for solving partial differential equations. Of course,
they can be implemented for pure interpolation as well. The simplest one which is
introduced in the following is applied for numerical results of this paper. Let

Imin(x) = arg min
�∈I (x)

‖x − ω�‖2
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and Imin,1(x) be the first component of Imin(x), as Imin(x) may contain more than
one index �. The PU weight function is then defined by

w�(x) :=
{

1, � = Imin,1(x)

0, otherwise.
(14)

With this definition, we give the total weight 1 to the closest patch to x and null
weights to other patches. In fact, a local set X� = Ω� ∩ X is a common trial set for
all evaluation points x with ‖x − ω�‖2 ≤ ‖x − ωj‖2 for j = 1, . . . , Nc and j �= �.

Following the analysis of PU methods for standard interpolation [23], if in each
region Ω� ∩ Ω , f is approximated by a rational function σ� such that

‖f − σ�‖L∞(Ω�∩Ω) � ε�,

then the global rational interpolation σ satisfies

|f (x) − σ(x)| �
∑

�∈I (x)

w�(x)
∣∣f (x) − σ�(x)

∣∣

�
∑

�∈I (x)

w�(x)
∥∥f − σ�

∥∥
L∞(Ω�∩Ω)

�
∑

�∈I (x)

w�(x)ε�

� max
�∈I (x)

ε�,

which means that the rational partition of unity interpolation is at least as good as its
worst local interpolation. We note that the only property that is used is the partition of
unity property. Thus, the above bound holds also true for discontinuous PU weights.
Unfortunately, a theoretical estimation for local errors ε� is not straightforward and
is left for a future study. Instead, we report experimental orders in our numerical tests
in Section 5.

4.1 Computational cost

The computational complexity of the method includes the costs of solving local
eigenvalue problems and local standard RBF interpolations in all patches. To esti-
mate the number of points in each patch, we use a packing argument similar to that
given in [23, chap. 4]. First, we define the separation distance

qX := 1

2
min
j �=k

‖xj − xk‖2

of trial set X. The separation distance measures how well the points are disjoint from
each others. In fact, qX is the radius of the largest ball that can be placed around
every point in X such that no two balls overlap. A set X is said to be quasi-uniform
with respect to a constant cqu if

qX � hX,Ω � cquqX. (15)

The first inequality is obvious from definitions. Quasi-uniformity is not a property
of a single set X but a sequence of such sets that gradually fill out the domain Ω .
Then, (15) should be satisfied by all sets in this sequence with the same constant cqu.
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We assume that the sequence of our node refinements satisfies the quasi-uniformity
property. Let n� = #X�, the number of points in Ω� = B(ω�, ρ�). We simply have

n� × vol
(
B(0, qX)

)
� vol

(
B(ωj , ρ� + qX)

)

which gives

n�cdqd
X � cd(ρ� + qX)d = cd(CovlpCcovhX,Ω + qX)d

where cd is the volume of the unit ball in R
d . The inequality hX,Ω � cquqX then

gives
n� � (CovlpCcovcqu + 1)d =: nL,

where nL is a constant independent of the fill and separation distances (and thus inde-
pendent of N), showing that the number of points in each patch remains unchanged,
approximately, when the discretization is refined. Assume that the set of indices J�

of interpolation points in Ω� is known in advance. The computational cost for form-
ing and solving the eigenvalue problem (8) for the least eigenvalue is at most of order
n3

� and for solving the standard RBF interpolation is of order (n� + Q)3. Since n� is
bounded by constant nL the total cost for all patches is dominated by NcO(n3

L +Q3),
where Nc is the number of patches. Since Nc ≈ N/Cd

cov, the computational cost is
of order N where N is the number of interpolation points. This complexity analysis
ignores the costs of collecting the indices of points in Ω� among all N interpolation
points in X. But this can be done in a preprocessing step using a boxing strategy to
avoid collecting J� for each patch center separately. By dividing the domain Ω into
boxes of side length O(N−1/d) and collecting for each box the points that it contains
the overall complexity would be O(N + Nc). As a more relevant strategy we can
use a kd-tree algorithm that takes O(N log N) time for building the tree on X and
O(N1−1/d) time for range searchings. More details can be found in [23, chap. 14].
The complexity of evaluating the interpolant at a set Xe is dominated by the cost of
building another data structure on Xe to collect the indices of evaluation points in
each patch Ω�.

5 Numerical results

In this section some 1D, 2D and 3D experiments are given. In all cases we assume
that h = O(N−1/d) is approximately the fill distance of interpolation points in X.
For a given function f and a set X, if f is not defined on a point xk ∈ X, we simply
take this point out and work with X \ {xk} instead of X. We further assume that the
set of patch centers has vertical (horizontal) mesh distance hcov = 4h for 1D and 2D,
and hcov = 3h for 3D examples. We also use Covlp = 1 to have ρ� = 4h (in 1D
and 2D) and ρ� = 3h (in 3D) for patch radii, but we increase the radius of patches
on or near the boundary of Ω by a factor of 1.5 (in 1D and 2D) and 1.3 (in 3D) to
have enough interpolation points in those one-sided patches. These local sizes allow
much more than Q interpolation points in local domains (≈ 9 in 1D, 45 in 2D, and
120 in 3D) to guarantee both unisolvency and high accuracy of local approximants.
In all experiments we use the constant-generated PU weight function (14). Regular
(grid) and Halton points are used in all numerical simulations. These settings are used
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for both standard and rational interpolations. In all examples, the relative errors are
measured in the discrete L2 norm on a fine set of regular evaluation points which does
not contain the singularities of the underlying function. In the legend of some figures
by “Rational-Regular” we mean the rational RBF interpolation method on regular
interpolation points, by “Rational-Halton” we mean the rational RBF interpolation
on Halton points, and the same for “Standard-Regular” and “Standard-Halton.” All
convergence plots are on a log-log scale. Numerical convergence orders are obtained
by the linear least squares fitting to error values and are written alongside the figure
legends.

The algorithm is implemented in MATLAB and executed on a machine with an
Intel Core i7 processor, 2.4.00 GHz, and 8 GB RAM. We also provide the MATLAB

code, freely available at
https://github.com/ddmirzaei/Rational RBF
to facilitate the reproduction of the examples presented.
As a smooth 1D example we consider

f (x) = 1

2 + cos(20x + 1)
, x ∈ [−1, 1],

and as a function with singularities we consider

f (x) = 1

J0(x)
, x ∈ [0, 20],

where J0 is the order zero Bessel function of the first kind. The plots of these func-
tions are shown in Fig. 1. The second function has six singularity points in [0, 20]. In
Fig. 2 a comparison between the relative errors of the standard and the rational RBF
interpolations via ϕ(r) = r3 with linear polynomials is shown for both functions.
For the smooth function, the theoretical order m + 1 = 2 is realized for the standard
method and better numerical orders are obtained for the rational method. However,
in this case the rational interpolation does not remarkably outperform the standard
one, while for the function with singularities the rational interpolation is substantially
more accurate, as expected. The rational algorithm works well with both regular and
scattered interpolation points.

As another 1D example, we consider the function

f (x) = x

cos3(π2/3x)
, x ∈ [−1, 1],

which has two singularities of order 3 in [−1, 1]. We again use the radial function r3

but we augment polynomials of higher degrees to examine the role of polynomials
to capture higher order poles. The results on regular and Halton points are shown
in Fig. 3. Although the convergence is observed for m = 1, 2 (at larger values of
N), an absolutely faster convergence is achieved when polynomials of degree 3 are
appended.

Up to here, we did our experiments on some 1D functions that could also be treated
by recent robust rational algorithms such as AAA [17], efficiently. However, it is
known that the RBF approximations are more efficient for handling multidimensional

https://github.com/ddmirzaei/Rational_RBF
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Fig. 1 Plots of 1D functions: a smooth function on interval [−1, 1] (top) and a function with six
singularities on [0, 20] (bottom)

Fig. 2 Error plots for a smooth 1D function (left) and for a singular 1D function (right). Both standard and
rational methods with regular and Halton interpolation points are implemented. The polyharmonic spline
r3 with polynomials of degree 1 is used



Adv Comput Math           (2021) 47:74 Page 15 of 21   74 

Fig. 3 Error plots for rational interpolation on regular and Halton points for a 1D function with high-order
poles. The polyharmonic spline r3 with polynomials of degrees m = 1, 2, 3 is used

problems where some available algorithms are not applicable. Here, some 2D and 3D
examples are given. As a smooth bivariate function with a steep gradient, we assume

f (x, y) = tan−1
(

125
(√

(x − 1.5)2 + (y − 0.25)2 − 0.92
))

, (x, y) ∈ [0, 1]2,

(16)
which has a steep wave front located asymmetrically in the unit square [19]. See the
left panel of Fig. 4. We use 2D regular and Halton points as interpolation centers
and polyharmonic kernel r4 log r with polynomials of degree m = 2 as approxima-
tion space. The errors of standard and rational RBF interpolations are compared and
the results are plotted in Fig. 4. As we observe, both standard and rational methods
provide good approximations for this smooth function where the theoretical order
m + 1 = 3 for the standard interpolation is (approximately) achieved for the rational
interpolation as well. Since the function has a steep gradient, the obtained accuracy
was predictable for the rational method but not necessarily for the standard one.
The reason lies behind the localization through partition of unity which enriches the
standard method for functions with steep gradients.

As another 2D example, we consider the Runge-like function

f (x, y) = 1

1 + b(x2 + y2)
, (x, y) ∈ [−1, 1]2, (17)

for a constant b ≥ 25. This function has a rational form with constant and degree two
polynomials in its numerator and denominator, respectively. Thus, it should be recov-
ered exactly if the rational RBF method be implemented with appended polynomials
of degree at least 2. However, to see whether the Runge’s phenomenon influences
the rational RBF method, we plot on the left-hand side of Fig. 5 the errors when
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Fig. 4 The rational interpolation of the 2D function (16) on N = 1681 Halton points (left), and error plots
for standard and rational RBF interpolations on different numbers of regular and Halton points (right). The
polyharmonic spline r4 log r with polynomials of degree m = 2 is used

ϕ(r) = r3 and linear polynomials are employed. Halton points are used as interpola-
tion points and results are obtained for different values b = 25, 64 and 100. The same
results for the standard interpolation are given on the right-hand side of Fig. 5. As

Fig. 5 Error plots for rational (left) and standard (right) RBF interpolations on Halton points for 2D
function (17) with different values of parameter b. The polyharmonic spline r3 with polynomials of degree
m = 1 is used
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Fig. 6 Error plots of standard
and rational RBF interpolations
on regular and Halton points for
2D function (18). The
polyharmonic spline r4 log r

with polynomials of degree
m = 2 is used

similar to the previous example, both rational and standard methods produce accu-
rate approximations for this smooth function. The use of low-order polynomials and
localization via PU method avoid the Runge’s phenomenon in both interpolants of
this function.

For the last 2D example, we interpolate the function [8]

f (x, y) = tan (9(y − x) + 1)

tan 9 + 1
, (x, y) ∈ [0, 1]2, (18)

which has lots of singularities across six lines y = x + ((k − 9/2)π − 1)/9, k =
1, . . . , 6. In Fig. 6, error plots of the standard and rational interpolations on regular
and Halton points are illustrated. The rational interpolation approximates the function
from its nodal values, excellently, while the standard one fails to give accurate results,
as expected. This example again shows the superiority of the rational RBF method
for singular functions. The surface plot of the rational interpolation on N = 3314
Halton points is depicted in Fig. 7.

Three dimensional examples were not covered in previous studies on rational RBF
interpolation. In our last experiment, we consider the 3D singular function

f (x, y, z) = x

sin(exp(0.5yz + 1))
, (x, y, z) ∈ Ω, (19)

where Ω is a bumpy sphere defined in spherical coordinates via

Ω := {(r, θ, ϕ) : r � R(θ, ϕ), θ ∈ [0, 2π), ϕ ∈ [0, π ]}, (20)

where R = [
1 + sin2(2 sin ϕ cos θ) sin2(2 sin ϕ sin θ) sin2(2 cos ϕ)

]1/2. We construct
Halton and grid points on a smallest possible circumscribed cube and use their
restrictions to Ω as interpolation points. Covering centers and evaluation points are
produced, similarly. The shape of Ω and a set of Halton points are shown in Fig. 8. In
Fig. 9 the relative errors on regular and Halton points for both rational and standard
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Fig. 7 The rational interpolation of the 2D function (18) on N = 3314 Halton points

interpolations are plotted. As we observe, the standard method fails to interpolate this
singular function accurately while the rational method gives much more satisfactory
results.

To observe the effect of scaling on stability of RBF systems we plot in Fig. 10
the minimum eigenvalue of the positive definite matrix ZT KZ in terms of 1/h on
a patch with radius ρ = 4h in 2D domain [0, 1]2 and a patch with radius ρ = 3h

in 3D domain (20). As we pointed out, this matrix should be inverted to form the
matrix S of generalized eigenvalue problem (8). In our situation, as h decreases the
patch becomes localized more and more but the number of points remains approx-
imately unchanged. However, [23, chap. 12] shows that the conditioning does not
depend on the number of points but on their fill distance. The results are reported
for the polyharmonic spline r4 log r appended by polynomials of degree 2 with and

Fig. 8 A bumpy sphere (left), and a set of Halton points as interpolation centers (right)
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Fig. 9 Error plots for standard
and rational RBF interpolations
at different numbers of regular
and Halton points for 3D
function (19). The polyharmonic
spline r5 with polynomials of
degree m = 2 is used

without scaling. For comparison, the results of the multiquadric function
√

1 + (εr)2

with shape parameter ε = 10 are also included. This function is conditionally posi-
tive definite of order 1. Approximation with multiquadric kernel is not scalable. As
we observe, the minimum eigenvalues remain approximately unchanged for the poly-
harmonic kernel when scaling is applied and approach zero otherwise. The worse
behavior is observed for the multiquadric function even with this rather large shape

Fig. 10 The behavior of the minimum eigenvalue of matrix ZT KZ on a local patch with radius 4h in
2D (left) and a local patch with radius 3h in 3D (right). The polyharmonic spline (PHS) r4 log r with and
without scaling, and the multiquadric function

√
1 + 100r2 are used to construct the kernel matrix K
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Fig. 11 Computational times v.s. N , the number of interpolation points in 1D, 2D and 3D problems. In all
cases, a complexity near O(N) is observed

parameter. While not presented here, the conditioning of the saddle point matrix (5)
obeys a same line in all cases.

Instabilities are also observed for other well-known kernels such as Gaussians and
inverse multiquadrics which are not presented here. This is the main reason for us to
focus on polyharmonic kernels in this paper. In [8] the idea of variably scaled kernels
(VSK) [3] is used to avoid such instabilities for positive definite functions. More
details about the conditioning of RBF matrices can be found in [23, chap. 12].

Finally, in Fig. 11 the plots of computational times with respect to N , the num-
ber of interpolation points, are shown for 1D, 2D, and 3D examples. In all cases, a
complexity rate near O(N) is observed.

6 Conclusion

The rational RBF interpolation method was modified for conditionally positive defi-
nite kernels. A stable algorithm based on a scalable rational polyharmonic interpola-
tion and the partition of unity method was developed. Some numerical experiments
in one, two and three dimensions were given. Numerical results confirmed the
robustness and accuracy of the new method. We leave studies on approximation of
derivatives and other possible rational RBF techniques for a future work.
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