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In this work we develop the standard Hermite interpolation based RBF-generated finite difference (RBF-HFD) 
method into a new faster and more accurate technique based on partition of unity (PU) method. In the new 
approach, much fewer number of local linear systems needs to be solved for calculating the stencil weights. This 
reduces the computational cost of the method, remarkably. In addition, the method is flexible in using different 
types of PU weight functions, smooth or discontinuous, each results in a different scheme with additional nice 
properties. We also investigate the scaling property of polyharmonic spline (PHS) kernels to develop a simple and 
stable algorithm for computing local approximants in PU patches. Experimental results confirm the efficiency 
and applicability of the proposed method.
1. Introduction

Numerical methods based on radial basis functions (RBFs) for solving 
partial differential equations (PDEs) have received a lot of attention be-

cause of some attractive advantages. These methods are usually easy to 
implement, applicable on scattered point layouts, flexible with respect 
to geometry and dimension, and highly accurate for smooth solutions. 
However, global implementation of RBF methods may suffer from dense 
and ill-conditioned final linear systems which make them restricted for 
large scale problems. Beside, for 𝑁 points on the domain, the cost of 
that method scales as 𝑂(𝑁3) and due to the dense nature of the re-

sulting differentiation matrices the cost of applying those matrices to 
solution vectors is 𝑂(𝑁2). These are the main reasons for paying atten-

tion to localized RBF approaches to develop new techniques which are 
more stable and less costly to apply than the global RBF methods while 
retain the ability to use scattered nodes to approximate derivatives. The 
RBF-FD and RBF-PU methods have been developed in this direction.

RBF-FD borrows its idea from classical finite differences (FD) where 
the stencil weights are usually computed using univariate polynomial 
interpolation. These one dimensional formulas can be combined to cre-

ate FD formulas in higher dimensions for partial derivatives. This strat-

egy, however, requires that the nodes of the stencils are situated on 
some kind of structured grid which severely limits the geometric flex-

ibility of the FD method. The multivariate FD formulas can be instead 
organized on stencils with scattered nodes, but this approach also raises 
the question of how the stencil weights should be computed for exam-
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ple in cases in which the polynomial interpolation is singular. These 
drawbacks can be bypassed if RBF interpolation is used instead to gen-

erate the weights in FD formulas. The RBF-FD method has originated 
in [1–5] and has been developed for various types of PDE problems 
during the last two decades (e.g. [6–8]). As in the classical finite differ-

ence (FD) methods, RBF-FD results in a sparse final matrix but with 
the added advantage that can naturally handle irregular geometries 
and scattered node layouts. Other applications and modifications can 
be found in [9–12].

In a more general form, a classical FD formula may consist of ap-

proximating some derivative of a function at a given point based on 
a linear combination of the function itself and its derivative values 
at some surrounding nodes. In this approach the symmetries can be 
exploited to increase the accuracy of the formula without increasing 
the stencil size. Such formulas were introduced by Collatz [13] and 
later developed into compact FD formulas by Lele [14] and Weinan and 
Liu [15]. In these schemes the improvement in accuracy is obtained 
by using additional information from the PDE itself, rather than in-

creasing the stencil size as is the usual way to increase the accuracy 
in standard FD methods. An analogous compact RBF-FD formula was 
proposed by Wright and Fornberg in [16] by using the Hermite RBF 
interpolation method. This approach when applied on PDEs is called 
the RBF-HFD method. In [17] the RBF-HFD was developed for solving 
reaction-diffusion equations on surfaces.

The RBF-PU method for solving PDEs is essentially different from 
the RBF-FD although both approaches benefit from local RBF approxi-
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mations in a same way. In RBF-PU a set of smooth PU weight functions 
are employed to blend the local approximants to obtain a smooth global 
solution. This can be mentioned as an advantage. However, the contri-

bution of PU weights brings some difficulties to handle the derivatives, 
and results in a denser (but still sparse) final differentiation matrix com-

pared to the RBF-FD method. Historically, a PU method was introduced 
by Shepard in 1968 [18] but its first combination with RBF interpo-

lation goes back to [19] in 2002. The RBF-PU collocation method for 
solving transport equations on the unit sphere has been developed in 
[20]. A PU interpolation by product-type functions in two and three 
dimensions has been presented in [21], and an efficient computation 
through a block-based searching technique in [22]. A least squares RBF-

PU method, an alternative to the standard collocation method, has been 
given in [23]. Authors of [24] have applied an optimized searching 
procedure to build stable bases in local PU patches for flat kernels. 
Positive constrained approximation via RBF-PU has been studied in 
[25], and optimal selection of local approximants in [26]. Adaptive 
algorithms based on RBF-PU for solving PDEs have been developed 
in [27–29]. Some applications in financial mathematics have been re-

ported in [30–32]. The RBF-PU method has also been shown to be 
successful for a number of other PDE problems (e.g. [33–35]). Com-

bination of the PU approximation with rational RBF interpolations has 
been presented in [36,37].

The direct RBF-PU (D-RBF-PU) method (see [38]) bypasses the cal-

culation of PU weight derivatives and allows the use of some constant-

generated weight functions to develop a faster algorithm than both 
RBF-FD and standard RBF-PU methods. In this paper, a Hermite inter-

polation based version of D-RBF-PU method is proposed for numerical 
solution of steady state PDEs. This method is connected to RBF-HFD 
but combination with the PU approach makes it faster in computing the 
stencil weights. In contrast to the RBF-HFD, in the new method a lo-

cal approximant (a weight vector for a stencil) is not associated to just 
a single central point but is shared with a set of different test points in 
the local domain. This property speeds up the new algorithm. We em-

ploy the Hermite-Birkhoff RBF interpolation in PU patches and use two 
kinds of PU weights to join the local approximants to obtain a global 
solution. As we pointed out, the weight functions are not required to 
be differentiable, so we can implement a piecewise constant PU weight 
to obtain a sparse final differentiation matrix like as that of the stan-

dard RBF-HFD method. However, in the new method this matrix is set 
up using a much faster algorithm.

The paper is organized as follows. In sections 2 and 3 the RBF-FD 
and the RBF-HFD methods are reviewed. In section 4 the standard RBF-

PU and D-RBF-PU methods are discussed. In section 5 the new compact 
D-RBF-PU method is proposed and its properties and advantages are 
explored. We also discuss how to use the polyharmonic spline (PHS) 
kernels in a stable way to obtain local approximants in PU patches. In 
section 7 we illustrate the effectiveness of the new method for solv-

ing some elliptic PDEs and discuss various implementation details. We 
conclude our paper with a summary and discussion of future research 
directions in section 8.

2. RBF-FD method

The RBF-FD method generalizes standard polynomial-based FD for-

mulas for scattered nodes. Assume 𝜙 ∶ ℝ𝑑 → ℝ is a conditionally pos-

itive definite function of order 𝑚, i.e., with respect to polynomials of 
degree 𝑚 − 1 in ℝ𝑑 , denoted by ℙ𝑚−1(ℝ𝑑 ). Let Ω ⊂ ℝ𝑑 be an open and 
bounded region, and 𝜙 ∈ 𝐶𝓁(Ω). Let 𝑋0 = {𝑥1, 𝑥2, … , 𝑥𝑛} ⊂Ω be a local-

ized set of scattered nodes around an evaluation point 𝑥0 ∈ Ω that may 
or may not belong to 𝑋. For a multi-index 𝛼 with |𝛼| ⩽ 𝓁, the value 
𝐷𝛼𝑢(𝑥0) can be approximated by a linear combination of 𝑢 values at 𝑋0:

𝐿𝑢(𝑥0) ≈
𝑛∑
𝑐𝑗𝑢(𝑥𝑗 ) (2.1)
𝑗=1

2

where 𝑐𝑗 are weight coefficients. In classical FD formulas the weight 
vector 𝒄 is obtained by forcing (2.1) to be exact on polynomials up to 
a certain degree. There may be some degrees of freedom for looking 
for some norm-minimal weight vectors in some situations [39]. In RBF-

FD formulas the weights are obtained by forcing the exactness on RBF 
space span{𝜙(⋅ −𝑥1), … , 𝜙(⋅ −𝑥𝑛)}. To enrich the approximation we may 
consider the exactness on the space augmented with the polynomials of 
order 𝑚, i.e.,

span{𝜙(⋅− 𝑥1),… , 𝜙(⋅− 𝑥𝑛)} +ℙ𝑚−1(ℝ𝑑 ).

More precisely, we write

𝑢(𝑥) ≈ 𝑠(𝑥) =
𝑛∑

𝑗=1
𝑎𝑗𝜙(𝑥− 𝑥𝑗 ) +

𝑄∑
𝑘=1

𝑏𝑘𝑝𝑘(𝑥) (2.2)

where {𝑝1, … , 𝑝𝑄} is a basis for ℙ𝑚−1(ℝ𝑑 ) and 𝑄 = (𝑚−1+𝑑)!
𝑑!(𝑚−1)! . Then, co-

efficient vectors (𝑎1, … , 𝑎𝑛)𝑇 =∶ 𝒂 and (𝑏1, … , 𝑏𝑄)𝑇 =∶ 𝒃 are determined 
through interpolation conditions 𝑢(𝑥𝑗 ) = 𝑠(𝑥𝑗 ), 𝑗 = 1, … , 𝑛 and side con-

ditions

𝑛∑
𝑗=1

𝑎𝑗𝑝𝑘(𝑥𝑗 ) = 0, 𝑘 = 1,… ,𝑄.

In matrix form for a given vector 𝒖𝑒 = (𝑢(𝑥1), … , 𝑢(𝑥𝑛))𝑇 we have[
𝐴 𝑃

𝑃𝑇 0

][
𝒂

𝒃

]
=
[
𝒖𝑒
0

]
,

where 𝐴𝑗𝑘 = 𝜙(𝑥𝑘 − 𝑥𝑗 ), 𝑗, 𝑘 = 1, … , 𝑛 and 𝑃𝑗𝑘 = 𝑝𝑘(𝑥𝑗 ), 𝑘 = 1, … , 𝑄, 𝑗 =
1, … , 𝑛. If 𝜙 is a conditionally positive definite function of order 𝑚 and 
𝑋0 is a ℙ𝑚(ℝ𝑑 )-unisolvent set then the above system is uniquely solvable 
[40]. Coming back to (2.2) we have

𝐷𝛼𝑢(𝑥0) ≈𝐷𝛼𝑠(𝑥0)

= [𝐷𝛼𝝓𝑇 (𝑥0) 𝐷𝛼𝒑𝑇 (𝑥0)]
[
𝒂

𝒃

]
= [𝐷𝛼𝝓𝑇 (𝑥0) 𝐷𝛼𝒑𝑇 (𝑥0)]

[
𝐴 𝑃

𝑃𝑇 0

]−1 [
𝒖𝑒
𝟎

]
=∶ [𝐷𝛼𝝍𝑇 (𝑥0) 𝐷𝛼𝝂𝑇 (𝑥0)]

[
𝒖𝑒
𝟎

]
=𝐷𝛼𝝍𝑇 (𝑥0)𝒖𝑒 =

𝑛∑
𝑗=1

𝐷𝛼𝜓𝑗 (𝑥0)𝑢(𝑥𝑗 )

where

𝐷𝛼𝝓(𝑥0) = (𝐷𝛼𝜙(𝑥1 − 𝑥0),… ,𝐷𝛼𝜙(𝑥𝑛 − 𝑥0))𝑇 ,

𝐷𝛼𝒑(𝑥0) = (𝐷𝛼𝑝(𝑥1),… ,𝐷𝛼𝑝(𝑥𝑛))𝑇 ,

and (𝐷𝛼𝜓1, … , 𝐷𝛼𝜓𝑛)𝑇 =𝐷𝛼𝝍 and (𝐷𝛼𝜈1, … , 𝐷𝛼𝜈𝑄)𝑇 =𝐷𝛼𝝂 are vectors 
of Lagrange functions at 𝑥 = 𝑥0 satisfying[
𝐴 𝑃

𝑃𝑇 0

][
𝐷𝛼𝝍(𝑥0)
𝐷𝛼𝝂(𝑥0)

]
=
[
𝐷𝛼𝝓(𝑥0)
𝐷𝛼𝒑(𝑥0)

]
. (2.3)

This shows that in (2.1)

𝑐𝑗 =𝐷𝛼𝜓𝑗 (𝑥0), 𝑗 = 1,2,… , 𝑛.

Let us describe how can this approach be used for numerical solution of 
a PDE problem on a domain Ω. First, we consider two well distributed 
discrete sets 𝑋 = {𝑥1, … , 𝑥𝑁} ⊂Ω ∪ 𝜕Ω and 𝑌 = {𝑦1, … , 𝑦𝑀} ⊂Ω ∪ 𝜕Ω as 
trial and test points, respectively. Then, 𝑥0 is set to 𝑦𝑘 for 𝑘 = 1, … , 𝑀 , 
local sets (stencils) 𝑋𝑘 ⊂ 𝑋 in neighborhood of 𝑦𝑘 are formed, and 
RBF-FD weight vectors 𝒄𝑘 corresponding to test points 𝑦𝑘 are obtained. 
Expanding 𝒄𝑘 by adding zero elements associated to trial points outside 
the stencil 𝑋𝑘 and putting them in rows of a global matrix 𝐶 of size 
𝑀 ×𝑁 , we obtain the RBF-FD approximation
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(𝐿𝑢)|𝑌 ≈ 𝐶𝒖𝑒.

Thus, the RBF-FD discretization of a PDE 𝐿𝑢 = 𝑓 for a given function 𝑓
reads as

𝐶�̂� = 𝒇 (2.4)

where 𝒇 = (𝑓 (𝑦1), … , 𝑓 (𝑦𝑀 ))𝑇 and �̂� is an approximation for the exact 
solution vector 𝒖𝑒 when ‘≈’ is replaced by ‘=’. If all stencils 𝑋𝑘 are 
ℙ𝑚−1(ℝ𝑑 )-unisolvent then all local systems (2.3) associated to points 
𝑥0 = 𝑦𝑘 are solvable. However, the solvability of the global nonsym-

metric (and possibly non-square) matrix 𝐶 is not guaranteed at all. 
Although deficiency occurs in some rare situations, one can select a 
sufficiently large test point set 𝑌 compared to the trial set 𝑋 to obtain 
an overdetermined full rank system and admit a least-squares solution ̃𝒖
instead of the exact solution ̂𝒖 for (2.4). This strategy is called overtesting

or oversampling [41–43].

RBF-FD has been widely used for solving various types of PDE prob-

lems in engineering and science. Besides, special efforts have been made 
to overcome the instability of local RBF system (2.4). We refer the 
reader to [7] and the references therein.

3. RBF-HFD method

The RBF Hermite-based FD (RBF-HFD) method is based on the fol-

lowing generalized interpolation. Let 𝐻 be a Hilbert space and 𝐻∗ be 
its dual. We assume that Λ = {𝜆1, … , 𝜆𝑛} ⊆𝐻∗ is a set of linearly inde-

pendent functionals on 𝐻 and 𝑢1, … , 𝑢𝑛 ∈ ℝ are certain given values. 
A generalized recovery problem means to find a function 𝑠 ∈ 𝐻 such 
that 𝜆𝑘(𝑠) = 𝑢𝑘, 𝑘 = 1, … , 𝑛. Such 𝑠 is called generalized interpolant. The 
norm-minimal generalized interpolant is defined by

𝑠∗ = argmin{‖𝑠‖𝐻 ∶ 𝑠 ∈𝐻, 𝜆𝑘(𝑠) = 𝑢𝑘, 𝑘 = 1,… , 𝑛}, (3.1)

where ‖ ⋅ ‖𝐻 is the norm on 𝐻 . One can prove that (see for example 
[44, Thm. 16.1]) the unique solution of (3.1) is given by

𝑠∗ =
𝑛∑

𝑗=1
𝑎𝑗𝑣𝑗

where 𝑣𝑗 are Riesz’ representors of 𝜆𝑗 and 𝑎𝑗 are obtained from the 
interpolation conditions 𝜆𝑘(𝑠∗) = 𝑢𝑘, 𝑘 = 1, … , 𝑛, i.e., 𝐴𝒂 = 𝒖 where 
𝐴 = (𝜆𝑘(𝑣𝑗 ))𝑛𝑘,𝑗=1. Since the functionals are assumed to be linearly in-

dependent on 𝐻 the system is solvable.

The Hermite-Birkhoff interpolation is a special case of the above 
generalized interpolation. For a given integer 𝓁, we consider the set 
𝛼(1), … , 𝛼(𝑛) ∈ ℕ𝑑

0 of multi-indices with |𝛼(𝑗)| ≤ 𝓁. Then we define the 
functionals 𝜆𝑘 ∶= 𝛿𝑥𝑘◦𝐷

𝛼(𝑘) and assume for two different indices 𝑘 ≠ 𝑗

either 𝑥𝑘 ≠ 𝑥𝑗 or 𝛼(𝑘) ≠ 𝛼(𝑗). Let 𝜙 ∈ 𝐶𝓁(Ω) be a positive definite function 
and 𝐻 =𝜙(Ω) be its associated native space. This means that

𝑢(𝑥) = ⟨𝑢,𝜙(⋅− 𝑥)⟩𝐻, ∀𝑢 ∈𝐻, ∀𝑥 ∈Ω

and thus for 𝑗 = 1, … , 𝑛 we have

𝐷𝛼(𝑗)𝑢(𝑥𝑗 ) = ⟨𝑢,𝐷𝛼(𝑗)

2 𝜙(⋅− 𝑥𝑗 )⟩𝐻, ∀𝑢 ∈𝐻,

showing that 𝑣𝑗 = 𝐷𝛼(𝑗)

2 𝜙(⋅ − 𝑥𝑗 ). We have used the subscript 2 on dif-

ferential operators to mean that it is applied to 𝜙 with respect to its 
second argument. Later we will similarly use the subscript 1 to mean 
that the operator is applied to 𝜙 with respect to its first argument. The 
Hermite-Birkhoff interpolant of 𝑢 ∈𝐻 is formed as

𝑠(𝑥) =
𝑛∑

𝑗=1
𝑎𝑗𝐷

𝛼(𝑗)

2 𝜙(𝑥− 𝑥𝑗 ) (3.2)

with interpolation conditions

𝐷𝛼(𝑘)𝑠(𝑥𝑘) = 𝑢𝑘, 𝑘 = 1,… , 𝑛,
3

which lead to the system of equations

𝐴𝜙,Λ𝒂 = 𝒖 (3.3)

where 𝐴𝜙,Λ = 𝐷𝛼(𝑘)

1 𝐷𝛼(𝑗)

2 𝜙(𝑥 − 𝑦)|𝑥=𝑥𝑘,𝑦=𝑥𝑗 ∈ ℝ𝑛×𝑛 and 𝒖 = (𝑢1, … , 𝑢𝑛)𝑇 . 
Note that 𝑢𝑘 values are coming from function 𝑢 via 𝑢𝑘 = 𝐷𝛼(𝑘)𝑢(𝑥𝑘). In 
this formulation, points 𝑥𝑘 are not required to be distinct but if two 
points coincide then their corresponding derivative operators should be 
different.

Analogously to (2.2) we can enrich the expansion (3.2) by adding 
polynomial terms to obtain

𝑠(𝑥) =
𝑛∑

𝑗=1
𝑎𝑗𝐷

𝛼(𝑗)

2 𝜙(𝑥− 𝑥𝑗 ) +
𝑄∑
𝑖=1

𝑏𝑖𝑝𝑖(𝑥), (3.4)

with interpolation conditions

𝐷𝛼(𝑘)𝑠(𝑥𝑘) = 𝑢𝑘, 𝑘 = 1,… , 𝑛,

together with side conditions

𝑛∑
𝑗=1

𝑎𝑗𝐷
𝛼(𝑗)𝑝𝑘(𝑥𝑗 ) = 0, 𝑘 = 1,… ,𝑄.

The final linear system then reads as[
𝐴𝜙,Λ 𝑃Λ
𝑃𝑇
Λ 0

][
𝒂

𝒃

]
=
[
𝒖

0

]
, (3.5)

where 𝑃Λ = 𝜆𝑗 (𝑝𝓁) ∈ ℝ𝑛×𝑄. We can prove that if 𝜙 is a conditionally 
positive definite function of order 𝑚 and the functionals 𝜆𝑘 = 𝛿𝑥𝑘◦𝐷

𝛼(𝑘)

are linearly independent and that 𝜆𝑘(𝑝) = 0 for all 𝑘 = 1, … , 𝑛 and 𝑝 ∈
ℙ𝑚−1(ℝ𝑑 ) implies that 𝑝 = 0, then the system (3.5) is uniquely solvable 
[44, Chap. 16].

In a RBF-HFD formula we are interested in approximating a value 
𝐷𝛼𝑢(𝑥0) for a multi-index 𝛼 with |𝛼| ⩽ 𝓁 in terms of nodal values 𝑢𝑗 =
𝐷𝛼(𝑗)𝑢(𝑥𝑗 ) as

𝐷𝛼𝑢(𝑥0) ≈
𝑛∑

𝑗=1
𝑐𝑗𝑢𝑗 =

𝑛∑
𝑗=1

𝑐𝑗 𝐷
𝛼(𝑗)𝑢(𝑥𝑗 ).

The weight vector 𝒄 can be obtained by operating 𝐷𝛼 on both sides of 
(3.2) or (3.4) and using (3.3) or (3.5) for coefficients. Doing the same 
as previous section, the weight vector 𝒄 should satisfy

𝐴𝜙,Λ𝒄 =𝐷𝛼
1𝐷

𝜶

2𝝓(𝑥0)

without polynomial terms, and[
𝐴𝜙,Λ 𝑃Λ
𝑃𝑇
Λ 0

][
𝒄

𝒅

]
=
[
𝐷𝛼

1𝐷
𝜶

2𝝓(𝑥0)
𝐷𝛼𝒑(𝑥0)

]
, (3.6)

with appended polynomials, where

𝐷𝛼
1𝐷

𝜶

2𝝓(𝑥0) = (𝐷𝛼
1𝐷

𝛼(1)

2 𝜙(𝑥0 − 𝑥1),… ,𝐷𝛼
1𝐷

𝛼(𝑛)

2 𝜙(𝑥0 − 𝑥𝑛))𝑇 .

If fact, 𝒄 =𝐷𝛼
1𝐷

𝜶

2𝝍(𝑥0) and 𝒅 =𝐷𝛼𝝂(𝑥0).
Now, assume that we are given the PDE 𝐿𝑢 = 𝑓 on a domain Ω for a 

linear with constant coefficient operator 𝐿 and a given function 𝑓 . Let 
𝑋 = {𝑥1, … 𝑥𝑁} ⊂ Ω be a discrete set of trial points in Ω. To apply the 
Hermite-Birkhoff interpolation for this PDE, we are allowed to use only 
specific operators 𝐼 (identity) and 𝐿 in our expansion. Without loss of 
generality, assume that 𝑋0 = {𝑥1, … , 𝑥𝑛} is a stencil for a test point 𝑥0. 
Assume that 𝐽 ⊆ {1, 2, … , 𝑛} =∶ 𝐽 is an index family of size #𝐽 =∶ 𝑛, and 
𝑋0 ∶= {𝑥𝑗 ∶ 𝑗 ∈ 𝐽} ⊆𝑋0. The RBF-HFD expansion is written as

𝐿𝑢(𝑥0) ≈
∑
𝑗∈𝐽

𝑐𝑗𝑢(𝑥𝑗 ) +
∑
𝑗∈𝐽

𝑐𝑗𝐿𝑢(𝑥𝑗 )

=
∑
𝑗∈𝐽

𝐿𝜓𝑗 (𝑥0)𝑢(𝑥𝑗 ) +
∑

̃

𝐿𝐿�̃�𝑗 (𝑥0)𝐿𝑢(𝑥𝑗 ),
(3.7)
𝑗∈𝐽
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where 𝜓𝑗 and �̃�𝑗 are Lagrange functions on sets 𝑋0 and 𝑋0, respectively. 

The vector of Lagrange functions or the weights vector 
[
𝒄

�̃�

]
is computed 

by solving the linear system

⎡⎢⎢⎣
𝐴 𝐴1

𝐿
𝑃

𝐴2
𝐿

𝐴𝐿𝐿 𝑃𝐿

𝑃 𝑇 𝑃 𝑇
𝐿

0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝒄

�̃�

𝒅

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝐿𝝓

𝐿𝐿�̃�

𝐿𝒑

⎤⎥⎥⎦ (3.8)

where 𝐴𝜙,Λ =
[
𝐴 𝐴1

𝐿
𝐴2
𝐿

𝐴𝐿𝐿

]
and 𝑃Λ =

[
𝑃

𝑃𝐿

]
where

𝐴 = (𝜙(𝑥𝑘 − 𝑥𝑗 )), 𝑘, 𝑗 ∈ 𝐽

𝐴1
𝐿 = (𝐿1𝜙(𝑥𝑘 − 𝑥𝑗 )), 𝑘 ∈ 𝐽 , 𝑗 ∈ 𝐽 ,

𝐴2
𝐿 = (𝐿2𝜙(𝑥𝑘 − 𝑥𝑗 )), 𝑘 ∈ 𝐽 , 𝑗 ∈ 𝐽 ,

𝐴𝐿𝐿 = (𝐿1𝐿2𝜙(𝑥𝑘 − 𝑥𝑗 )), 𝑘, 𝑗 ∈ 𝐽 ,

𝑃 = (𝑝𝑘(𝑥𝑗 )), 𝑗 ∈ 𝐽 , 𝑘 = 1,… ,𝑄,

𝑃𝐿 = (𝐿𝑝𝑘(𝑥𝑗 )), 𝑗 ∈ 𝐽 , 𝑘 = 1,… ,𝑄.

The right hand side vectors are

𝐿𝝓 = (𝐿1𝜙(𝑥0 − 𝑥1),… ,𝐿1𝜙(𝑥0 − 𝑥𝑛))𝑇 ,

𝐿𝐿�̃� = (𝐿1𝐿2𝜙(𝑥0 − 𝑥𝐽1 ),… ,𝐿1𝐿2𝜙(𝑥0 − 𝑥𝐽𝑛 ))
𝑇 ,

𝐿𝒑 = (𝐿𝑝1(𝑥0),… ,𝐿𝑝𝑄(𝑥0))𝑇 .

To obtain a discrete analogue of 𝐿𝑢 via the RBF-HFD method we 
assume another set 𝑌 = {𝑦1, … , 𝑦𝑀} ⊂Ω of test points, possibly different 
from trial set 𝑋. For any test point 𝑦𝑘 we form its corresponding stencil 
𝑋𝑘 ⊂𝑋 and give the role of 𝑥0 in the above formulation to 𝑦𝑘 to obtain 
the weight vectors 𝒄𝑘 and �̃�𝑘 associated to stencil 𝑋𝑘. Expanding both 
𝒄𝑘 and �̃�𝑘 by adding zeros and putting them in rows of global matrices 
𝐶 and 𝐶 , we obtain the RBF-HFD approximation

(𝐿𝑢)|𝑌 ≈ 𝐶𝒖𝑒 +𝐶𝐿𝒖𝑒,

where 𝐿𝒖𝑒 = (𝐿𝑢(𝑥1), … , 𝐿𝑢(𝑥𝑁 ))𝑇 = (𝑓 (𝑥1), … , 𝑓 (𝑥𝑁 ))𝑇 =∶ 𝒇 𝑒 and 𝒖𝑒 is 
defined as before. Thus, the RBF-HFD discretization of PDE 𝐿𝑢 = 𝑓 for 
a given function 𝑓 reads as

𝐶�̂� = 𝒇 −𝐶𝒇 𝑒 (3.9)

where 𝒖𝑒 is replaced by �̂� when the approximate symbol is replaced by 
the equality symbol. Comparing with system (2.4) of RBF-FD, the right 
hand side of (3.9) is corrected by known vector −𝐶𝒇 𝑒.

The RBF-HFD or compact RBF-FD method was first proposed in [16], 
but the idea of generalized RBF interpolation goes back to [45,46]. See 
also [47–49] for analysis of this approach for PDEs in a global form.

4. Partition of unity methods

Partition of unity (PU) proposes another possibility to develop 
a class of localized approximation methods. It is important in the 
RBF context because global RBF systems are usually dense and ill-

conditioned. To construct a PU setting, the global domain Ω should 
be covered by a set of open, bounded and overlapping patches 
{Ω1, Ω2, … , Ω𝑁𝑐

} such that

Ω ⊂

𝑁𝑐⋃
𝓁=1

Ω𝓁 .

This inclusion implies that every point 𝑥 ∈Ω is covered by at least one 
patch from the covering. Assume that 𝐼(𝑥) = {𝓁 ∶ 𝑥 ∈Ω𝓁}. The covering 
is called regular if there exists a global constant 𝐾 such that |𝐼(𝑥)| ⩽𝐾

for all 𝑥 ∈Ω, i.e., every 𝑥 ∈Ω is covered by at most 𝐾 patches.

In continuation, local approximants 𝑠𝓁 are constructed on each sub-

domain (patch) Ω𝓁 . They should be blended to generate a global (and 
4

Fig. 1. Contributed patches at a test point 𝑦𝑘 (shaded balls): for the smooth 
weight (4.2) and the discontinuous weight (4.3) (left), and for the discontinuous 
weight (4.4) (right).

usually smooth) solution 𝑠. For this purpose, we can choose a family of 
nonnegative functions {𝑤1, 𝑤2, … , 𝑤𝑁𝑐

} such that

(1) supp(𝑤𝓁) ⊆Ω𝓁 ,

(2)
∑𝑁𝑐

𝓁=1𝑤𝓁(𝑥) = 1, ∀𝑥 ∈Ω.

These functions are called PU weights. Having approximants 𝑠𝓁 and 
weights 𝑤𝓁 at hand, the global approximation 𝑠 can be formed via

𝑠(𝑥) =
𝑁𝑐∑
𝓁=1

𝑤𝓁(𝑥)𝑠𝓁(𝑥), 𝑥 ∈Ω, (4.1)

which is called a PU approximation.

Usually Shepard’s functions are used as PU weights. For nonnega-

tive, nonvanishing and compactly supported functions 𝜑𝓁 on Ω𝓁 the 
Shepard weights are defined as

𝑤𝓁(𝑥) =
𝜑𝓁(𝑥)∑𝑁𝑐
𝑗=1 𝜑𝑗 (𝑥)

, 1 ≤ 𝓁 ≤𝑁𝑐. (4.2)

Clearly, these functions satisfy both required conditions for PU weights. 
In addition, 𝑤𝓁 are as smooth as generating functions 𝜑𝓁 . Some discon-

tinuous PU weights are also suggested in [38] that highly simplify the 
PU algorithms for solving partial differential equations. The first one is

𝑤𝓁(𝑥) =

{ 1
#𝐼(𝑥) , 𝑥 ∈Ω𝓁 ,

0, 𝑥 ∉Ω𝓁 ,
(4.3)

which is obtained from (4.2) via 𝜑𝓁(𝑥) = 𝜒Ω𝓁
(𝑥), the characteristic func-

tion of set Ω𝓁 . Weight function (4.3) is obviously discontinuous and 
shares equal weights between patches Ω𝓁 for all 𝓁 ∈ 𝐼(𝑥). Another dis-

continuous weight is defined by

𝑤𝓁(𝑥) =

{
1, if Ω𝓁 is the nearest patch to 𝑥,

0, otherwise,
(4.4)

which gives the total weight 1 to the nearest patch and zero weights to 
the others. To identify the nearest patch we can measure and compare 
the distance between 𝑥 and the center of all patches, i.e., if 𝜔1, … , 𝜔𝑁𝑐

are patch centers then

𝓁 = 𝓁(𝑘) = argmin‖𝑥𝑘 −𝜔𝓁‖2
is the index of the nearest patch to test point 𝑥 = 𝑦𝑘. See Fig. 1 for an 
illustration.

Assume that we are given a linear PDE problem 𝐿𝑢 = 𝑓 on a domain 
Ω ⊂ℝ𝑑 . The standard PU approach approximates 𝐿𝑢 by 𝐿𝑠 where 𝑠 has 
representation (4.1), i.e.,

𝐿𝑢 ≈𝐿𝑠 =
𝑁𝑐∑
𝓁=1

𝐿(𝑤𝓁𝑠𝓁). (4.5)

In this approach 𝐿 should operate on products 𝑤𝓁𝑠𝓁 . Moreover, only 
smooth weight functions are applicable. As an example, the Laplacian 
of 𝑢 is approximated by
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Δ𝑢 ≈Δ𝑠 =
𝑁𝑐∑
𝓁=1

(𝑤𝓁Δ𝑠𝓁 + 2∇𝑤𝓁 ⋅∇𝑠𝓁 + 𝑠𝓁Δ𝑤𝓁).

In this form the gradient and the Laplacian of both 𝑤𝓁 and 𝑠𝓁 need to be 
computed, where the computation of derivatives of 𝑤𝓁 in the Shepard 
form (4.2) sounds complicated. A simpler approach was suggested in 
[38] which employs PU weights to approximate 𝐿𝑢 directly from its 
local approximants. More precisely,

𝐿𝑢 =
𝑁𝑐∑
𝓁=1

𝑤𝓁𝑠
𝐿
𝓁 =∶ 𝑠𝐿, (4.6)

where 𝑠𝐿𝓁 are local approximants of 𝐿𝑢 in patches Ω𝓁 . A good candi-

date for 𝑠𝐿𝓁 is obviously 𝐿𝑠𝓁 . In the new approach derivatives of 𝑤𝓁
and lower derivatives of 𝑠𝓁 are not required at all. For example, the 
Laplacian of 𝑢 is approximated by

Δ𝑢 ≈ 𝑠Δ =
𝑁𝑐∑
𝓁=1

𝑤𝓁Δ𝑠𝓁 .

Comparing with the standard approach, the second and third terms in 
front of the summation symbol are not present and the only first term 
is doing the whole job.

4.1. RBF-PU method

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} be a discrete set of trial centers in Ω ⊂ ℝ𝑑

and let 𝑋𝓁 =𝑋∩Ω𝓁 , 1 ≤ 𝓁 ≤𝑁𝑐 . Assume further that 𝐽𝓁 is the collection 
of trial point indices in patch Ω𝓁 , i.e., 𝐽𝓁 ∶= {𝑗 ∈ {1, … , 𝑁} ∶ 𝑥𝑗 ∈𝑋𝓁}. 
If the local approximants 𝑠𝓁 are constructed from the approximation 
spaces

span{𝜙(⋅− 𝑥𝑗 ) ∶ 𝑗 ∈ 𝐽𝓁}⊕ℙ𝑚−1(ℝ𝑑 ), 1 ≤ 𝓁 ≤𝑁𝑐,

then the resulting PU method is called the RBF-PU method. If 𝑠𝓁 are 
interpolants of a function 𝑢 on centers 𝑋𝓁 then

𝑠𝓁(𝑥) =
∑
𝑗∈𝐽𝓁

𝜓𝑗 (𝓁;𝑥)𝑢(𝑥𝑗 ) (4.7)

with Lagrange functions 𝜓𝑗 (𝓁; ⋅), associated to centers 𝑋𝓁 , satisfying[
𝐴 𝑃

𝑃𝑇 0

][
𝝍(𝓁;𝑥)
𝝂(𝓁;𝑥)

]
=
[
𝝓(𝑥)
𝒑(𝑥)

]
.

The global interpolant 𝑠 then reads as

𝑠(𝑥) =
𝑁𝑐∑
𝓁=1

∑
𝑗∈𝐽𝓁

(
𝑤𝓁(𝑥)𝜓𝑗 (𝓁;𝑥)

)
𝑢(𝑥𝑗 ), 𝑥 ∈Ω. (4.8)

Instead of looping over all 𝓁 ∈ {1, … , 𝑁𝑐} in the first summation we 
may loop over 𝓁 ∈ 𝐼(𝑥) only, because 𝑤𝓁(𝑥) = 0 if 𝓁 ∉ 𝐼(𝑥).

The RBF-PU discretization of 𝐿𝑢 = 𝑓 on a discrete test set 𝑌 =
{𝑦1, … , 𝑦𝑀} ⊂Ω is obtained by approximating 𝐿𝑢 by 𝐿𝑠 at each point 𝑦𝑘
based on standard approach (4.5). If 𝑠 is the global RBF-PU interpolant 
of 𝑢 then we have

𝐿𝑢(𝑦𝑘) ≈𝐿𝑠(𝑦𝑘) =
∑

𝓁∈𝐼(𝑦𝑘)

∑
𝑗∈𝐽𝓁

𝐿
(
𝑤𝓁(𝑥)𝜓𝑗 (𝓁;𝑥)

)
𝑥=𝑦𝑘

𝑢(𝑥𝑗 ).

This leads to a linear system of equations of the form 𝐶�̂� = 𝒇 with

𝐶𝑘𝑗 =
∑

𝓁∈𝐼(𝑦𝑘)

(
𝐿(𝑤𝓁𝜓𝑗 (𝓁; ⋅))

)
(𝑦𝑘), 𝑦𝑘 ∈ 𝑌 .

Again we remind that the PDE operator 𝐿 should act on products 
𝑤𝓁𝜓𝑗 (𝓁, ⋅) leading to some complicated calculations and algorithmic 
complexity especially when 𝐿 contains some high order partial deriva-

tives.
5

4.2. D-RBF-PU method

The D-RBF-PU method is based on the direct approximation (4.6)

instead of the standard form (4.5). Local approximants 𝑠𝐿𝓁 = 𝐿𝑠𝓁 are 
obtained from local RBF interpolations in patches Ω𝓁 as

𝑠𝐿𝓁 (𝑥) =
∑
𝑗∈𝐽𝓁

𝐿𝜓𝑗 (𝓁;𝑥)𝑢(𝑥𝑗 ) 𝑥 ∈Ω𝓁 ∩Ω,

and the global approximation is derived as

𝑠𝐿(𝑥) =
𝑁𝑐∑
𝓁=1

∑
𝑗∈𝐽𝓁

(
𝑤𝓁(𝑥)𝐿𝜓𝑗 (𝓁;𝑥)

)
𝑢(𝑥𝑗 ) (4.9)

for 𝑥 ∈Ω. Therefore, the PDE 𝐿𝑢 = 𝑓 can be discretized on test set 𝑌 via 
𝐶�̂� = 𝒇 where

𝐶𝑘𝑗 =
∑

𝓁∈𝐼(𝑦𝑘)
𝑤𝓁(𝑦𝑘)𝐿𝜓𝑗 (𝓁;𝑦𝑘), 𝑦𝑘 ∈ 𝑌 .

Comparing with the standard RBF-PU, the PDE operator 𝐿 acts only on 
Lagrange functions 𝜓𝓁(𝓁, ⋅) and not on PU weights 𝑤𝓁 . This will reduce 
the complexity of the algorithm but retain the consistency error, and 
allows using some discontinuous weights such as (4.3) and (4.4). The 
second discontinuous weight leads to a sparser final linear system. More 
details are given in [38].

5. Compact D-RBF-PU method

As we discussed, in RBF-HFD the accuracy of approximation of 𝐿𝑢 is 
increased without expanding the stencil by adding new nodes. This ap-

proach borrows the idea from the standard compact finite differences 
[14,15], but now the stencil weights are not known a priori and should 
be obtained by solving lots of local linear systems of the form (3.6). This 
is a cost one should pay for working on scattered points and arbitrary 
geometries instead of working on a grid point set on a rectangular do-

main. In this section we propose a new implementation via D-RBF-PU 
method to relax this complexity, remarkably.

5.1. Compact D-RBF-PU formulation

For a trial set 𝑋 = {𝑥1, … , 𝑥𝑁} in the global domain Ω let 𝑋𝓁 and 
𝐽𝓁 be defined as before. In addition, assume 𝑋𝓁 ⊆𝑋𝓁 is a subset of trial 
points in patches Ω𝓁 for 𝓁 = 1, … , 𝑁𝑐 , and 𝐽𝓁 = {𝑗 ∈ 𝐽𝓁 ∶ 𝑥𝑗 ∈ 𝑋𝓁}. In-

spired from (3.7), the local approximants in our new D-RBF-PU method 
are obtained as

𝑠𝐿𝓁 (𝑥) =
∑
𝑗∈𝐽𝓁

𝐿𝜓𝑗 (𝓁;𝑥)𝑢(𝑥𝑗 ) +
∑
𝑗∈𝐽𝓁

𝐿𝐿�̃�𝑗 (𝓁;𝑥)𝐿𝑢(𝑥𝑗 ).

In contrast to RBF-HFD, we will apply this approximation not only for 
a single point 𝑥 = 𝑥0 but also for all evaluation points 𝑥 ∈ Ω𝓁 ∩ Ω. The 
Lagrange functions are the solutions of linear systems

⎡⎢⎢⎣
𝐴 𝐴𝐿 𝑃

𝐴𝐿 𝐴𝐿𝐿 𝑃𝐿

𝑃 𝑇 𝑃 𝑇
𝐿

0

⎤⎥⎥⎦
⎡⎢⎢⎣
𝐿𝝍(𝓁;𝑥)
𝐿𝐿�̃�(𝓁;𝑥)
𝐿𝝂(𝑥)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝐿𝝓(𝓁;𝑥)
𝐿𝐿�̃�(𝓁;𝑥)
𝐿𝒑(𝑥)

⎤⎥⎥⎦ , (5.1)

for 𝓁 = 1, 2, … , 𝑁𝑐 . Like as the right-hand side, the block matrix in (5.1)

also depends on 𝓁 because the submatrices are based on sets 𝑋𝓁 and 
𝑋𝓁 . The global approximation then is written as

𝑠𝐿(𝑥) =
𝑁𝑐∑
𝓁=1

𝑤𝓁(𝑥)𝑠𝐿𝓁 (𝑥)

=
𝑁𝑐∑
𝓁=1

∑
𝑗∈𝐽𝓁

(
𝑤𝓁(𝑥)𝐿𝜓𝑗 (𝓁;𝑥)

)
𝑢(𝑥𝑗 )

+
𝑁𝑐∑
𝓁=1

∑
̃

(
𝑤𝓁(𝑥)𝐿𝐿�̃�𝑗 (𝓁;𝑥)

)
𝐿𝑢(𝑥𝑗 ).

(5.2)
𝑗∈𝐽𝓁
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Thus, a discrete version of 𝐿𝑢 on test points 𝑌 = {𝑦1, … , 𝑦𝑀} is obtained 
as (𝐿𝑢)|𝑌 ≈ 𝑠𝐿|𝑌 = 𝐶𝒖𝑒 +𝐶𝐿𝒖𝑒 where

𝐶𝑘𝑗 =
𝑁𝑐∑
𝓁=1

𝑤𝓁(𝑦𝑘)𝐿𝜓𝑗 (𝓁;𝑦𝑘),

𝐶𝑘𝑗 =
𝑁𝑐∑
𝓁=1

𝑤𝓁(𝑦𝑘)𝐿𝐿�̃�𝑗 (𝓁;𝑦𝑘),

(5.3)

for 𝑘 = 1, … , 𝑀 and 𝑗 = 1, … , 𝑁 . For PDE problem 𝐿𝑢 = 𝑓 we have 𝐶𝒖𝑒 ≈
𝒇 −𝐶𝐿𝒖𝑒 = 𝒇 − 𝐶𝒇 𝑒. If we replace ‘≈’ by ‘=’ and 𝒖𝑒 by an approximate 
vector ̂𝒖, we end with

𝐶�̂� = 𝒇 −𝐶𝒇 𝑒,

which looks the same as system (3.9) of the RBF-HFD method but with 
different matrices 𝐶 and 𝐶 . We highlight that in the new D-RBF-PU 
method the number of local linear systems to be solved for setting up 
the final matrices 𝐶 and 𝐶 is highly reduced form 𝑀 (number of test 
points) to 𝑁𝑐 (number of PU patches) which leads to a considerably 
reduction in the computational cost of the method for setting up the 
final linear system.

If the standard Shepard weights (4.2) are used the stencil of a test 
point 𝑦𝑘 is the union of all 𝑋𝓁 for 𝓁 ∈ 𝐼(𝑦𝑘) which is larger than the 
single stencil 𝑋𝑘 of the standard RBF-HFD method. Thus, the final ma-

trix of D-RBF-PU is denser than that of the RBF-HFD. The situation 
can be modified if the constant-generated weight function (4.4) is ap-

plied. In this case every test point 𝑦𝑘 is subjected to a single stencil 
(the closet stencil) which makes this version of D-RBF-PU as sparse as 
RBF-HFD. Let us describe it in a more detail. According to the PU proce-

dure, each point 𝑦𝑘 is subjected to a local set 𝑋𝓁 =Ω𝓁 ∩𝑋 for an index 
𝓁 = 𝓁(𝑘) ∈ {1, … , 𝑁𝑐} in which Ω𝓁(𝑘) is the closest patch to 𝑦𝑘. From 
(4.4) and (5.2) we have

𝑠𝐿(𝑦𝑘) =
𝑁𝑐∑
𝓁=1

∑
𝑗∈𝐽𝓁

𝑤𝓁(𝑦𝑘)𝐿𝜓𝑗 (𝓁;𝑦𝑘)𝑢(𝑥𝑗 )

+
𝑁𝑐∑
𝓁=1

∑
𝑗∈𝐽𝓁

𝑤𝓁(𝑦𝑘)𝐿𝐿�̃�𝑗 (𝓁;𝑦𝑘)𝐿𝑢(𝑥𝑗 )

=
∑

𝑗∈𝐽𝓁(𝑘)

𝐿𝜓𝑗 (𝓁(𝑘);𝑦𝑘)𝑢(𝑥𝑗 ) +
∑

𝑗∈𝐽𝓁(𝑘)

𝐿𝐿�̃�𝑗 (𝓁(𝑘);𝑦𝑘)𝐿𝑢(𝑥𝑗 ),

which leads to

𝐶𝑘𝑗 =𝐿𝜓𝑗 (𝓁(𝑘);𝑦𝑘),

𝐶𝑘𝑗 =𝐿𝐿�̃�𝑗 (𝓁(𝑘);𝑦𝑘),
(5.4)

for 𝑘 = 1, … , 𝑀 and 𝑗 = 1, … , 𝑁 . The difference between this approach 
and the RBF-HFD method is that in the new method a set (stencil) 𝑋𝓁
is shared with many points 𝑦𝑘 while in the RBF-HFD each stencil 𝑋𝑘 is 
associated to a unique test point 𝑦𝑘.

In summary, the compact D-RBF-PU method with either smooth or 
constant-generated weights is much faster than the RBF-HFD method 
for setting up the final differentiation matrices. With the smooth weight 
function the final matrix of D-RBF-PU is denser but the majority of the 
total cost is subjected to the setting up phase because the final systems 
can be effectively inverted using iterative linear algebra solvers in few 
seconds, even for large values of 𝑁 . See the experimental results of 
section 7.

5.2. How to avoid the instability of local systems?

The standard implementation of all above localized techniques suf-

fers from the ill-conditioning of local linear systems. One of sources of 
instability is the shape parameter, where keeping it small creates an 
ill-conditioned kernel matrix. Several attempts have been done to re-

solve this problem. Some attentions have been paid to find an “optimal” 
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shape parameter instead of choosing it by trial and error. The earliest 
work goes back to Hardy [50] and then to Franke [51]. A variation of 
the leave-one-out cross validation (LOOCV) forms the basis of an algo-

rithm proposed in [52]. The method of maximum likelihood estimation 
(MLE) was applied as an alternative algorithm for choosing the shape 
parameter in [53]. The list of papers for choosing an optimal shape pa-

rameter in RBF approximation is long. As some examples, we refer to 
[54–57] to see some extensions of the Rippa’s algorithm.

A different approach was suggested by Wright in his Ph.D thesis [5]

which computes the solution at different values of shape parameter on 
a safe path in the complex plane and then approximates the solution 
at the desired positive shape parameter using the Padè approximation. 
The approach is called the RBF Contour Padè (RBF-CP) method. In [58]

the RBF-CP was improved to a more efficient technique RBF-RA where 
the rational interpolation is used instead of the Padè approximation. 
The RBF-HFD has equipped with RBF-CP in [16] and with RBF-RA in 
[58] where in both cases the stability at near flat cases is obtained at 
the price of a more computational cost.

For standard interpolation the RBF-QR [59,8] and the RBF-GA [60]

methods suggest an alternative way to suppress the instability of Gaus-

sian kernel at small values of shape parameter. Unfortunately, these 
approaches as well as other stabilization techniques (e.g. see [61,62]) 
are not easily adaptable to Hermite interpolation in the form introduced 
here.

The spectral convergence of infinitely smooth kernels such as Gaus-

sians and (inverse) multiquadrics for a global RBF interpolation will 
reduce to an algebraic rate in a localized RBF form. This may encour-

age users to get use of finitely smooth and shape parameter free basis 
functions such as polyharmonic spline (PHS) kernels. These kernels are 
defined as

𝜑𝛽 (𝑟) ∶=

{
𝑟𝛽 log 𝑟, 𝛽 even

𝑟𝛽 , otherwise
(5.5)

for a positive real number 𝛽. The function 𝜙 = 𝜑𝛽 (‖ ⋅ ‖2) is conditionally 
positive definite of order 𝑚 = ⌊𝛽∕2⌋ + 1. However, the instability has 
another source other than working in a small shape parameter regime. 
When the spacing distance between the nodes decreases the condition 
number of the RBF system increases algebraically for finitely smooth 
or exponentially for infinitely smooth basis functions [44]. This kind of 
instability could be fairly overcome for PHS kernels because the ap-

proximation process with a PHS kernel is scalable meaning that the 
Lagrange functions 𝜓ℎ

𝑗 (𝑥
ℎ) on a localized set 𝑋ℎ with spacing distance 

ℎ are identical with the Lagrange functions 𝜓𝑗 (𝑥) on scaled (blown up) 
set 𝑋 =𝑋ℎ∕ℎ with fill distance 1 for 𝑥 = 𝑥ℎ∕ℎ [63]. More generally, for 
an order 𝛼 derivative we have

𝐷𝛼𝜓ℎ
𝑗 (𝑥

ℎ) = ℎ−|𝛼|𝐷𝛼𝜓𝑗 (𝑥). (5.6)

This means that we can always compute the stencil weights on the 
blown up set and then rescale them to the original situation using the 
scaling rule (5.6). Note that, the conditioning of the PHS system in the 
blown up set behaves as (1). For some applications in numerical solu-

tion of PDEs see [64,65,38].

Now, we show that the scaling works for local systems (5.1) for 
the new compact D-RBF-PU method as well. Assume that 𝐿 is a linear 
functional with scaling order (homogeneity) 𝜎, i.e., 𝐿𝑢(⋅ℎ) = ℎ𝜎𝐿𝑢 for 
all ℎ > 0. For example 𝐷𝛼 , ∇ and Δ have scaling orders 𝜎 = |𝛼|, 𝜎 = 1
and 𝜎 = 2, respectively. Then we can prove that if the system (5.1) is 
formed via PHS kernels (5.5) on a data set 𝑋ℎ with fill-distance ℎ and 
monomial basis functions {𝑥𝛼}|𝛼|<𝑚 for ℙ𝑚−1(ℝ𝑑 ) then

ℎ𝜎𝐿𝝍ℎ(𝓁;𝑥ℎ) =𝐿𝝍(𝓁;𝑥),

𝐿𝐿�̃�ℎ(𝓁;𝑥ℎ) =𝐿𝐿�̃�(𝓁;𝑥),

ℎ𝜎−𝛽𝐻𝐿𝝂ℎ(𝑥ℎ) =𝐿𝝂(𝓁;𝑥)

(5.7)
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where the right hand side terms are solutions of (5.1) on the blown up 
set 𝑋 = 𝑋ℎ∕ℎ at evaluation point 𝑥 = 𝑥ℎ∕ℎ. In the third line 𝐻 is the 
following diagonal matrix

𝐻 = diag
{
1, ℎ,… , ℎ

⏟⏟⏟

( 𝑑
𝑑−1) times

, ℎ2,… , ℎ2
⏟⏞⏞⏟⏞⏞⏟

(𝑑+1
𝑑−1) times

,… , ℎ𝑚−1,… , ℎ𝑚−1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

(𝑑+𝑚−2
𝑑−1 ) times

}
∈ℝ𝑄×𝑄.

To form 𝐻 we used the fact that #{𝑥𝛼 ∶ |𝛼| = 𝑘} =
(𝑑+𝑘−1

𝑑−1

)
for 𝑘 =

0, 1, … , 𝑚 − 1. The scaling rules (5.7) can be simply proved. For exam-

ple, in the case of power kernel 𝜑𝛽 (𝑟) = 𝑟𝛽 the relation between blocks 
of the Hermite matrix in (5.1) in original and blown up cases are

𝐴ℎ = ℎ𝛽𝐴, 𝐴ℎ
𝐿 = ℎ𝛽−𝜎𝐴𝐿, 𝐴ℎ

𝐿𝐿 = ℎ𝛽−2𝜎𝐴𝐿𝐿,

𝑃 ℎ = 𝑃𝐻, 𝑃 ℎ
𝐿 = ℎ−𝜎𝑃𝐿𝐻,

and the right hand is scaled via

𝐿𝝓ℎ(𝓁;𝑥ℎ) = ℎ𝛽−𝜎𝐿𝝓(𝓁;𝑥), 𝐿𝐿�̃�
ℎ
(𝓁;𝑥ℎ) = ℎ𝛽−2𝜎𝐿𝐿�̃�(𝓁;𝑥),

𝐿𝒑ℎ(𝑥ℎ) = ℎ−𝜎𝐻𝐿𝒑(𝑥).

These simply proves (5.7). The proof for the case of TPS function 𝜑𝛽 (𝑟) =
𝑟𝛽 log 𝑟 follows a same direction but needs the vanishing property of 
the quadratic forms of polynomials of certain degrees which is true for 
appended polynomials to the TPS kernel.

This scaling property allows to form the local linear system (5.1) on 
a scaled data set with spacing distance 1 to avoid any serious instability. 
Then the scaling rules (5.7) are used to compute the Lagrange functions 
of the original configuration. In fact, we take out the ℎ from data, solve 
the problem stably, and finally bring it back to the solution via (5.7).

Unless the other stabilization techniques, it is clear that this ap-

proach does not impose any additional cost to the algorithm. We also 
note that the same scaling rule is applicable to obtain the stencil weights 
from system (3.8) for the standard RBF-HFD method.

6. Implementation details

In this section we provide implementation details to make the 
method easier to follow and more convenient to extent. Assume that 
a PDE problem

𝐿𝑢 = 𝑓, in Ω

𝐵𝑢 = 𝑔, on 𝜕Ω

is given where 𝐿 and 𝐵 are linear domain and boundary differential 
operator, respectively. Let 𝑋 be a set of 𝑁 trial points in Ω ∪ 𝜕Ω and 
𝑋 = 𝑋𝐼 ∪ 𝑋𝐵 where 𝑋𝐼 is the set of interior points and 𝑋𝐵 is the set 
of boundary points. Assume that 𝒇 = 𝑓 |𝑋𝐼

and 𝒈 = 𝑔|𝑋𝐵
. Then the main 

algorithm can be written as follows.

Algorithm 1: The main PDE solver

Data: Trial set 𝑋, interior set 𝑋𝐼 , boundary set 𝑋𝐵 , patches {Ω𝓁}, PDE operators 
𝐿 and 𝐵, and PDE data 𝒇 and 𝒈.

Result: Approximate solution 𝒖 at points 𝑋.

1: Call Algorithm 2 for operator 𝐿 to compute matrices 𝐶𝐿 and 𝐶𝐿 from data 𝑋, 
𝑋𝐼 and {Ω𝓁};

2: Call Algorithm 2 for operator 𝐵 to compute matrices 𝐶𝐵 and 𝐶𝐵 from data 𝑋, 
𝑋𝐵 and {Ω𝓁};

3: Set 𝐶 =
[
𝐶𝐿

𝐶𝐵

]
and 𝒃 =

[
(𝐼 −𝐶𝐿)𝒇
(𝐼 −𝐶𝐵 )𝒈

]
;

4: Solve 𝐶𝒖 = 𝒃;
5: Return 𝒖;

In Algorithm 1, the compact D-RBF-PU algorithm (Algorithm 2) is 
called twice (for interior operator 𝐿 and boundary operator 𝐵) to setup 
the final matrix 𝐶 and the right-hand side vector 𝒃. This subroutine 
reads as follows.
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Algorithm 2: The compact D-RBF-PU subroutine

Data: Trial set 𝑋 of size 𝑚 × 𝑑, test set 𝑌 of size 𝑛 × 𝑑, patches {Ω𝓁}, and 
operator 𝐿.

Result: Matrix 𝐶 of size 𝑚 × 𝑛 and matrix 𝐶 of size 𝑛 × 𝑛.

1: Initialize: 𝐶 = 0 and 𝐶 = 0;

2: Collect indices of points in 𝑋 belonging to each patch Ω𝓁 using the 𝑘𝑑-tree 
algorithm;

3: Collect indices of points in 𝑌 belonging to each patch Ω𝓁 using the 𝑘𝑑-tree 
algorithm;

4: for 𝓁 = 1 ∶ Number of patches do
4-1: Find trial set 𝑋𝓁 in patch Ω𝓁 using the corresponding collection of line 

2;

4-2: Find test set 𝑌𝓁 in patch Ω𝓁 using the corresponding collection of line 3;

4-3: Find Hermite set 𝑋𝓁 out of 𝑌𝓁 ;

if weight is constant-generated then

4-4: Find points 𝑌𝓁 out of 𝑌𝓁 for which Ω𝓁 is their closet patch;

4-5: Call Algorithm 3 to compute Lagrange functions based on 𝑋𝓁 and 
𝑋𝓁 at 𝑌𝓁 ;

4-6: Update 𝐶 and 𝐶 via (5.4).

else

4-4: Compute Shepard weight vector 𝒘𝓁 at 𝑌𝓁 via (4.2);

4-5: Call Algorithm 3 to compute Lagrange functions based on 𝑋𝓁 and 
𝑋𝓁 at 𝑌𝓁 ;

4-6: Update 𝐶 and 𝐶 via (5.3).

5: Return 𝐶 and 𝐶 .

Algorithm 3: PHS Lagrange functions

Data: Point sets 𝑋 of size 𝑚 × 𝑑, 𝑋 of size �̃� × 𝑑, 𝑌 of size 𝑛 × 𝑑, the center 𝜔𝓁

and radius 𝜌 of patch Ω𝓁 , and operator 𝐿.

Result: Matrix Ψ of size 𝑛 ×𝑚 and matrix Ψ̃ of size 𝑛 × �̃�.

1: Shift 𝑋, 𝑋 and 𝑌 by 𝜔𝓁 and divide by 𝜌 (shift and scale);

2: Compute matrices 𝐴, 𝐴𝐿 , 𝐴𝐿𝐿 , 𝑃 , 𝑃𝐿 , 𝐿𝝓(𝓁; ⋅), 𝐿𝐿�̃�(𝓁; ⋅), 𝐿𝒑(𝑥) and form 
(5.1);

3: Solve (5.1) for Ψ and Ψ̃;

4: Determine 𝑠 the scaling order of 𝐿;

5: Re-scale Ψ and Ψ̃ using the scaling rule (5.7);

6: Return the new Ψ and Ψ̃;

Finally, we note that the MATLAB implementation is freely available 
at GitHub via https://github .com /ddmirzaei /C _D _RBF _PU to facilitate 
the reproduction of the examples presented in the next section.

7. Numerical experiments

In this section, numerical results of the compact D-RBF-PU method 
and comparisons with the RBF-HFD method are given. We consider the 
Poisson equation on the unit square Ω = [0, 1]2 with Dirichlet and Neu-

mann boundary conditions in two dimension. The well-known Franke’s 
function is used as an exact solution [51]. Halton sets 𝑋 = {𝑥1, … , 𝑥𝑁}
for different number 𝑁 with fill distance ℎ = ℎ𝑋,Ω are used for trial 
points. The fill distance is approximated by 1∕

√
𝑁 . We use a set of circu-

lar patches Ω𝓁 =𝐵(𝜔𝓁 , 𝜌) for PU approximation. In all examples, 𝜌 = 4ℎ, 
being ℎ the fill distance, and 𝑁𝑐 = ⌈𝑁∕16⌉ grid points in the domain 
are used for patch centers. We assume 𝑋𝓁 = {𝑥𝑗 ∈ 𝑋 ∶ ‖𝑥𝑗 − 𝜔𝓁‖2 ⩽ 𝜌}
and 𝑋𝓁 = {𝑥𝑗 ∈ 𝑋𝓁 ∶ 𝑐𝐻𝜌 < ‖𝑥𝑗 − 𝜔𝓁‖2 ⩽ 𝜌} where 0 ⩽ 𝑐𝐻 ⩽ 1 controls 
the width of the annulus. Values of 𝑐𝐻 close to 1 put the points in 
sub-stencil 𝑋𝓁 near the boundary of patch Ω𝓁 . Experiments show more 
satisfactory results for values of 𝑐𝐻 bigger than 0.5. In this study we set 
𝑐𝐻 = 0.75 for internal points and 𝑐𝐻 = 1 for boundary test points. As a 
smooth PU weight, the 𝐶2 Wendland’s function

𝜑𝓁 = 𝜑(‖ ⋅−𝜔𝓁‖2∕𝜌), 𝜑(𝑟) = (1 − 𝑟)4+(4𝑟+ 1),

is used in (4.2) [40]. The constant-generated weight function (4.4) will 
be applied as well. PHS kernel (5.5) with 𝛽 = 4, 5, 6, 7, 8, 9 where we re-

fer to as PHS𝛽 are employed. Polynomials of degree ⌊𝛽∕2⌋ = 2, 2, 3, 3, 4, 4
are augmented, respectively, to guarantee the solvability of local sys-

tems. The scaling rule (5.7) is applied in all patches for computing local 
RBF approximations. The results will be compared with the RBF-HFD 

https://github.com/ddmirzaei/C_D_RBF_PU
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Fig. 2. Errors and convergence orders of compact D-RBF-PU method with different PHS kernels and polynomial degrees. Computational convergence orders are 
appeared along side the legends. The smooth PU weight is used for the plots of the first row and the constant-generate weight for those on the second row. These

results are obtained for a pure Dirichlet BVP.
method. For a fair comparison the RBF-HFD stencils are chosen to be 
the intersection of trial points with balls of radius 𝜌 centered at test 
points. Also, the same sub-stencils are used for Hermite part of the ap-

proximation in each stencil. The scaling rule is used for computing the 
RBF-HFD weights as well. In all plots computational convergence or-

ders are obtained by the linear least squares fitting to error values and 
are written alongside the figure legends.

In Fig. 2, the norm infinity of errors in terms of 
√
𝑁 (the square of 

number of trial points) and numerical convergence orders are shown. 
We observe the convergence order 𝛽∕2 for each kernel PHS𝛽. For re-

sults of Fig. 2, the Dirichlet boundary condition is applied on all sides 
of the domain’s boundary. Fig. 3 presents the errors and orders when 
the Neumann boundary condition is imposed on top and bottom sides of 
the boundary. Comparing with the previous figure, we observe a reduc-

tion in accuracy which is natural in appearance of Neumann boundary 
conditions.

In Fig. 4 the sparsity of final matrices of compact D-RBF-PU and 
RBF-HFD methods are compared for two different patch sizes. As 𝑁
increases the percentage of nonzeros goes down to fall under 1% for 
𝑁 ≳ 10e+4. The final matrix of D-RBF-PU with the constant-generated 
weight is approximately as sparse as that of the RBF-HFD method. The 
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smooth weight results in an approximately 3 times denser matrix. This 
is the cost one should pay to obtain a smooth solution for the PDE.

In Fig. 5, a comparison between the new method and the RBF-HFD 
method is given for both types of boundary conditions. For the Dirichlet 
problem both methods provide approximately the same accuracy and 
order of convergence but for the Neumann problem the new method 
outperforms the RBF-HFD method. However, the main advantage of the 
compact D-RBF-PU over the RBF-HFD is reported in Fig. 6 where the 
computational costs are compared. Although the final matrix of D-RBF-

PU with smooth weight is denser than two others, the left panel shows 
that the CPU time needed for solving the final system in each cases is 
a fraction of second for values of 𝑁 up to 15000 in this experiment. 
We observe a remarkable difference in the right panel where the setting 
up times are compared for both methods. The results show an average 
speedup of 10x for the new method. This speedup is caused by the costs 
for solving local linear systems. If we ask for a more accurate solution 
using a wider stencil (or patch) then a higher speedup with the new 
method is observed.
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Fig. 3. Errors and convergence orders of compact D-RBF-PU method with different PHS kernels and polynomial degrees for Neumann BVP. Computational conver-

gence orders are appeared along side the legends. The smooth PU weight is used in this case.

Fig. 4. Amount of sparsity: a comparison between the new method with smooth and discontinuous weights and the RBF-HFD method. The left panel for 𝜌 = 4ℎ and 
the right panel for 𝜌 = 5ℎ.

Fig. 5. Comparison of accuracy and convergence orders: Compact D-RBF-PU method v.s RBF-HFD method with Dirichlet (left) and Neumann (right) boundary 
conditions.
9
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Fig. 6. The CPU times used for solving (left) and setting up (right) the final linear systems at different number of points. The rates are the same but D-RBF-PU is 
approximately 10 times faster.
8. Conclusion

We developed the standard RBF-HFD method into a new technique 
based on a direct RBF approximation and the partition of unity method. 
The new method, called the compact direct RBF partition of unity (D-

RBF-PU) method, possesses some advantages over the standard method. 
This approach leads to a new RBF-HFD formulation in a partition of 
unity setting, still gives rise to sparse differentiation matrices. We in-

vestigated an scalability property of polyharmonic spline kernels to 
develop a simple and stable algorithm for solving local linear systems 
in each PU patches. The scaling is also applicable for obtaining the sten-

cil weights of the RBF-HFD method. We also illustrated the efficiency 
and applicability of the new method through some numerical examples. 
Compared with the standard RBF-HFD method, the compact D-RBF-PU 
method is much faster and results in more accurate solutions in ap-

pearance of Neumann boundary conditions. In our experiments with 
a certain selection of method parameters the speedup of 10x was ob-

served.

Finally, the use of the new compact D-RBF-PU method with the 
method of line (MOL) to extend it to time-dependent PDEs such as 
reaction-diffusion and advection-diffusion problems is left for a future 
study.
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