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THE DIRECT RADIAL BASIS FUNCTION PARTITION OF UNITY
(D-RBF-PU) METHOD FOR SOLVING PDEs\ast 

DAVOUD MIRZAEI\dagger 

Abstract. In this paper, a new localized radial basis function (RBF) method based on partition
of unity (PU) is proposed for solving boundary and initial-boundary value problems. The new
method benefits from a direct discretization approach and is called the ``direct RBF partition of unity
(D-RBF-PU)"" method. Thanks to avoiding all derivatives of PU weight functions as well as all lower
derivatives of local approximants, the new method is faster and simpler than the standard RBF-PU
method. Besides, the discontinuous PU weight functions can now be utilized to develop the method
in a more efficient and less expensive way. Alternatively, the new method is an RBF-generated finite
difference (RBF-FD) method in a PU setting which is much faster and in some situations more
accurate than the original RBF-FD. The polyharmonic splines are used for local approximations,
and the error and stability issues are considered. Some numerical experiments on irregular two- and
three-dimensional domains, as well as cost comparison tests, are performed to support the theoretical
analysis and to show the efficiency of the new method.
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1. Introduction. Approximation by kernels and in particular by radial basis
functions (RBFs) has received a lot of attention due to many attractive advantages
such as ease of implementation, flexibility with respect to geometry and dimension,
and giving spectral accuracy in some situations. However, the global RBF approxi-
mations produce full and ill-conditioned matrices which make them restricted for
large scale problems. So, localized approaches, such as RBF-generated finite difference
(RBF-FD) and RBF partition of unity (RBF-PU) methods, are currently being
developed.

The earliest reference to RBF-FD seems to be a conference presentation in 2000
[43]. Then, this method was developed in three simultaneous studies [41, 44, 48] in
2003. As in the classical FD methods, RBF-FD results in sparse matrices with an
additional advantage that has all the flexibility of global RBFs in terms of handling
irregular geometries and scattered node layouts. To avoid the ill-conditioning at the
near flat cases, i.e., for very small values of RBF shape parameters, some technical
algorithms have been introduced in [14, 16, 24] for Gaussian RBF and in [3, 17, 18, 49]
for all types of RBFs. Equipped with such algorithms, the RBF-FD method has been
successfully applied on a large class of PDEs in Euclidian spaces and on smooth
submanifolds [12, 15, 13].

Although a PU method was introduced by Shepard in 1968 [40], the first
combination with RBF interpolation goes back to [46] in 2002. However, a PU finite
element method for solving PDEs was proposed in [2, 26] a few years earlier. The
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THE D-RBF-PU METHOD FOR SOLVING PDEs A55

RBF-PU collocation method for solving transport equations on the unit sphere has
been developed in [1]. The capability of the RBF-PU method for numerical solution
of parabolic PDEs in financial mathematics has been investigated in [29, 30, 38, 39].
Preconditioning schemes are studied in [21] and a least squares RBF-PU method
is proposed in [25]. Adaptivity and stability issues via variably scaled kernels were
recently given in [8]. Other applications can be found in [4, 7, 9].

In this paper we introduce a new RBF-PU method for solving boundary value
problems. We use the idea of direct discretization and link the RBF-PU to the RBF-FD
and construct a direct RBF-PU method which is more efficient than both RBF-FD
and RBF-PU methods. Indeed, the classical FD method as well as the RBF-FD
method use the direct approach for discretizing a PDE operator to a finite dimensional
differentiation matrix. The direct approach also has been used in [28] to speed up the
computations of moving least squares derivatives and then in [27] to accelerate the
meshless local Petrov--Galerkin method. We refer the reader to [32] for more details
about the direct discretization methods.

The rest of this paper is organized as follows. In section 2, the idea of PU in
approximation theory is reviewed. In section 3, the combination of RBF approximation
with PU weights and the classical RBF-PU method for solving PDEs are presented.
In section 4, the well-known RBF-FD method which is in connection with the new
method is briefly reviewed. In section 5, the new direct RBF-PU method is introduced
and its connections to some variations of the RBF-FD method are derived. Also, the
scaling property of polyharmonic kernels and a stabilization technique based on scaling
are recalled. In section 6, the theoretical foundation of the method is provided and the
consistency and stability issues are considered. Finally, in section 7, some numerical
experiments and comparisons with other RBF-based methods are given.

As a remark on notation, we will use bold math symbols for vectors as far as we
are writing in numerical linear algebra. Matrices are also denoted by capital nonbold
symbols.

2. Partition of unity. Let \{ \Omega \ell \} Nc

\ell =1 be an open and bounded covering of \Omega 

that means all \Omega \ell are open and bounded and \Omega \subset 
\bigcup Nc

\ell =1 \Omega \ell . A family of nonnegative

functions \{ w\ell \} Nc

\ell =1 is called a PU with respect to the covering \{ \Omega \ell \} if
(1) supp(w\ell ) \subseteq \Omega \ell ,

(2)
\sum Nc

\ell =1 w\ell (x) = 1 \forall x \in \Omega .
Sometimes, for a differentiation purpose, one needs to impose more regularity on PU
weight functions w\ell and may assume w\ell \in Ck(\BbbR d) and for every \alpha \in \BbbN d

0 with | \alpha | \leqslant k
there exists a constant C\alpha such that

\| D\alpha w\ell \| L\infty (\Omega \ell ) \leqslant C\alpha \rho 
 - | \alpha | 
\ell ,(2.1)

where \rho \ell = 1
2 supx,y\in \Omega \ell 

\| x  - y\| 2. In this case, \{ w\ell \} is called a k-stable PU with
respect to \{ \Omega \ell \} [47].

We start with an overlapping covering \{ \Omega \ell \} Nc

\ell =1 of \Omega . If we assume V\ell is an
approximation space on \Omega \ell and s\ell \in V\ell is a local approximant of a function u on \Omega \ell ,
then

s =

Nc\sum 
\ell =1

w\ell s\ell (2.2)

is a global approximation of u on \Omega which is formed by joining the local approximants
s\ell via PU weights w\ell . For example, if X = \{ x1, . . . , xN\} \subset \Omega , X\ell = X \cap \Omega \ell , and s\ell 
are u interpolants on X\ell , then we can simply show that s is a u interpolant on X.
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A56 DAVOUD MIRZAEI

A possible choice for w\ell is the Shepard's weights

w\ell (x) =
\psi \ell (x)\sum Nc

j=1 \psi j(x)
, 1 \leqslant \ell \leqslant Nc,(2.3)

where \psi \ell are nonnegative, nonvanishing, and compactly supported functions on \Omega \ell .
If w\ell and s\ell are smooth enough, then the PU approximation (2.2) can be used for

solving differential equations. To see some applications see [2, 26], which apply the
PU method on finite element spaces, and [1, 4, 7, 8, 9, 20, 25, 29, 30, 38, 39], which
combine the PU method with RBF approximations.

To describe the overall approach, assume that we are looking for the approximate
solution of a PDE problem of the form

Lu = f in \Omega ,(2.4)

Bu = g on \Gamma ,(2.5)

where \Omega is a domain in \BbbR d, \Gamma = \partial \Omega denotes its boundary, and L and B are linear
differential operators defined and continuous on some normed linear space U in which
the true solution of (2.4)--(2.5) should lie. Here, B is the boundary operator describing
the Drichlet and/or Neumann boundary conditions. To obtain a numerical solution,
the PDE operators L and B should operate on s (and hence on products w\ell s\ell ) in
(2.2) to get

Lu \approx Ls =

Nc\sum 
\ell =1

L(w\ell s\ell ), Bu \approx Bs =

Nc\sum 
\ell =1

B(w\ell s\ell ),

where s\ell is local approximation of u in patch \Omega \ell . The differential operators L and
B should contain certain partial derivatives D\alpha for multi-indices \alpha \in \BbbN d

0. Using the
Leibniz's rule we have

D\alpha s =

Nc\sum 
\ell =1

\sum 
| \beta | \leqslant | \alpha | 

\biggl( 
\beta 

\alpha 

\biggr) 
D\beta w\ell D

\alpha  - \beta s\ell ,

provided that both w\ell and s\ell are smooth enough. For example, if L = \Delta = D(2,0,...,0)+
D(0,2,...,0) + \cdot \cdot \cdot +D(0,0,...,2), the well-known Laplacian operator, then

\Delta s =

Nc\sum 
\ell =1

(s\ell \Delta w\ell + 2\nabla w\ell \cdot \nabla s\ell + w\ell \Delta s\ell ) ,

where derivatives of w\ell are even more complicated if w\ell is defined as (2.3). This
will also increase the computational costs of the method. This paper proposes an
alternative approach that avoids the above computations and reduces both computa-
tional cost and algorithmic complexity.

3. RBF-PU method. Let \phi : \BbbR d \rightarrow \BbbR be a radial and conditionally positive
definite function of order n and let X = \{ x1, x2, . . . , xN\} be a set of trial points
distributed in \Omega \subset \BbbR d, the domain in which the PDE is posed. Let \{ \Omega \ell \} Nc

\ell =1 be an
open and bounded covering of \Omega and X\ell = X \cap \Omega \ell , 1 \leqslant \ell \leqslant Nc, be the sets of trial
points in patches \Omega \ell . Assume further that

J\ell := \{ j \in \{ 1, . . . , N\} : xj \in X\ell \} .
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The local RBF approximation spaces in \Omega \ell are defined as

V\ell = V\phi ,X\ell 
:= span\{ \phi (\cdot  - xj) : j \in J\ell \} \oplus \BbbP n - 1(\BbbR d), 1 \leqslant \ell \leqslant Nc,

and the local approximants s\ell \in V\ell of function u are expressed as

s\ell (x) =
\sum 
j\in J\ell 

cj\phi (x - xj) +

Q\sum 
k=1

bkpk(x), x \in \Omega \ell \cap \Omega ,

where \{ p1, . . . , pQ\} is a basis for polynomial space \BbbP n - 1(\BbbR d) and Q = (n+d - 1)!
d!(n - 1)! is

its dimension. For an interpolation problem, coefficient vectors c and b are obtained
by enforcing interpolation conditions s\ell (xj) = u(xj) for j \in J\ell together with side
conditions \sum 

j\in J\ell 

cjpk(xj) = 0, j \in J\ell , 1 \leqslant k \leqslant Q,

leading to linear system of equations\biggl[ 
\Phi P
PT 0

\biggr] \biggl[ 
c
b

\biggr] 
=

\biggl[ 
u| X\ell 

0

\biggr] 
,

where \Phi (i, j) = \phi (xj  - xi), i, j \in J\ell , P (j, k) = pk(xj), j \in J\ell , 1 \leqslant k \leqslant Q, and
u| X\ell 

= (u(xj)), j \in J\ell . This system is uniquely solvable if and only if X\ell is a
\BbbP n - 1(\BbbR d)-unisolvent set, meaning that the only polynomial from \BbbP n - 1(\BbbR d) which is
zero on X\ell is the zero function.

The interpolant s\ell can also be written in the Lagrange form as

s\ell (x) =
\sum 
j\in J\ell 

u\ast j (\ell ;x)u(xj),(3.1)

where Lagrange functions u\ast j (\ell ; \cdot ) are the solution of\biggl[ 
\Phi P
PT 0

\biggr] \biggl[ 
u\ast (\ell ;x)
v\ast (\ell ;x)

\biggr] 
=

\biggl[ 
\phi (\cdot  - x)| X\ell 

p(x)

\biggr] 
,

for p(x) = [p1(x), . . . , pQ(x)]
T , and satisfy u\ast j (\ell ;xi) = \delta ij . Substituting (3.1) into

(2.2) yields

s(x) =

Nc\sum 
\ell =1

\sum 
j\in J\ell 

\Bigl( 
w\ell (x)u

\ast 
j (\ell ;x)

\Bigr) 
u(xj), x \in \Omega .(3.2)

For a fixed x \in \Omega since w\ell (x) = 0 if x /\in \Omega \ell , we may introduce the index family

I(x) :=
\bigl\{ 
\ell \in \{ 1, 2, . . . , Nc\} : x \in \Omega \ell 

\bigr\} 
to replace the summation script on \ell in (3.2) by \ell \in I(x).

Now, we review the known collocation RBF-PU method for solving the PDE
problem (2.4)--(2.5). Assume

Y = \{ y1, . . . , yM\} 

is a set of test points in \Omega and on its boundary \Gamma . This set may be different from the
trial set of points X but for some theoretical reasons (to guarantee the solvability of
the final unsymmetric system) we may assume M \geqslant N . Assume Y = Y\Omega \cup Y\Gamma where
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A58 DAVOUD MIRZAEI

Y\Omega and Y\Gamma contain interior and boundary test points, respectively, and Y\Omega \cap Y\Gamma = \emptyset .
In a collocation method the PDE and its boundary conditions are sampled at sets of
points Y\Omega and Y\Gamma , respectively, to get

(Lu)(yk) =f(yk), yk \in Y\Omega ,(3.3)

(Bu)(yk) = g(yk), yk \in Y\Gamma ,(3.4)

which is a semidiscrete form of (2.4)--(2.5).
The standard RBF-PU method uses the approach given at the end of section 2

where Lu and Bu are approximated by Ls and Bs, respectively, i.e.,

Lu \approx Ls =

Nc\sum 
\ell =1

\sum 
j\in J\ell 

L
\Bigl( 
w\ell u

\ast 
j (\ell ; \cdot )

\Bigr) 
u(xj), Bu \approx Bs =

Nc\sum 
\ell =1

\sum 
j\in J\ell 

B
\Bigl( 
w\ell u

\ast 
j (\ell ; \cdot )

\Bigr) 
u(xj).

Inserting in (3.3)--(3.4) and replacing ``\approx "" by ``="" lead to M \times N and unsymmetric
linear system of equations \biggl[ 

AL

AB

\biggr] 
\bfitu =

\biggl[ 
f | Y\Omega 

g| Y\Gamma 

\biggr] 
,(3.5)

where \bfitu = [u1, . . . , uN ]T is the approximate solution for the exact nodal vector \bfitu ex =
u| X = [u(x1), . . . , u(xN )]T . The components of AL and AB are determined by

AL(k, j) =
\sum 

\ell \in I(yk)

\Bigl( 
L(w\ell u

\ast 
j (\ell ; \cdot ))

\Bigr) 
(yk), yk \in Y\Omega ,

AB(k, j) =
\sum 

\ell \in I(yk)

\Bigl( 
B(w\ell u

\ast 
j (\ell ; \cdot ))

\Bigr) 
(yk), yk \in Y\Gamma .

The differential operators L and B should act on product w\ell u
\ast 
j (\ell ; \cdot ) leading to some

complicated calculations and algorithmic complexity, as pointed out in section 2.

4. RBF-FD method. In this section the RBF-FD is briefly reviewed as it
is connected to the new method of section 5. The RBF-FD arises naturally as a
generalization of standard FD formulas. For a linear differential operator L, the value
of (Lu)(yk) can be locally approximated by the values of u at a stencil \widetilde Xk \subset X of
points nearing yk by obtaining the weights \xi j such that

Lu(yk) \approx \xi Tu| \widetilde Xk
,

where the test point yk is usually assumed to be located approximately at the center
of stencil \widetilde Xk. To obtain the weight vector \xi , we require the stencil to reproduce all
functions spanned by RBFs \{ \phi (\cdot  - xj) : xj \in \widetilde Xk\} . This happens if \xi satisfies\sum 

xj\in \widetilde Xk

\xi j\phi (xi  - xj) = L\phi (xi  - yk), xi \in \widetilde Xk,

or in matrix form

\Phi \xi = L\phi (\cdot  - yk)| \widetilde Xk
.

It is beneficial to also augment the stencil with polynomial terms and add matching
constraints to the associated RBF expansion coefficients. This corresponds to requiring

D
ow

nl
oa

de
d 

01
/0

8/
21

 to
 1

29
.2

15
.1

7.
19

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE D-RBF-PU METHOD FOR SOLVING PDEs A59

the weights to further reproduce the polynomial space \BbbP n - 1(\BbbR d). The augmented
linear system then becomes\biggl[ 

\Phi P
PT 0

\biggr] \biggl[ 
\xi 
\nu 

\biggr] 
=

\biggl[ 
L\phi (\cdot  - yk)| \widetilde Xk

Lp(yk)

\biggr] 
.(4.1)

This system is uniquely solvable if and only if \widetilde Xk is a \BbbP n - 1(\BbbR d)-unisolvent set. The
kth row of the differentiation matrix AL contains the RBF-FD weight vector \xi of test
point yk interspersed with zeros. The zeros correspond to the trial points outside
the stencil \widetilde Xk. RBF-FD is extensively used for solving various PDE problems in
engineering and science. For more details see [13] and the references therein.

5. The new method. Again consider the PDE problem (2.4)--(2.5). In section
2, the standard PU approach for solving this problem was reviewed. In this section
we present an alternative approach in which Lu and Bu are directly approximated by
the PU approximation as

Lu \approx 
Nc\sum 
\ell =1

w\ell s
L
\ell =: sL, Bu \approx 

Nc\sum 
\ell =1

w\ell s
B
\ell =: sB ,(5.1)

where sL\ell and sB\ell are the local approximations of Lu and Bu in patch \Omega \ell . This
will be, of course, a different approach because (at least) derivatives of w\ell are not
required. Since we have a direct approximation for Lu and Bu without any detour
via the local functions s\ell and the global approximation (2.2), this approach is called
the direct approach. Of course, if L (or B) is the identity operator, then the pure PU
approximation (2.2) results.

Here, we combine the new approach with the RBF approximation, although the
above discussion is not limited to this specific approximation technique. To this aim,
we assume sL\ell and sB\ell in (5.1) are the local RBF approximations of Lu and Bu,
respectively, having representations

sL\ell (x) =
\sum 
j\in J\ell 

Lu\ast j (\ell ;x)u(xj), sB\ell (x) =
\sum 
j\in J\ell 

Bu\ast j (\ell ;x)u(xj), x \in \Omega \ell \cap \Omega ,

where the (generalized) Lagrange function vector Lu\ast (\ell ;x) is the solution of linear
system \biggl[ 

\Phi P
PT 0

\biggr] \biggl[ 
Lu\ast (\ell ;x)
Lv\ast (\ell ;x)

\biggr] 
=

\biggl[ 
L\phi (\cdot  - x))| X\ell 

Lp(x)

\biggr] 
.(5.2)

Similarly, Bu\ast (\ell ;x) is the solution of the same system where the operator L is replaced
by B. Then, the global approximations are written as

sL(x) =

Nc\sum 
\ell =1

\sum 
j\in J\ell 

\Bigl( 
w\ell (x)Lu

\ast 
j (\ell ;x)

\Bigr) 
u(xj), sB(x) =

Nc\sum 
\ell =1

\sum 
j\in J\ell 

\Bigl( 
w\ell (x)Bu

\ast 
j (\ell ;x)

\Bigr) 
u(xj)

for x \in \Omega . It is clear that sL\ell and sB\ell are identical with Ls\ell and Bs\ell on patch \Omega \ell ,
while the global approximants sL and sB are different from their counterparts Ls and
Bs.

Collocating at test points Y\Omega and Y\Gamma will yield the same system as (3.5) but with
different matrix entries
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A60 DAVOUD MIRZAEI

AL(k, j) =
\sum 

\ell \in I(yk)

w\ell (yk)Lu
\ast 
j (\ell ; yk), yk \in Y\Omega ,

AB(k, j) =
\sum 

\ell \in I(yk)

w\ell (yk)Bu
\ast 
j (\ell ; yk), yk \in Y\Gamma .

If we set A = [ AL

AB
] and \bfitb = [

f | Y\Omega 

g| Y\Gamma 
], then the final linear system is shortened to

A\bfitu = \bfitb .(5.3)

Again, we note that \bfitu = [u1, . . . , uN ]T is the approximate solution for the exact nodal
vector \bfitu ex = [u(x1), . . . , u(xN )].

Compared with the first approach, L and B are not needed to be operated on
PU weights w\ell . For example, if L = \Delta , then in the first method \Delta (w\ell u

\ast 
j ) = w\ell \Delta u

\ast 
j +

2\nabla w\ell \cdot \nabla u\ast j + u\ast j\Delta w\ell is required for computing the components of AL, while in the
second method the single term w\ell \Delta u

\ast 
j does the whole job. So, not only all derivatives

of w\ell but also many lower derivatives of Lagrange functions u\ast j (\ell ; \cdot ) are not actually
required. At first glance, one may expect a lost in accuracy since some terms are
ignored in the new approximation. But as we will see in the following sections, the
rates of convergence for both methods are the same.

Consequently, the second approach suggests avoiding approximating u globally
by joining local approximants s\ell and then approximating Lu, in favor of directly
approximating Lu by joining local approximants sL\ell . Thus, the new method is
called the direct RBF-PU (D-RBF-PU) method. It also has some connections to
the RBF-FD methods that will be explored in the following subsections.

5.1. Connection to RBF-FD. There exists a tight connection to the RBF-FD
method. In another point of view, the direct method of this section sets up the
RBF-FD method in a PU environment. Comparing (4.1) with (5.2), the RBF-FD
weights \xi j for approximating (Lu)(yk) are (generalized) Lagrange function values

Lu\ast j (yk) on set of points (stencil) \widetilde Xk. Thus, sL\ell (yk) is an RBF-FD approximation of

Lu(yk) on stencil \widetilde Xk = X\ell . Since yk may belong to more than one patch \Omega \ell (precisely,
yk \in \Omega \ell \forall \ell \in I(yk)), all RBF-FD approximants sL\ell (yk), \ell \in I(yk), are computed and
then joined by \sum 

\ell \in I(yk)

w\ell (yk)s
L
\ell (yk)

to form the RBF-FD PU approximant sL(yk). Note here that yk is not approximately
located at the center of patch \Omega \ell \forall \ell \in I(yk). The same argument is obviously true
for the boundary operator B.

In RBF-FD, M stencils are formed and thus M local linear systems should be
solved whereM is the number of test or evaluation points. This number is reduced to
Nc, Nc \ll M , in D-RBF-PU, which makes it much faster than the classical RBF-FD
for setting up the final linear system. Since RBF-FD uses a single stencil per test point,
its resulting differentiation matrix is sparser. However, as we will see, a variation of
D-RBF-PU leads to a differentiation matrix that is as sparse as the one of RBF-FD.
In theory both methods have the same order of convergence, but numerical results of
section 7 show that the new method is more accurate in some situations such as for
PDEs with Neumann boundary conditions.

At the end of the following subsection, we will show that the standard RBF-FD
can be viewed as a special case of the D-RBF-PU method.
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5.2. Constant-generated PU weight functions. Here, we discuss two simple
D-RBF-PU methods that use piecewise constant functions \psi \ell to generate the PU
weight functions w\ell on the covering \{ \Omega \ell \} . Usually, compactly supported and smooth
functions (on the whole \Omega ), such as Wendland's functions [45], are used to generate a
smooth PU weight when derivatives are required. As mentioned before, no smoothness
assumption on the PU weights is required in the new D-RBF-PU method. A simple
case is to assume

\psi \ell (x) = \chi \Omega \ell 
(x) =

\Biggl\{ 
1, x \in \Omega \ell ,

0, x /\in \Omega \ell ,

in (2.3) to obtain

w\ell (x) =

\Biggl\{ 
1

| I(x)| , x \in \Omega \ell ,

0, x /\in \Omega \ell ,
(5.4)

where | I(x)| is the cardinality of (number of indices in) I(x). In this case, the local
approximants sL\ell (x) (or s

B
\ell (x)) have the same contribution in the global approximation

sL(x) (or sB(x)).
A simpler scheme will be obtained if we choose the PU weight functions as

below. Assume \{ \Omega \ell \} Nc

\ell =1 is a covering for \Omega and \omega 1, . . . , \omega Nc \in \BbbR d are patches
centers. For example, for circular (or spherical in three dimensions) patches we have
\Omega \ell = B(\omega \ell , \rho \ell ), where \omega \ell and \rho \ell are centers and radiuses, respectively. We assume
the PU weight function w\ell (x) on \Omega \ell is defined to take the constant value 1 if \omega \ell is
the closest center to x and the constant value 0, otherwise. For definition, let

Imin(x) = argmin
\ell \in I(x)

\| x - \omega \ell \| 2

and Imin,1(x) be the first component of Imin(x), as Imin(x) may contain more than
one index \ell . Now, we define the weight function

w\ell (x) :=

\Biggl\{ 
1, \ell = Imin,1(x),

0 otherwise
(5.5)

in the D-RBF-PU method. With this definition, we give the total weight 1 to the
closet patch and null weights to other patches. In fact, a local set X\ell = \Omega \ell \cap X is a
common trial set for all test points yk with \| yk  - \omega \ell \| 2 \leq \| yk  - \omega j\| 2 for j = 1, . . . , Nc

and j \not = \ell . In another view in a two-dimensional (2D) domain, by drawing the Voronoi
tiles of centers \{ \omega 1, . . . , \omega Nc

\} , this means that all test points in tile \ell use the same local
set X\ell as their trial set for approximation. This results in a variation of D-RBF-PU
that is much faster but as sparse as the RBF-FD method.

This, also, has a connection to the overlapped RBF-FDmethod, recently introduced
in [35]. The idea of the overlapped RBF-FD method is to use a common stencil for test
points located on ball B(yk, (1 - \gamma )\delta ) where \gamma \in [0, 1] is the overlap parameter. One
needs to loop over all the test points, but it is required that weights computed for
any point yi \in B(yk, (1  - \gamma )\delta ) never be recomputed again by some other stencil\widetilde Xj , j \not = k, wherein yi \in B(yj , (1  - \gamma )\delta ). Thus, the order in which the points
are traversed determines the RBF-FD weights assigned to a test point. This idea
should give a reasonable accuracy compared with the original RBF-FD but will
reduce the computational costs (the costs for solving local linear systems), remarkably.
For more details, technical issues for implementation, and some applications, see
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A62 DAVOUD MIRZAEI

[35, 36, 37]. However, the D-RBF-PU with discontinuous weight (5.5) assigns a
unique closest stencil to any test point. Although the Voronoi algorithm is not used
directly, the D-RBF-PU uses Voronoi tiles (constructed by patch centers) instead
of balls (constructed by test points) allowing automatically preventing any weight
recomputation, and looping over the patch centers instead of the test points.

Now, we address the question of whether the standard RBF-FD can be viewed
as a special case of the new D-RBF-PU method. Assume that one uses the heavily
overlapped covering \{ \Omega \ell \} M\ell =1 for \Omega \ell = B(\omega \ell , \delta ) and \omega \ell = y\ell where y\ell for \ell = 1, . . . ,M
are all the test points. Also, assume that the PU weight function is defined as in (5.5).

In this case, \widetilde Xk = Xk = \Omega k \cap X and w\ell (yk) = \delta \ell k, k, \ell = 1, . . . ,M . Thus,

sL(yk) =
\sum 

\ell \in I(yk)

w\ell (yk)s
L
\ell (yk) = sLk (yk) = Lsk(yk) =

\sum 
j\in Jk

Lu\ast j (k; yk)u(xj) = \xi Tu| \widetilde Xk
.

Therefore, in this scenario the RBF-FD method is obtained from the D-RBF-PU
method.

Finally, we note that in the classical RBF-PU method the smoothness of weight
functions determines the global smoothness of the approximation. Here, no derivatives
of weight functions are needed and for the discontinuous weights (such as the above
constant-generated PU functions) the global approximations sL and sB are not
continuous. But, this causes no drawbacks because sL and sB are not required to
be differentiated anymore. Of course, one can use smooth weight functions to obtain
smooth approximations sL and sB , if required.

5.3. Polyharmonic kernels and scalability. Although all RBFs in the market
[10, 47] can be used for approximation in local domains \Omega \ell \cap \Omega , in this paper we employ
the polyharmonic kernel

\varphi m,d(r) :=

\biggl\{ 
r2m - d log r, 2m - d even,
r2m - d, 2m - d odd,

for integer m > d/2 and assume \phi (x) = \varphi m,d(\| x\| 2) for x \in \BbbR d. The polyharmonic
kernel \varphi m,d is (up to a sign) conditionally positive definite of order n = m - \lceil d/2\rceil +1
and has the Beppo--Levi space

BLm(\BbbR d) :=
\bigl\{ 
f \in C(\BbbR d) : D\alpha f \in L2(\BbbR d) \forall \alpha \in \BbbN d

0 with | \alpha | = m
\bigr\} 

as its native space if it is considered as a conditionally positive definite kernel of order
m. In one and two dimensions m = n while m > n in higher dimensions. This means
that to work with the native space BLm(\BbbR d) for d > 2, higher degree polynomials
than what are actually needed to guarantee the solvability should be added to the
RBF expansion.

A very useful property is that the approximation by polyharmonic kernels is
scalable, avoiding the instability in solving local linear systems for computing s\ell , s

L
\ell ,

and sB\ell . Here, we describe this in more detail. Assume that X is a set of points in a
domain \scrD with maximum pairwise distance h. Assume further that the polyharmonic
approximation of D\alpha u(x) for a fixed x \in \scrD is sought. The polyharmonic interpolation
matrix \biggl[ 

\Phi P
PT 0

\biggr] 
becomes ill-conditioned as h decreases. The conditioning of this matrix may be
measured by the lower bound of \lambda min(\Phi ) := minv:PT v=0(v

T\Phi v)/vT v. It is proved
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in [47, Chap. 12] that \lambda min(\Phi ) behaves as h - 4m+2d independent of the number of
points in X. However, this problem can be overcome in a beautiful way. If X is
blown up (scaled) to points X

h of average pairwise distance 1 and Lagrange functions
D\alpha u\ast j are calculated for the blown-up situation, then the Lagrange functions of the

original situation are scaled as h - | \alpha | D\alpha u\ast j . It is clear that in the blown-up situation the
conditioning behaves as \scrO (1). For proofs and more details about the scaling property
of polyharmonic kernels, see [5, 22, 23]. This scaling approach works without serious
instabilities for localized RBF approximations where h (and the size of local domain)
decreases while the number of points inX is fixed: the situation in RBF-FD, RBF-PU,
D-RBF-PU, and all other local RBF-based methods. In these cases, if polynomials of
order n are appended and if the monomials \{ x\alpha \} | \alpha | <n are used as a basis for \BbbP n - 1(\BbbR d),
then it is better to shift the points by the center of the local domain and then scale
by h to benefit from the local behavior of the monomial basis functions around the
origin. Note that, on behalf of the radial part, we are allowed to shift because our
approximation space is shift (and rotation) invariant.

6. Error and stability. A classical error analysis which reflects the consistency
and stability bounds on the right-hand side of the final estimation is given in this
section. Since the discretization approach is direct in the sense of [32], the theory
given in [33] for nodal meshless methods can be adapted for our analysis. First, note
that since the square system of certain meshless methods may be singular, one can
apply overtesting, i.e., choosing M (the number of test points) larger than N (the
number of trial points), to get a full rank system [34]. Thus, for solvability we assume
that the matrix A is set up by sufficiently thorough testing so that the matrix has
rank N \leqslant M . The final overdetermined linear system then should be solved by a
standard residual minimizer of numerical linear algebra techniques.

If we are looking for the errors in nodal values \bfitu ex = [u(x1), . . . , u(xN )]T , the
consistency is analyzed by finding a sharp upper bound for \| A\bfitu ex - \bfitb \| q where A and
\bfitb are the differentiation matrix and the right-hand side vector in (5.3), respectively,
and \| \cdot \| q is the q-norm in \BbbR M . According to the construction, A(k, :)\bfitu ex = sL(yk)
and bk = f(yk) = Lu(yk) for yk \in Y\Omega , and, similarly, A(k, :)\bfitu ex = sB(yk) and
bk = g(yk) = Bu(yk) for yk \in Y\Gamma . Here, by A(k, :) we mean the kth row of A. Thus,
for consistency we assume there exist domain and boundary error bounds

| sL(yk) - Lu(yk)| \leqslant \varepsilon L(yk), yk \in Y\Omega ,

| sB(yk) - Bu(yk)| \leqslant \varepsilon B(yk), yk \in Y\Gamma ,

to get

\| A\bfitu ex  - \bfitb \| q \leqslant \| \bfitvarepsilon \| q,

where \bfitvarepsilon is a vector that consists of all \varepsilon L(yk) and \varepsilon 
B(yk) values. Furthermore, assume

that \widehat \bfitu denotes the vector of approximate nodal values \widehat uj that is obtained by some
residual minimizer numerical linear algebra algorithm that solves the system A\bfitu = \bfitb 
approximately. If \widehat \bfitu is calculated via minimization of the residual \| A\bfitu  - \bfitb \| q over all
\bfitu \in \BbbR N , then

\| A\widehat \bfitu  - \bfitb \| q = min
u\in \BbbR N

\| A\bfitu  - \bfitb \| q \leqslant \| A\bfitu ex  - \bfitb \| q.

Finally, for stability we define
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CS(A) := sup
u \not =0

\| \bfitu \| p
\| A\bfitu \| q

,

which is a finite constant for any p and q norms provided that A is full rank. Now,
we can write

\| \bfitu ex  - \widehat \bfitu \| p \leqslant CS(A)\| A(\bfitu ex  - \widehat \bfitu )\| q
\leqslant CS(A)

\bigl( 
\| A\bfitu ex  - \bfitb \| q + \| A\widehat \bfitu  - \bfitb \| q

\bigr) 
\leqslant 2CS(A)\| A\bfitu ex  - \bfitb \| q
\leqslant 2CS(A)\| \bfitvarepsilon \| q.

This is a classical error analysis where the right-hand side contains the product of
a stability constant and a consistency bound. The remaining parts of this section
concern the estimations of these ingredients.

6.1. Consistency. The following theorem states that the PU approximant is at
least as good as its worst local approximant.

Theorem 6.1. Let \Omega \subset \BbbR d be bounded and \{ \Omega \ell \} Nc

\ell =1 be an open and bounded

covering of \Omega with a PU \{ w\ell \} Nc

\ell =1. If u allows the action of L and in each region
\Omega \ell \cap \Omega , Lu is approximated by a function sL\ell such that

\| Lu - sL\ell \| L\infty (\Omega \ell \cap \Omega ) \leqslant \varepsilon L\ell ,

then the global approximant sL satisfies

| Lu(x) - sL(x)| \leqslant max
\ell \in I(x)

\varepsilon L\ell =: \varepsilon L(x), x \in \Omega .(6.1)

Proof. Since \{ w\ell \} forms a PU, we simply have for any x \in \Omega 

| Lu(x) - sL(x)| \leqslant 
\sum 

\ell \in I(x)

w\ell (x)
\bigm| \bigm| Lu(x) - sL\ell (x)

\bigm| \bigm| 
\leqslant 

\sum 
\ell \in I(x)

w\ell (x)
\bigm\| \bigm\| Lu - sL\ell 

\bigm\| \bigm\| 
L\infty (\Omega \ell \cap \Omega )

\leqslant 
\sum 

\ell \in I(x)

w\ell (x)\varepsilon 
L
\ell 

\leqslant max
\ell \in I(x)

\varepsilon L\ell ,

which completes the proof.

Similarly, if u allows the action of B and

\| Bu - sB\ell \| L\infty (\Omega \ell \cap \Gamma ) \leqslant \varepsilon B\ell ,

then the estimation

| Bu(x) - sB(x)| \leqslant max
\ell \in I(x)

\varepsilon B\ell =: \varepsilon B(x) , x \in \Gamma ,

holds true.
Recall that if the PU functions w\ell are continuous on the whole \Omega , then the global

approximation sL is also continuous. It is not the case for the constant-generated
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PU weights (5.4) and (5.5). However, the only property that is used in the proof of
Theorem 6.1 is the PU property. Thus, the analysis below also holds true for the
discontinuous PU weights and in particular for the standard RBF-FD method.

For weight (5.4) at each test point x where the number of overlapping patches
change, and for weight (5.5) at each point x on the edge of the Voronoi regions of the
patch centers, we have a discontinuity in w\ell (x) that imposes a discontinuity in global
approximation sL(x) by a jump value of order

max
\ell \in I(x)

\varepsilon L\ell 

provided that Lu is continuous.
Despite the analysis of the standard derivatives of PU approximation (see [47,

section 15.4]), here PU functions w\ell need no smoothness and controlling assumption
such as that given in (2.1). Besides, | I(x)| =

\sum 
\chi \Omega \ell 

(x) is not assumed to be uniformly
bounded in \Omega , although this assumption will increase the computational efficiency of
both algorithms. See [47, Definition 15.18] for comparison.

We will need to work with a variety of Sobolev spaces. For open set \Omega \subset \BbbR d,
k \in \BbbN 0, and 1 \leqslant p < \infty the Sobolev spaces W k

p (\Omega ) consist of all u with weak
derivatives D\alpha u \in Lp(\Omega ), | \alpha | \leqslant k. The (semi-)norms

| u| p
Wk

p (\Omega )
:=

\sum 
| \alpha | =k

\| D\alpha u\| pLp(\Omega ) and \| u\| p
Wk

p (\Omega )
:=

\sum 
| \alpha | \leqslant k

\| D\alpha u\| pLp(\Omega )

are associated with these spaces. The case p = \infty is defined by

| u| Wk
p (\Omega ) := sup

| \alpha | =k

\| D\alpha u\| L\infty (\Omega ) and \| u\| Wk
p (\Omega ) := sup

| \alpha | \leqslant k

\| D\alpha u\| L\infty (\Omega ).

The Hilbert space W k
2 (\Omega ) is usually denoted by Hk(\Omega ). To introduce the Sobolev

spaces on the boundary, we assume that the bounded domain \Omega has a Ck boundary
\partial \Omega and \partial \Omega \subset 

\sum K
j=1 Uj , where Uj \subset \BbbR d are open sets. Moreover, we assume that Uj

are images of Ck-diffeomorphisms \varphi j : B \rightarrow Uj where B = B(0, 1) denotes here the
unit ball in \BbbR d - 1. Finally, if we assume that \{ wj\} is a PU with respect to \{ Uj\} , then
the Sobolev norms on \partial \Omega can be defined via

\| u\| p
Wk

p (\partial \Omega )
:=

K\sum 
j=1

\| (uwj) \circ \varphi j\| pWk
p (B)

, \| u\| Wk
\infty (\partial \Omega ) := sup

1\leqslant j\leqslant K
\| (uwj) \circ \varphi j\| Wk

\infty (B).

These norms are independent of the chosen atlas \{ Uj , \varphi j\} .
From here on, we assume that L is a linear differential operator of the form

Lu(x) =
\sum 

| \alpha | \leqslant kL

a\alpha (x)D
\alpha u(x), x \in \Omega ,

where kL is the order L and the coefficients a\alpha lie in space L\infty (\Omega ). We can also simply
show that

\| Lu\| L\infty (\Omega ) \leqslant Ca\| u\| WkL
\infty (\Omega )

,(6.2)

where Ca = max| \alpha | \leqslant kL
\| a\alpha \| L\infty (\Omega ). Since different types of boundary conditions may

be imposed on \Gamma , we assume \Gamma = \Gamma 1 \cup \cdot \cdot \cdot \cup \Gamma T such that \Gamma i \cap \Gamma j = \emptyset for i \not = j, and
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Bu(x) =

T\sum 
j=1

\chi \Gamma j (x)

kj\sum 
k=0

bj,k(x)
\partial ku

\partial \nu k
(x), x \in \Gamma ,

where \nu is the outward normal to the boundary, and \Gamma j are of smoothness class Ckj for
1 \leqslant j \leqslant T in which kj is the order of B on \Gamma j . Also, we assume bj,k \in L\infty (\Gamma j). Here,
\chi \Gamma j (x) is the characteristic function of set \Gamma j , i.e., it is 1 if x \in \Gamma j and 0 otherwise. It
is not difficult to prove that

\| Bu\| L\infty (\Gamma j) \leqslant Cbj\| u\| Wkj
\infty (\Gamma j)

, 1 \leqslant j \leqslant T,(6.3)

where Cbj = max1\leqslant k\leqslant kj \| bj,k\| L\infty (\Gamma j). If we set kB = max\{ kj : 1 \leqslant j \leqslant T\} and assume

\Gamma is of smoothness class CkB , then the norm on the right-hand side of (6.3) can be
overestimated by \| u\| 

W
kB
\infty (\Gamma j)

.

In order to achieve high order convergence, the regularity of true solution u
needs to be higher than what is strictly required by the problem itself. In the
following we assume that the domain, the boundary, the boundary conditions, and
the right-hand-side function f allow the unique solution u \in Hm(\Omega ) \cap W kB

\infty (\Omega ) for
some m > kL + d/2.

The local bounds \varepsilon L\ell and \varepsilon B\ell for polyharmonic kernels in the Sobolev norms can
be estimated by applying the following theorem.

Theorem 6.2 (see [47, Theorem 11.36]). Let m > k + d/2. Suppose that
\scrD \subset \BbbR d is open and bounded and satisfies an interior cone condition. Consider the
polyharmonic kernel \varphi m,d as conditionally positive definite of order m. Then the error
between u \in Hm(\scrD ) and its polyharmonic interpolant s on X \subset \scrD can be bounded by

| u - s| Wk
p (\scrD ) \leqslant Ch

m - k - d(1/2 - 1/p)+
X,\scrD | u| Hm(\scrD )

for 1 \leqslant p \leqslant \infty and sufficiently small hX,\scrD . If we use norms instead of seminorms we
have

\| u - s\| Wk
p (\scrD ) \leqslant Ch

m - k - d(1/2 - 1/p)+
X,\scrD \| u\| Hm(\scrD ).

Here, by x+ we mean max\{ x, 0\} .
The case p = \infty reduces to error bound

| u - s| Wk
\infty (\scrD ) \leqslant Ch

m - k - d/2
X,\scrD | u| Hm(\scrD )

and will be used in what follows. If polynomials of higher orders are appended or
the target function has an arbitrary smoothness, the analysis given in [5] for ``optimal
stencils in Sobolev spaces"" can be adapted, instead. According to [5], for u \in Hm(\scrD ),
m > k + d/2, the achievable rate for a large enough stencil X \subset \scrD turns out to be

| u - s| Wk
\infty (\scrD ) \leqslant C

\left\{     
hm - k - d/2| u| Hm(\scrD ), m < q + d/2,

hq - k| u| Hm(\scrD ), m > q + d/2,

hm - k - d/2 - \epsilon | u| Hm(\scrD ), m = q + d/2, \epsilon arbitrary small,

(6.4)

where h is the stencil size and q is the maximal order of polynomials on which the
approximation is exact. This means that one cannot have a convergence rate better
than m  - k  - d/2 for functions in Hm(\scrD ), no matter how many nodes are used for
approximation, where they are placed, and how large q is chosen. On the other side,
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for a fixed node set X the convergence rate in any Sobolev space Hm(\scrD ) cannot be
better than q - k no matter how large m is. This optimal convergence rate in Hm(\scrD )
can be obtained via polyharmonic kernels \varphi m,d provided that the underlying set allows
exactness on polynomials of order q = \lfloor m  - d/2\rfloor + 1. If the target function lies in
some Hn(\scrD ) with n > m, and if we manage to have a scalable stencil of polynomial
exactness q > n  - d/2, no matter how we get it, maybe from polyharmonics \varphi m,d

with a smaller m but additional polynomials up to order q, then according to [5] we
have a stencil with optimal order in Hn(\scrD ). If q < n - d/2 the order remains at q - k
no matter how large n is. Thus, the error bound (6.4) by replacing m by n is still
valid for u \in Hn(\scrD ). This means that in a polyharmonic approximation if the target
function is smooth enough, then the order of convergence is fully determined by the
amount of appended polynomials, no matter how large or small the exponent of the
radial part is. Of course, the radial part determines the minimal order of polynomials
that should be augmented to the expansion to obtain a unique stencil.

To treat the approximation at the boundary points, we need a kind of trace
theorem holding for infinity norms. If \scrD is a bounded and open set in \BbbR d with a C1

boundary, then the Morrey's inequality implies that there exists CM > 0 such that
\forall u \in W 1

\infty (\scrD )
\| u\| C0,1(\scrD ) \leqslant CM\| u\| W 1

\infty (\scrD ),

where C0,1(\scrD ) is the space of Lipschitz functions on \scrD . Since u is bounded and
Lipschitz, we can extend its domain to \scrD by continuity. Hence we have a trace
operator W 1

\infty (\scrD ) \rightarrow L\infty (\partial \scrD ) with

\| u| \partial \scrD \| L\infty (\partial \scrD ) \leqslant \| u\| L\infty (\scrD ) \leqslant \| u\| W 1
\infty (\scrD ).

Considering the first inequality, this also shows that if \scrD has a Ck+1 boundary and
u \in W k+1

\infty (\scrD ), then

\| u\| Wk
\infty (\partial \scrD ) \leqslant C\| u\| Wk

\infty (\scrD ).

Now, using Theorems 6.1 and 6.2 and the above discussion, we have the following
error estimation.

Theorem 6.3. Let \Omega \subset \BbbR d be an open and bounded domain with a CkB+1 boundary.
Let \{ \Omega \ell \} Nc

\ell =1 be an open and bounded covering of \Omega with PU functions w\ell . Suppose
that all sets \Omega \ell \cap \Omega satisfy interior cone conditions. Obtain all local approximants sL\ell 
and sB\ell using the polyharmonic kernel \varphi m,d where it is considered as a conditionally
positive definite of order m. If sL and sB are the direct PU approximations of Lu
and Bu, respectively, then

| Lu(x) - sL(x)| \leqslant Ch
m - kL - d/2
X,\Omega \| u\| Hm(\Omega ), x \in \Omega ,

| Bu(x) - sB(x)| \leqslant Ch
m - kB - d/2
X,\Omega \| u\| Hm(\Omega ), x \in \Gamma ,

hold for sufficiently small fill distance hX,\Omega and all u \in Hm(\Omega ) \cap W kB
\infty (\Omega ) with

m > kL + d/2. If, in addition, polynomials of higher order q are appended to the
polyharmonic kernel \varphi m,d and u \in Hn(\Omega ) \cap HkB (\Omega ), n > kL + d/2, then

| Lu(x) - sL(x)| \leqslant C

\left\{     
h
n - kL - d/2
X,\Omega \| u\| Hn(\Omega ), n < q + d/2,

hq - kL

X,\Omega \| u\| Hn(\Omega ), n > q + d/2,

h
n - kL - d/2 - \epsilon 
X,\Omega \| u\| Hn(\Omega ), n = q + d/2, \epsilon arbitrary small,

provided that the stencil sizes are proportional to the fill distance hX,\Omega . The same
bound holds true for | Bu(x) - sB(x)| by replacing kL by kB.

D
ow

nl
oa

de
d 

01
/0

8/
21

 to
 1

29
.2

15
.1

7.
19

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A68 DAVOUD MIRZAEI

Proof. To prove the first error bound, according to Theorem 6.1, it is sufficient
to estimate the upper bounds \varepsilon L\ell . Using the fact that sL\ell = Ls\ell on \Omega \ell \cap \Omega , we can
write for any \ell \in \{ 1, . . . , Nc\} ,

\| Lu - sL\ell \| L\infty (\Omega \ell \cap \Omega ) = \| Lu - Ls\ell \| L\infty (\Omega \ell \cap \Omega )

\leqslant Ca\| u - s\ell \| WkL
\infty (\Omega \ell \cap \Omega )

\leqslant CaCh
m - kL - d/2
X\ell ,\Omega \ell \cap \Omega \| u\| Hm(\Omega \ell \cap \Omega )

=: \varepsilon L\ell ,

where (6.2) and Theorem 6.2 are applied in the second and third lines, respectively.
Then hX\ell ,\Omega \ell \cap \Omega \leqslant hX,\Omega and \| u\| Hm(\Omega \ell \cap \Omega ) \leqslant \| u\| Hm(\Omega ) finish the proof. For the error
estimation on the boundary, we first modify the local domains \Omega \ell \cap \Omega to some open
domains \widetilde \Omega \ell such that \Omega \ell \cap \Omega \subseteq \widetilde \Omega \ell \subset \Omega , hX\ell ,\widetilde \Omega \ell 

= ChX\ell ,\Omega \ell \cap \Omega , and \widetilde \Omega \ell have CkB+1

boundaries. Then

\| Bu - sB\ell \| L\infty (\Omega \ell \cap \Gamma j) = \| Bu - Bs\ell \| L\infty (\Omega \ell \cap \Gamma j)

\leqslant Cb\| u - s\ell \| WkB
\infty (\Omega \ell \cap \Gamma j)

\leqslant Cb\| u - s\ell \| WkB
\infty (\partial \widetilde \Omega \ell )

\leqslant Cb\| u - s\ell \| WkB
\infty (\widetilde \Omega \ell )

\leqslant CbCh
m - kB - d/2

X\ell ,\widetilde \Omega \ell 
\| u\| Hm(\widetilde \Omega \ell )

=: \varepsilon B\ell ,

where Cb is the maximum of Cbj 's. Finally, hX\ell ,\widetilde \Omega \ell 
= ChX\ell ,\Omega \ell \cap \Omega \leqslant ChX,\Omega and

\| u\| Hm(\widetilde \Omega \ell )
\leqslant \| u\| Hm(\Omega ) complete the proof. We note here that not only the boundary

points on \Omega \ell \cap \Gamma j but also the interior points in \Omega \ell \cap \Omega are all contributed in the
approximation process of Bu(x) for x \in \Omega \ell \cap \Gamma j . Thus, the final bound should contain
the domain fill distance hX,\Omega , as it does.

The proof of the second bound is the same by using the discussion right after
Theorem 6.2.

Theorem 6.3 proves that \varepsilon L(yk) = \scrO (h
m - kL - d/2
X,\Omega ) for \{ k : yk \in Y\Omega \} and \varepsilon B(yk) =

\scrO (h
m - kB - d/2
X,\Omega ) for \{ k : yk \in Y\Gamma \} provided that u \in Hm(\Omega ) \cap W kB

\infty (\Omega ). In general,

\| \bfitvarepsilon \| \infty = \scrO (h
m - kL - d/2
X,\Omega ) as kB < kL and hX,\Omega is assumed to be sufficiently small. If u is

smooth enough, L and B are scalable, and polynomials of higher order q are appended
to the polyharmonic spline (PHS) expansion, then the rates will be improved to hq - k

X,\Omega 

for k = kL, kB , and the consistency order \| \bfitvarepsilon \| \infty = \scrO (hq - kL

X,\Omega ) will be resulted.

6.2. Stability. Despite the lack of a theoretical bound even for simple operators
L = \Delta and B = Id, Schaback [33] has proposed some numerical estimators for the
stability constant CS(A) for an arbitrary matrix A. For example, in case p = q = 2,

CS(A) =

\biggl( 
min

1\leqslant j\leqslant N
\sigma j

\biggr)  - 1

for the N positive singular values \sigma 1, . . . , \sigma N of A, and these are obtainable by singular
value decomposition. Also, the (q, p)-norm of the pseudoinverse of A, defined by

\| A\dagger \| q,p := sup
u \not =0

\| A\dagger \bfitu \| q
\| \bfitu \| p

,
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overestimates CS(A). Finally, a simple possibility, restricted to square systems, is
to use the fact that the MATLAB condest command estimates the L1 condition
number, which is the L\infty condition number of the transpose. Thus,

\widetilde CS(A) :=
condest(AT )

\| A\| \infty 

is an estimate of the L\infty norm of A - 1. This is computationally very cheap for sparse
matrices; however, an extension to nonsquare matrices is missing.

Although numerical results of section 7 show an excellent stability for special L
and B operators, it is left for a future work to theoretically estimate CS(A) in terms
of discretization parameters and behavior of operators. This is an open problem not
only for the method of this paper but also for all previous unsymmetric local meshless
(RBF-based or otherwise) methods. See [6, 42] for recent attempts to tackle a similar
problem in least squares settings for the RBF-FD method.

7. Numerical results. In this section, some numerical results of the D-RBF-PU
method and comparisons with other local RBF-based methods are given. We consider
the Poisson equation and the standard diffusion (heat) equation with Dirichlet and
Neumann boundary conditions in two and three dimensions.

All algorithms are implemented in MATLAB and executed on a machine with an
Intel Core i7 processor, 4.00 GHz, and 16 GB RAM.

Domains. The box domain \Omega B := (0, 1)2, the circular domain \Omega C := \{ x \in \BbbR 2 :
\| x\| 2 < 1\} , and the nonconvex domain with smooth boundary, defined using polar
coordinates as [25]

\Omega S := \{ x = (r, \theta ) : r < 0.7 + 0.12(sin 6\theta + sin 3\theta ) =: rS , \theta \in [0, 2\pi )\} ,

are used for experiments in \BbbR 2. In \BbbR 3 we consider the unit ball \Omega U := \{ x \in \BbbR 3 :
\| x\| 2 < 1\} , and the nonconvex domain

\Omega Q := \{ x = (r, \theta , \varphi ) : r < rQ(\theta , \varphi ), \theta \in [0, 2\pi ), \varphi \in [0, \pi ]\} ,

where rQ =
\bigl[ 
1+sin2(2 sin\varphi cos \theta ) sin2(2 sin\varphi sin \theta ) sin2(2 cos\varphi )

\bigr] 1/2
. The 3D domains

\Omega U and \Omega Q are shown in Figure 7.1, and the 2D domains \Omega C and \Omega S are shown in
Figure 7.2.

Fig. 7.1. Three-dimensional domains \Omega U (left) and \Omega Q (right), together with boundary points.
In the case of \Omega U , some of the internal trial points are shown in red.
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A70 DAVOUD MIRZAEI

Fig. 7.2. 690 Halton points on domain \Omega C (left) and 681 Hammersley points on domain \Omega S

(right), together with circular patches.

Boundary conditions. The Neumann boundary condition is imposed on the top
and bottom sides of \partial \Omega B , on the upper semicircle of \partial \Omega C , i.e., on \{ x = (1, \theta ) \in \partial \Omega C :
\theta \in [0, \pi ]\} , on the upper curve of \partial \Omega S , i.e., on \{ x = (rS , \theta ) \in \partial \Omega S : \theta \in [0, \pi ]\} , on the
north surface of \partial \Omega U , i.e., on \{ x = (1, \theta , \varphi ) \in \partial \Omega U : \theta \in [0, 2\pi ), \varphi \in (\pi /2, \pi ]\} , and on
the north surface of \partial \Omega Q, i.e., on \{ x = (rQ, \theta , \varphi ) \in \partial \Omega Q : \theta \in [0, 2\pi ), \varphi \in (\pi /2, \pi ]\} .
Other parts of boundaries are constrained by Dirichlet boundary conditions. For
comparison in some experiments, we may also use a pure Dirichlet or a pure Neumann
boundary condition.

Sets of points. Scattered trial and test points with fill distance h = hX,\Omega are used
in experiments. Halton points on \Omega B , \Omega C , and \Omega U , Hammersley points on \Omega S , and
gridded points on \Omega Q are employed. We construct the points on a cube and use their
restriction to the domain \Omega . The fill distance is approximated by h \approx (cdN) - 1/d where
N is the number of trial points, d is the dimension, and cd = volume(B)/volume(\Omega )
where B here is a smallest possible cube that contains \Omega . Boundary points \{ (1, \theta k) :
1 \leqslant k \leqslant | Y\Gamma | \} and \{ (rS , \theta k) : 1 \leqslant k \leqslant | Y\Gamma | \} are used on \partial \Omega C and \partial \Omega S , respectively,
where \{ \theta k\} is a set of equidistance points on [0, 2\pi ). The boundary points on \partial \Omega U

are constructed by the equal area partitioning algorithm [31]. On \partial \Omega Q we use the
projected points from \partial \Omega U . See Figure 7.1. In all cases, the fill distance on the
boundary (the number of points on the boundary) is adjusted to the fill distance of
internal points to be approximately of the same size.

The PU covering \{ \Omega \ell \} = \{ B(\omega \ell , \rho \ell ) \cap \Omega \} with centers \{ \omega 1, \omega 2, . . . , \omega Nc
\} \subset \Omega is

used. Gridded patch centers with horizontal and vertical distances hc are used inside
\Omega , and boundary centers with a distance of order hc are constructed with the same
techniques discussed above for the boundary test points. For points far from the
boundary, the radiuses of patches are assumed to be constant (independent of \ell ) and
proportional to hc, i.e., \rho \ell = \rho = Cchc where Cc determines the amount of overlap
among patches. But, for points on and adjacent to the boundary (up to a radial
hc-distance from the boundary) we increase the radius \rho by a factor of 1.5. See also
subsection 7.1 below. In Figure 7.2, a set of trial points and a covering are shown on
domains \Omega C and \Omega S .

Weight functions. As a smooth PU weight, the function

\psi \ell = \psi (\| \cdot  - \omega \ell \| 2/\rho \ell ), \psi (r) = (1 - r)6+(35r
2 + 18r + 3),(7.1)
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is used in (2.3) where \psi (r) is the C4 compactly supported Wendland's function [47,
Chap. 9]. In some experiments, constant-generated PU functions (5.4) and (5.5) are
also employed. We will see that in some cases, a combination of the smooth weight
(for boundary patches) and the constant-generated weight (5.5) (for internal patches)
increases the efficiency of the method in terms of accuracy, complexity, and sparsity.

Kernels. Polyharmonic splines \varphi (r) = r6 log(r) (PHS6) and \varphi (r) = r8 log r
(PHS8) are used in two dimension, while \varphi (r) = r5 (PHS5) and \varphi (r) = r7 (PHS7) are
applied in 3D cases. These RBFs are conditionally positive definite of orders n = 4, 5,
3, and 4, respectively. Thus, polynomial spaces \BbbP n - 1(\BbbR d) are augmented to guarantee
the solvability of approximation problems. However, we will also use polynomials of
higher orders to observe the effect of polynomials on the convergence rates. In the
legend of figures (for example) by PHS5+P2 we mean an approximation through PHS
kernel r5 augmented with polynomials of degree at most 2 (order 3).

True solutions. In two dimensions the known Franke's function [19] and in three
dimensions the function

u(x) = sin

\biggl( 
\pi (x1  - 0.5)x3

log(x2 + 3)

\biggr) 
, x = (x1, x2, x3) \in \BbbR 3,

are assumed to be the true solutions for the steady state problems [25]. The right-hand-
side function f and boundary conditions are obtained, accordingly.

For the time-dependent problem in 2D experiments, the prescribed true solution

u(x, t) = 1 + sin(\pi x1) cos(\pi x2) exp( - \pi t)

is used [35]. The forcing term that makes this solution hold is given by f(x, t) =
\pi (2\pi \kappa  - 1) sin(\pi x1) cos(\pi x2) exp( - \pi t). In three dimensions, we use the true solution

u(x, t) = 1 + sin(\pi x1) cos(\pi x2) sin(\pi x3) exp( - \pi t)

with f(x, t) = \pi (3\pi \kappa  - 1) sin(\pi x1) cos(\pi x2) sin(\pi x3) exp( - \pi t). Boundary conditions
are obtained by the restriction of exact solutions and/or their derivatives on the
boundary.

Overtesting. Overtesting is not applied at all, because the results show that square
systems for both regular and irregular points are full rank and extremely stable.

Convergence plots. Since h = \scrO (N - 1/d), we plot the errors and the stability
numbers versus N1/d. All convergence plots are on a log-log scale. Numerical
convergence orders are obtained by the linear least squares fitting to error values
and are written alongside the figure legends.

7.1. Overlap constant \bfitC \bfitc . As pointed out above, in this study we use an
overlapping covering that consists of balls B(\omega \ell , \rho \ell ) for \ell = 1, . . . , Nc. We assume the
set \{ \omega 1, . . . , \omega Nc\} of covering centers has vertical distance hc which is proportional to
fill distance h of trial points X. We use hc = 4h in all experiments. The covering
radius

\rho \ell = \rho = Cchc

affects both the accuracy of the numerical solution and the sparsity of the final linear
system. For points \omega \ell on and close to the boundary \partial \Omega , the number of trial points
X \cap B(\omega \ell , \rho ) is decreased by more than a 1

2 factor. Thus, we should increase the

radius of patches by a factor of more than 21/d (\approx 1.41 in two dimensions and \approx 1.26
in three dimensions). To be sure that we have enough local trial points, we increase
\rho by a factor of 1.5 for such patches.
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Fig. 7.3. Accuracy (left vertical axis) and sparsity (right vertical axis) with respect to the
overlap constant Cc. First row: PHS8 on 2D domain \Omega B; second row: PHS7 on 3D domain \Omega U .
In all cases the smooth PU weight is applied.

To choose a proper overlap constant Cc, we illustrate some experiments in Figure
7.3 for 2D (on \Omega S) and 3D (on \Omega U ) problems. In this figure, errors (left vertical axis)
and percentage of nonzero elements of the final matrix (right vertical axis) are plotted
in terms of overlap constant Cc. For smaller values of Cc which are not covered in
the plots, local RBF systems may not be full rank. According to these and other
experiments we use Cc = 1.0 in all cases except for 3D examples with polynomial
spaces of order more than 6 in which Cc = 1.2 is used. This choices of the overlap
constant make a balance between accuracy and sparsity.

7.2. Convergence with respect to polynomial degrees. In Figure 7.4, the
errors and convergence orders of the D-RBF-PU method with respect to the degree
of polynomial spaces added to the RBF expansion are shown. As the true solutions
are infinitely smooth and the PDE is of the second order, the theoretical rate of
convergence in all cases should be q  - 2 where q is the order (degree +1) of appended
polynomials. In most cases, this rate is achieved and in some cases we observe a higher
convergence rate. Corresponding plots for stability constant \widetilde CS are presented in
Figure 7.5. In all cases, no significant growth is observed as N is increased. Obviously,
this nice feature is inherited from the local property of the approximation method and
is shared with other local methods such as RBF-FD. In this experiment we have used
the smooth PU weight functions.

7.3. Constant-generated PU weights. Results for the constant-generated
PU weight functions are reported in Figure 7.6. In the figures, by ``Const. Gen.
PU Weight 1"" and ``Const. Gen. PU Weight 2"" we mean weight functions (5.4)
and (5.5), respectively, and by ``Hybrid PU Weights"" we mean a combination of
constant-generated weight (5.5) for patches with centers inside \Omega and smooth weight
(7.1) for patches with centers on \partial \Omega .

Experiments show that in some cases with constant-generated PU weights to
obtain the theoretical order, the number of patches and/or the size of patches (the
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Fig. 7.4. Errors and convergence orders of D-RBF-PU method with different polynomial degrees
on domains \Omega S (left), \Omega U (middle), and \Omega Q (right). Theoretical orders are q  - 2 = \widetilde q  - 1 where \widetilde q
is the degree of polynomial space. Here (for example) P3 means polynomial space of degree at most
3. In all cases the smooth PU weight is applied.

Fig. 7.5. The stability constant \widetilde CS(A) of D-RBF-PU method with different polynomial degrees
on domains \Omega S (left), \Omega U (middle), and \Omega Q (right). In all cases, no significant growth is observed
as N is increased. In all cases the smooth PU weight is applied.

overlap constant Cc) should be increased. This will increase the computational cost
of the method. However, since this loss of accuracy is caused by approximation
at boundary points, a more efficient trick is to use the hybrid weight. In Figure
7.6 (right-hand-side plots), an improvement in accuracies and an enhancement in
numerical orders are observed by using the hybrid PU weight, where the smooth
weight is used for boundary patches.

Since with the constant-generated PU weight (5.5) the method uses a single patch
for approximation at each test point, the resulting differentiation matrix is the sparsest
one. Combination with the smooth weight on the boundary does not increase the
number of nonzeros, significantly, because the number of boundary points is of order
N1 - 1/d. In Table 7.1 the percentage of nonzero elements of the final matrix on 2D
domain \Omega S and 3D domain \Omega U are given for three cases of weights and three different
numbers of trial points. In the 2D case, the number of nonzeros is nearly halved
when the constant-generated weight is used instead of the smooth weight. The use
of hybrid weight does not increase the percentage of nonzeros, remarkably, compared
with the constant-generated weight. In the 3D case, the constant-generated weight
reduces the number of nonzeros by a factor of 1

4 , approximately. Using the hybrid
weight, the number of nonzeros is increased by a factor of 1.5, approximately, but it
is still far fewer than that of the smooth weight. It is obvious that if in the 3D case
we increase the number of trial points, the percentages of the hybrid weight become
closer to those of the constant-generated weight.
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Fig. 7.6. Errors and convergence orders of D-RBF-PU method with different polynomial degrees
and with constant-generated PU weights on \Omega B (first row) and \Omega U (second row). Theoretical orders
are \widetilde q  - 1 where \widetilde q is the degree of polynomial space. Improvements in accuracies and orders are
observed by the hybrid PU weight.

Table 7.1
The percentage of nonzero elements of the final matrix with three types of PU weights.

Smooth Const. gen. Hybrid
Domains N Weight weight (5.5) weight

2705 4.95\% 2.15\% 2.38\%
2D domain \Omega S 10462 1.15\% 0.51\% 0.54\%

163554 0.069\% 0.031\% 0.032\%
7241 23.4\% 6.4\% 9.7\%

3D domain \Omega U 17174 10.4\% 2.7\% 3.9\%
38765 4.4\% 1.1\% 1.6\%

From the results of Table 7.1 and the error plots of Figure 7.6, we may conclude
that the D-RBF-PU method with the hybrid PU weight is a recommendable choice
to obtain both reasonable accuracy and sparsity.

The overall behavior of stability plots for constant-generated weights is approxi-
mately the same as that of the smooth weight in Figure 7.5. Thus, we do not present
them here to keep the total number of figures as low as possible.

7.4. Comparison with standard RBF-PU. We compared the errors and
orders of the D-RBF-PU and the standard RBF-PU methods verses N on different
domains and by different kernels. The accuracies of both methods are close to each
other so that in some cases the plots cannot be easily distinguished. The same holds
true also for plots of the stability constants. However, to control the number of figures,
we do not present them here. Our observations confirm the theoretical bounds of
section 6 and suggest use of the new method because it bypasses all derivatives of the
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PU functions and many lower derivatives of local approximants, while maintaining
a similar accuracy and stability rate. Moreover, the new method allows us to use
a discontinuous weight function, a situation that cannot be treated by the standard
RBF-PU method.

7.5. Comparison with RBF-FD. In order to compare the new method with
RBF-FD, it is important to determine the size of stencils and their connection to
the size of local patches in D-RBF-PU. By the size of a stencil in RBF-FD, which
is denoted by \delta here, we mean the radius of the smallest ball that contains all the
stencil points. As with the strategy we applied for near boundary patches, we increase
the radius \delta for test points on and close to the boundary (up to a radial \delta -distance
from the boundary) by a factor of 1.5 to have more accurate approximations near the
boundary and, in particular, on boundary points.

For each test point, RBF-FD uses a single stencil while D-RBF-PU uses a much
smaller number of covering patches and joins them by PU functions. If we compare
with D-RBF-PU with a smooth weight function, we may assume \widetilde Xk = \{ \cup \ell \in Jk

X\ell \} ,
where X\ell is the set of trial points in patch \Omega \ell and \widetilde Xk is the stencil of test point yk.
In this case, the same trial points contribute in approximation of Lu(yk) (or Bu(yk)
if yk is a boundary point) in both methods. However, a larger local RBF system
(4.1) should be solved in RBF-FD while few (exactly | Jk| ) much smaller systems (5.2)
(that may also be shared with other test points) need to be solved in D-RBF-PU.
Experiments show that in this case, the RBF-FD is very slow and its results are far
away from the exact solutions because the size of stencils is overestimated. Hence,
we do not illustrate the results in this case. On the other hand, the size of RBF-FD
stencils should be large enough to guarantee the solvability of local linear systems.
Here, we compare both methods for three different stencil sizes \delta = 0.8\rho , 1.0\rho , 1.2\rho ,
where \rho is the radius of patches. Smaller or bigger values of \delta do not pay off for
significantly more accurate results. In Figure 7.7, we present the results on the 2D
domain \Omega S and the 3D domain \Omega U . As we see, D-RBF-PU outperforms almost all
cases especially in the 3D problem. While not presented here, the same is observed
on other domains. In Figure 7.8, stability plots on \Omega U are illustrated. Both methods
possess a nice stability that does not highly depend on increasing N and polynomial
degrees. The same behavior is observed for the 2D case but not illustrated here.
However, in the 3D problem the stability numbers of RBF-FD are approximately
102--103 times larger.

The above results were obtained for mixed Dirichlet and Neumann boundary
conditions. In Figure 7.9 we show a comparison between the two methods on the 3D
domain \Omega Q when the Dirichlet boundary condition is imposed on the whole boundary.
In this case, both RBF-FD and D-RBF-PU methods produce approximately the
same error and convergence order. We observe the same results on other domains.
Comparing with previous figures, we conclude that D-RBF-PU is more accurate than
RBF-FD in the presence of Neumann boundary conditions. The reason seems to
lie in the fact that at a Neumann boundary point, in which RBF-FD approximates
derivatives by a single one-sided stencil, D-RBF-PU uses a weighted average
approximation of several neighborhood patches.

7.6. Time dependent PDEs. In this section we focus on numerical solution
of the diffusion equation

\partial u

\partial t
= \kappa \Delta u+ f(x, t), t > 0, x \in \Omega \subset \BbbR d,
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Fig. 7.7. Errors and convergence orders of D-RBF-PU (using the smooth PU weight) and
RBF-FD (with three different stencil sizes) on 2D domain \Omega S (first row) and 3D domain \Omega U (second
row). Convergence orders and magnitude of errors are improved in the D-RBF-PU method. Here,
\rho is the radius of covering patches and \delta is the size of stencils in RBF-FD.

Fig. 7.8. The stability constant \widetilde CS of global matrix A of D-RBF-PU (using the smooth PU
weight) and RBF-FD (with three different stencil sizes) on 3D domain \Omega U . As N is increased,
no significant growth is observed in the conditioning of A in both methods, although the stability
numbers of RBF-FD are approximately 102--103 times larger.

for d = 2, 3, where f(x, t) is a source term and \kappa > 0 is the diffusion coefficient.
Boundary condition Bu = g(x, t) for x \in \partial \Omega should also be added, where B is
either the Dirichlet or the Neumann linear boundary operator or both. We assign the
prescribed solutions and apply the D-RBF-PU method to test spatial convergence
rates.

We apply the method of lines to time discretization, i.e., we approximate the
spatial differential operators with D-RBF-PU and then solve the resulting set of
ordinary differential equations (ODEs) using a backward time integrator. We assume
X = Y = Y\Omega \cup Y\Gamma , \bfitu = [\bfitu \Omega ;\bfitu \Gamma ], \bfitf \Omega = f | Y\Omega 

, \bfitg \Gamma = g| Y\Gamma 
, AL = [A\Omega \Omega A\Omega \Gamma ], and

AB = [A\Gamma \Omega A\Gamma \Gamma ] to get
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PHS7+P5, domain ΩQ

4.6

4.6
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RBF-FD

D-RBF-PU, Smooth

D-RBF-PU, Const. gen.

Fig. 7.9. Errors and convergence orders of RBF-FD by stencil size \delta = \rho and D-RBF-PU using
the smooth and the hybrid PU weights on 3D domain \Omega Q with Dirichlet boundary conditions. We
observe (approximately) the same errors and convergence orders.

\biggl[ 
\partial \bfitu \Omega 

\partial t (t)
0

\biggr] 
=

\biggl[ 
\kappa A\Omega \Omega \kappa A\Omega \Gamma 

A\Gamma \Omega A\Gamma \Gamma 

\biggr] \biggl[ 
\bfitu \Omega (t)
\bfitu \Gamma (t)

\biggr] 
+

\biggl[ 
\bfitf \Omega (t)
 - \bfitg \Gamma (t)

\biggr] 
.

Let tk+1 = tk + \Delta t where \Delta t is the time step, and k indexes a time level. Using
superscripts for time levels, the one order backward differentiation formulae (BDF1)
reads as \biggl[ 

I  - \kappa \Delta tA\Omega \Omega  - \kappa \Delta tA\Omega \Gamma 

A\Gamma \Omega A\Gamma \Gamma 

\biggr] \biggl[ 
\bfitu k+1
\Omega 

\bfitu k+1
\Gamma 

\biggr] 
=

\biggl[ 
\bfitu k
\Omega +\Delta t\bfitf k+1

\Omega 

\bfitg k+1
\Gamma 

\biggr] 
.

For a pure Dirichlet boundary condition we have A\Gamma \Omega = 0 and A\Gamma \Gamma = I that reduce
the system to

(I  - \kappa \Delta tA\Omega \Omega )\bfitu 
k+1
\Omega = \bfitu k

\Omega +\Delta t(\bfitf k+1
\Omega + \kappa A\Omega \Gamma \bfitg 

k+1
\Gamma ).

The stability region of BDF1 is S1 := \{ \lambda \in \BbbC : | \lambda  - 1| \geqslant 1\} . Since the region S1

contains the left half of the complex plane, BDF1 is an A-stable ODE solver. In
Figure 7.10 the spectrum of the discrete Laplacian with the new method is shown for
2D and 3D cases, respectively.

In all cases the entire spectrum falls in the left half plane. Though not illustrated
here, similar behaviors are observed for other PHS kernels and higher degree
polynomials. The maximum real part of eigenvalues is given in the figure titles; in all
cases it is far away from origin, allowing use of higher order backward differentiation
formulas as their stability region excludes small parts near the imaginary axis. Here,
we use the BDF4 scheme\biggl[ 
I  - 12

25\kappa \Delta tA\Omega \Omega  - 12
25\kappa \Delta tA\Omega \Gamma 

A\Gamma \Omega A\Gamma \Gamma 

\biggr] \biggl[ 
\bfitu k+1
\Omega 

\bfitu k+1
\Gamma 

\biggr] 
=

\biggl[ 
R(\bfitu k

\Omega ,\bfitu 
k - 1
\Omega ,\bfitu k - 2

\Omega ,\bfitu k - 3
\Omega ) + 12

25\Delta t\bfitf 
k+1
\Omega 

\bfitg k+1
\Gamma 

\biggr] 
,

where

R
\bigl( 
\bfitu k
\Omega ,\bfitu 

k - 1
\Omega ,\bfitu k - 2

\Omega ,\bfitu k - 3
\Omega 

\bigr) 
=

48

25
\bfitu k
\Omega  - 36

25
\bfitu k - 1
\Omega +

16

25
\bfitu k - 2
\Omega  - 3

25
\bfitu k - 3
\Omega .

For a pure Dirichlet boundary condition the above system is reduced to\Bigl( 
I  - 12

25
\kappa \Delta tA\Omega \Omega 

\Bigr) 
\bfitu k+1
\Omega = R

\bigl( 
\bfitu k
\Omega ,\bfitu 

k - 1
\Omega ,\bfitu k - 2

\Omega ,\bfitu k - 3
\Omega 

\bigr) 
+

12

25
\Delta t

\Bigl( 
\bfitf k+1
\Omega + \kappa A\Omega \Gamma \bfitg 

k+1
\Gamma 

\Bigr) 
.

Experimental results show that both systems are invertible.
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Fig. 7.10. The spectrum of the discrete Laplacian with D-RBF-PU method on 2D domain \Omega C

(first row) and 3D domain \Omega U (second row). All eigenvalues fall on the left half plane. In 2D the
case PHS6+P3 and in 3D the case PHS5+P5 are depicted. In other cases (alternative set of points
or polynomial degrees), the spectrum enjoys similar features.

We start the BDF4 scheme with the exact values for the first three time steps.
However, in a practical problem when the true solution is unknown we can start the
BDF4 scheme with a step each of BDF1, BDF2, and BDF3. In all cases, we set \kappa = 1
and \Delta t = 0.005 and report the results at the final time t = 0.2.

To solve the time-stepping linear system, inspired by [35], the GMRES method
using the incomplete LU preconditioner with a drop tolerance of 10 - 8 is used. In
our experiments, the GMRES scheme converges at each time step in two or three
iterations without restart for a relative residual less than a prescribed tolerance of
10 - 12.

We consider the pure Dirichlet and the mixed Dirichlet--Neumann problems. In
Figure 7.11, the error plots of RBF-FD and D-RBF-PU methods are given for the
2D problem on \Omega C and the 3D problem on \Omega U [35]. For the Dirichlet problem,
both methods converge and attain the theoretical orders. For the Neumann--Dirichlet
problems, results of the standard RBF-FD method are quickly blown up when
advancing in time. Even the BDF1 scheme fails to fix this problem. However, the
D-RBF-PU method converges for both 2D and 3D problems as errors and convergence
orders with the hybrid PU weight are shown in Figure 7.11 (right-hand-side plots).
The same result is obtained by the smooth PU weight, which is not illustrated here.

However, the new method, as well as the RBF-FD method, fails to give accurate
results with BDF schemes for the Neumann or Neumann--Dirichlet problems on the
3D domain \Omega Q with irregular trial points. This problem might be alleviated by other
improvements such as adding an extra set of points inside the domain adjacent to the
boundary [35, 36] or using a set of ghost points outside the domain boundary [11].
We do not pursue this further and leave it for an independent study.

7.7. Computational costs. In RBF-FD, the stencil \widetilde Xk is changed per test
point yk, and if M is the number of total test points, M local linear systems should
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Fig. 7.11. Errors and convergence orders of the RBF-FD (left) and the D-RBF-PU (middle)
methods for heat equation on 2D domain \Omega C (first row) and 3D domain \Omega U (second row) with
Dirichlet boundary conditions. The right-hand-side plots show the errors and convergence orders
of the D-RBF-PU method when Neumann--Dirichlet boundary conditions are imposed. Theoretical
orders are \widetilde q - 1 where \widetilde q is the degree of appended polynomials. In all cases, the observed convergence
orders are better than those predicted by theoretical bounds.

be solved for setting up the global matrix A. In D-RBF-PU, this number is highly
reduced to Nc, the number of PU patches. Remember that the number of patches
is much smaller than the number of test points; if hc = \alpha h, then in the square case
M = N \approx \alpha dNc. For example, in Figure 7.2 for the 2D domain \Omega S we have 681 test
points, while there are 44 patches. Or, for a case in the 3D domain \Omega Q, we may have
10078 test points verses 208 patches. This leads to a remarkable difference between
the computational costs of RBF-FD and D-RBF-PU methods for constructing the
final differentiation matrix. More precisely, D-RBF-PU should be approximately
\alpha d times faster than RBF-FD at solving local linear systems. In our experiments
with \alpha = 4, we should obtain speedups of approximately 16x and 64x for solving
local problems in two and three dimensions, respectively. But, D-RBF-PU (with a
smooth weight) has its own cost for computing the PU weights and joining the local
approximants. These may reduce the above speedups for the total cost of the setup
phase. On the other side, since more points are contributed in PU approximations,
the final matrix of the RBF-FD is sparser than that of the D-RBF-PU with a smooth
PU weight. This makes RBF-FD faster at solving the final system. However, the
D-RBF-PU with the constant-generated weight (5.5) is as sparse as RBF-FD, because
it uses a single patch for any test point. Here, we compare the CPU times for both
setting up the final matrix and solving the final system in terms of N , the number
of trial points. RBF-FD with \delta = \rho is considered. Results are given for a 2D and
a 3D problem in Figure 7.12. The total time panel is not given in the 2D case
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Fig. 7.12. Comparison of the CPU times (sec.) between RBF-FD and D-RBF-PU methods for
2D (top) and 3D (down) problems.

because the CPU times for solving the final systems are neglectable compared with
those for setting up the matrices. Although in this logarithmic scale the three lines
of the D-RBF-PU method are close to each other, by looking at the numbers for
large values of N , we find that in the setting-up phase of the 2D case, D-RBF-PU
is approximately 5, 9, and 10 times faster than RBF-FD for smooth, hybrid, and
constant-generated weights, respectively. These factors are increased to more than
20, 30, and 40, respectively, for the 3D case. However, the solving times for the 3D
systems are increased as they are denser than the 2D systems. Comparing the total
times for large values of N , we again observe speedups of more than 5x, 9x, and 10x for
smooth, hybrid, and constant-generated weights, respectively. Thanks to the GMRES
algorithm with incomplete LU factorization, these speedups remain (approximately)
unchanged for the heat equation. As a consequence, the hybrid case in D-RBF-PU
is recommended as a first choice because it possesses both high accuracy and low
complexity, simultaneously.

Although the new method is more accurate in the presence of the Neumann
boundary conditions (as we observed in subsection 7.5), the CPU time comparison
was made for a pure Dirichlet problem where both methods have approximately the
same accuracy. However, if we compare cost versus accuracy in the Neumann problems
the above observed speedups become twice, approximately, for the 2D case and even
more for the 3D case.

Finally, it is important to note that we do not guarantee that the chosen parameters
and domain sizes are the true optimal ones and nothing more optimal can be found.

Conclusion. The direct radial basis function partition of unity (D-RBF-PU)
method is proposed for solving boundary and initial-boundary value problems. The
convergence properties and the stability issues are considered and some advantages
of the new method are outlined. The advantage over the standard RBF-PU is that
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the new method avoids the action of PDE operators on PU weight functions. This
reduces both computational cost and algorithmic complexity without any significant
influence on accuracy and stability. More importantly, this provides a possibility to
use some discontinuous PU weights, allowing us to have even more efficient schemes
and recover the standard RBF-FD method as a special case.

In comparison with the RBF-FD, the new method needs to solve a much smaller
number of local linear systems for constructing the final differentiation matrix. This
reduces the computational costs, considerably. In our experiments, average speedups
of 5x with a smooth PU weight, 10x with a constant-generated PU weight, and 9x
with a hybrid PU weight are observed in both 2D and 3D examples. Although for a
pure Dirichlet problem both methods have approximately the same accuracy, the new
method gives more accurate results for Neumann or Neumann--Dirichlet boundary
value problems.

Finally, we note that this method can be applied to a large class of PDE problems
in engineering and sciences. In a follow-up work we will explore an application of the
D-RBF-PU method for solving PDEs on surfaces.
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