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In this research article, we introduce a high-order and non-oscillatory finite volume method 
in combination with radial basis function approximations and use it for the solution of scalar 
conservation laws on unstructured meshes. This novel approach departs from conventional 
non-oscillatory techniques, which often require the use of multiple stencils to achieve smooth 
reconstructions. Instead, the new method uses a single central stencil and hinges on an 
approximate interpolation methodology called the weighted smoothed reconstruction (WSR), 
with a foundation on polyharmonic spline interpolation. Through some numerical experiments, 
we demonstrate the efficiency and accuracy of the new approach. It reduces the computational 
cost and performs well in capturing shocks and sharp solution fronts.

1. Introduction

Many physics and engineering problems give rise to time-dependent partial differential equations (PDEs), and one of the most 
significant and extensively used among them is the hyperbolic conservation law. A characteristic feature of conservation laws is that 
the solution to the problem may develop discontinuities (shocks) or sharp fronts, even when the initial condition is smooth. These 
discontinuities or sharp fronts result in non-physical oscillations in the numerical solution. The purpose of numerical techniques is 
to precisely capture these discontinuities (shocks) while avoiding unphysical oscillations and achieving a solution with a high order 
of convergence.

Over recent decades, the finite volume method (FVM) has been established as a well-known and commonly used numerical 
technique for solving conservation laws. FVM holds a rich history, and has been evolved into various forms and methodologies 
[31,34,38,51]. The main structure behind almost all finite volume methods is the spatial discretization of the domain into a set of 
cells (control volumes), temporal discretization of time interval, reconstructing the solution in each control volume using the given 
cell average values (average of the solution in a control volume) at a certain time, and then updating the cell average values in 
the next time step by calculating the numerical flux at the cell interfaces. These methods are either linear or non-linear and share 
similarities with finite difference schemes for hyperbolic PDEs, but are also adaptable to unstructured grids.

According to the Godunov theorem a linear scheme must be either only first-order accurate or oscillatory. Some nonlinear numer-

ical schemes have been developed towards high-order non-oscillatory methods, including artificial viscosity schemes, total variation 
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diminishing (TVD) schemes, total variation bounded (TVB) schemes, essentially non-oscillatory (ENO) and weighted essentially 
non-oscillatory (WENO) schemes, monotonicity-preserving schemes, and boundary variation diminishing (BVD) schemes. There are 
typically three approaches employed in these techniques: Godunov’s approach, the use of artificial viscosity, or the use of a high-order 
reconstruction. Standard numerical methods of Godunov-type are well introduced in LeVeque [34] and Toro [51], Hesthaven [17], 
and references therein in the context of FVM. A finite difference artificial viscosity method was proposed by Von Neumann and Richt-

myer [52] in the 1950s. Then it becomes the predominant approach in the finite element method (FEM) community for solving fluid 
dynamic problems [14,21,28,39]. As an application of the artificial viscosity and hyperviscosity methods for stabilizing RBF-based 
algorithms refer to [41,50].

The earliest attempts at achieving higher than first-order reconstructions date back to the application of flux and slope limiter 
methods to obtain second-order accurate schemes in FVM [34]. Subsequently, higher-order ENO reconstructions were developed 
and widely used for approximating hyperbolic PDEs in computational fluid dynamic problems [1,15,16,46–48]. The primary idea 
behind the ENO reconstruction includes determining sets of stencils surrounding a control volume, then computing a reconstruction 
on each of these stencils, and then picking the smoothest (least oscillatory) reconstruction as the desired reconstruction on the 
control volume. The ENO reconstruction on a control volume can be improved by using a weighted sum of different reconstructions 
on different stencils. The weights are chosen based on the smoothness of the reconstructions, such that smoother (least oscillatory) 
reconstructions have higher weights. This technique is known as WENO reconstruction (see for example [10,20,27,35,42,43,55,57]). 
A comprehensive review of this approach in FDM and FVM frameworks, using polynomial reconstructions, can be found in [44]. 
Efforts to combine WENO schemes with RBF interpolations were made earlier in [2,3,23].

Another class of reconstruction techniques are central essentially non-oscillatory (CENO) methods that aim to overcome some 
restriction of ENO/WENO methods by using a central reconstruction through combining a high-order 𝑘-exact and a monotonicity 
preserving piecewise linear reconstructions [24].

In this article, we introduce a novel non-oscillatory finite volume method that adeptly captures shocks and sharp fronts in the 
solution using just one central stencil. This places it within the CENO category, although it fundamentally differs from the existing 
CENO methods. Our approach employs a single central stencil alongside a generalized spline smoothing technique, called weighted 
smoothed reconstruction (WSR), to suppress non-physical oscillations in the vicinity of shocks or sharp fronts. This stands in contrast 
to the WENO reconstruction method, which involves the selection of several stencils (central, forward, and backward), computation 
of corresponding reconstructions, and forming a weighted reconstruction by assigning specific weights to different reconstructions.

To achieve a non-oscillatory reconstruction, we extend the approximate interpolation method presented in [54] to a weighted 
smoothed approximation with varying smoothing parameters. This WSR approach is based on radial basis function (RBF) approxi-

mation and is integrated into the reconstruction step of the finite volume method (FVM). When comparing it to other techniques, 
we denote this method as FVM-WSR. It is applicable to unstructured meshes and can be adapted for various kernel-based inter-

polations. To ensure stability and accuracy, we employ polyharmonic spline basis functions and use their scalability properties 
to construct stable local interpolation matrices. In the temporal domain, we use strong stability-preserving Runge-Kutta (SSPRK) 
methods [6,11,12,46].

The structure of this paper is as follows: In Section 2, we provide a brief overview of kernel-based interpolation and polyharmonic 
spline RBF approximation. In Section 3, we outline the fundamental principles of FVM for conservation laws and briefly discuss the 
WENO reconstruction. In Section 4, we explore the approximate interpolation and the smoothing spline technique, and then develop 
the generalized version WSR that will be employed in subsequent sections. In Section 5 we focus on the adaptation of the WSR 
technique for use in the FVM framework, and finally in Section 6, we demonstrate the performance and accuracy of FVM-WSR 
in solving various types of scalar conservation laws, including linear advection, Burgers’, and the Kurganov-Petrova-Popov (KKP) 
equations, both with smooth and discontinuous initial conditions.

2. RBF interpolation

In this section, we provide a short overview of standard interpolation using conditionally positive definite kernels. For more 
details see, for example, [9,53].

Assume that ℝ𝑑 represents the set of all real vectors in dimension 𝑑, and ‖ ⋅ ‖ stands for the Euclidean norm on ℝ𝑑 . Also, assume 
that ℙ𝑑

𝑚 is the space of polynomials of degree at most 𝑚 (order 𝑚 + 1) on ℝ𝑑 . The dimension of this space is 𝑄 =
(𝑚+𝑑

𝑑

)
.

Definition 2.1. A univariate, continuous and even function 𝜙 is conditionally positive definite on ℝ𝑑 with respect to polynomial 
space ℙ𝑑

𝑚 (or of order 𝑚 + 1) if

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝛼𝑖𝛼𝑗𝜙(‖𝑥𝑖 − 𝑥𝑗‖) > 0

for any 𝑁 and any set of pairwise distinct points 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ℝ𝑑 and any real values 𝛼1, 𝛼2, … , 𝛼𝑁 that satisfy the side condition

𝑁∑
𝛼 𝑝 (𝑥 ) = 0, for all 𝑝 ∈ ℙ𝑑 .
2

𝑗=1
𝑗 𝑗 𝑚
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Table 1

Typical RBFs for 𝑟 = ‖𝑥‖2 , 𝑥 ∈ℝ𝑑 .

RBF 𝜙(𝑟) Parameters Order

Gaussian exp(𝜀2𝑟2) 𝜀 > 0 0
Sobolev spline 𝑟𝛽−𝑑∕2𝐾𝛽−𝑑∕2(𝜀𝑟) 𝛽 > 𝑑∕2, 𝜀 > 0 0
IMQ (1 + 𝜀2𝑟2)−𝛽 𝛽 > 0, 𝜀 > 0 0
MQ (1 + 𝜀2𝑟2)𝛽 𝛽 > 0, 𝛽 ∉ℕ, 𝜀 > 0 ⌈𝛽⌉
Polyharmonic splines

(PHS)

{
𝑟2𝑘−𝑑 log 𝑟
𝑟2𝑘−𝑑

𝑘 ∈ℕ, 𝑑 even

𝑘 ∈ℕ, 𝑑 odd
𝑘− ⌈𝑑∕2⌉+ 1

Wendland’s functions 𝜙𝑑,𝑘(𝜀𝑟) 𝑘 ∈ℕ0, 𝑑 ∈ ℕ, 𝜀 > 0 0

Function 𝜙 is called positive definite if it is conditionally positive definite of order zero. Such a (conditionally) positive definite 
function is called a radial basis function (RBF).

Some typical examples of RBF 𝜙(𝑟) for 𝑟 = ‖𝑥‖2, 𝑥 ∈ ℝ𝑑 , are listed in Table 1. The positive parameter 𝜀 is called the shape 
parameter. Polyharmonic spline (PHS) kernels are examples of 𝜀-free RBFs. In the second row of the table, 𝐾𝛽 is the modified Bessel 
function of the second kind of order 𝛽. For explicit formula of Wendland’s functions 𝜙𝑑,𝑘(𝜀𝑟) see [53, Chapter 9].

The RBF interpolation of a continuous function 𝑓 ∶ Ω ⊂ℝ𝑑 →ℝ on a discrete set 𝑋 = {𝑥1, … , 𝑥𝑁} ⊂Ω is expressed as follows

𝑠𝑓,𝑋 (𝑥) =
𝑁∑
𝑗=1

𝛼𝑗𝜙(‖𝑥− 𝑥𝑗‖) + 𝑄∑
𝑗=1

𝛽𝑗𝑝𝑗 (𝑥) (2.1)

where {𝑝1, … , 𝑝𝑄} forms a basis for ℙ𝑑
𝑚. Imposing the interpolation conditions 𝑠𝑓,𝑋 (𝑥𝑖) = 𝑓 (𝑥𝑖) for 𝑖 = 1, … , 𝑁 , and applying the 

above side condition imply that the vectors 𝛼 = (𝛼1, … , 𝛼𝑁 )𝑇 and 𝛽 = (𝛽1, … , 𝛽𝑄)𝑇 satisfy the system of equations[
𝐴 𝑃

𝑃𝑇 0

][
𝛼

𝛽

]
=
[
𝑓𝑋
0

]
(2.2)

where

𝐴 =(𝜙(‖𝑥𝑗 − 𝑥𝑖‖)) ∈ℝ𝑁×𝑁,

𝑃 =(𝑝𝑗 (𝑥𝑖)) ∈ℝ𝑁×𝑄,

𝑓𝑋 =(𝑓 (𝑥1),… , 𝑓 (𝑥𝑁 ))𝑇 .

(2.3)

From definition, the matrix 𝐴 is symmetric and positive definite on the null space of 𝑃𝑇 . We also assume that 𝑁 ⩾𝑄 and 𝑋 is ℙ𝑑
𝑚-

unisolvent set to guarantee the solvability of system (2.2). For a (strictly) positive definite RBF, the symmetric matrix 𝐴 is positive 
definite and the interpolation problem is solvable in the absence of polynomial terms.

An important class of RBFs that will be used in this paper is polyharmonic splines (PHS)

𝜙𝑑,𝑘(𝑟) ∶=
{
𝑟2𝑘−𝑑 log 𝑟, 𝑘 ∈ℕ, 𝑑 even

𝑟2𝑘−𝑑 , 𝑘 ∈ℕ, 𝑑 odd
(2.4)

for 2𝑘 − 𝑑 > 0. The PHS function 𝜙𝑑,𝑘 is (up to a sign) conditionally positive definite of order 𝑚 + 1 = 𝑘 − ⌈𝑑∕2⌉ + 1. The native space

associated to this RBF is the Beppo-Levi space

BL𝑘(ℝ𝑑 ) ∶= {𝑓 ∈ 𝐶(ℝ𝑑 ) ∶𝐷𝛼𝑓 ∈𝐿2(ℝ𝑑 ), ∀𝛼 ∈ℕ𝑑
0 with |𝛼| = 𝑘}

provided that it is considered as a conditionally positive definite kernel of order 𝑘. Note that a conditionally positive definite function 
with respect to a polynomial space of a certain order is also conditionally positive definite with respect to higher order polynomial 
spaces. We refer the reader to [9,53] for more details about (conditionally) positive definite functions and their approximation 
properties.

3. Finite volume method

In this section, we provide a brief description about finite volume method (FVM) for solving the scalar conservation law. For a 
more detailed explanation, interested readers are referred to [17,34,51].

3.1. The scalar conservation law

Consider a scalar conservation law on an open and bounded computational domain Ω ⊂ℝ𝑑 with an initial condition as follows
3

𝜕𝑢

𝜕𝑡
+∇ ⋅ 𝐹 (𝑢) = 0, 𝑢 (0, 𝑥) = 𝑢0(𝑥). (3.1)
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Here, 𝐹 (𝑢) ∶=
(
𝑓1(𝑢),… , 𝑓𝑑 (𝑢)

)𝑇
is a flux function and 𝑢 ≡ 𝑢 (𝑡, 𝑥) ∶ 𝐼 ×Ω ⟶ℝ is the solution of the problem. Moreover, 𝐼 ∶=

(
0, 𝑡𝑓

]
is a time interval with a final time 𝑡𝑓 , and 𝑢0(𝑥) is the initial function.

In order to discretize the problem (3.1) using FVM, we assume that the domain Ω is covered by a non-overlapping set of volumes 
(cells) 

{
𝑉1, 𝑉2,… , 𝑉𝑁

}
=∶  . The integral form of the conservation law (3.1) on each volume 𝑉 ∈  at time 𝑡 ∈ 𝐼 is obtained, after 

applying an integration by parts, as

𝑑

𝑑𝑡
𝑢𝑉 + 1|𝑉 | ∫

𝜕𝑉

𝐹 (𝑢) ⋅ 𝜈 d𝑠 = 0, for 𝑉 ∈  , (3.2)

where

𝑢𝑉 ≡ 𝑢𝑉 (𝑡) ∶=
1|𝑉 | ∫

𝑉

𝑢(𝑡, 𝑥)d𝑥 for 𝑉 ∈  , 𝑡 ∈ 𝐼,

is the cell average value of 𝑢 on volume 𝑉 at time 𝑡. We assume that boundary of 𝑉 is denoted by 𝜕𝑉 and composed of distinct 
segments Γ1, … , Γ𝑞 , i.e., 𝜕𝑉 = ∪𝑞

𝑗=1Γ𝑗 . Also, 𝜈 is the unit outward normal vector to 𝜕𝑉 . Then, equation (3.2) can be rewritten as

𝑑

𝑑𝑡
𝑢𝑉 + 1|𝑉 | 𝑞∑

𝑗=1
∫
Γ𝑗

𝐹 (𝑢(𝑡, 𝑠)) ⋅ 𝜈𝑗 d𝑠 = 0, (3.3)

where 𝜈𝑗 are normals to boundary segments Γ𝑗 . The boundary integrals in (3.3) can be approximated by a 𝑛-point Gaussian quadra-

ture (or else) to obtain

𝑑

𝑑𝑡
𝑢𝑉 + 1|𝑉 | 𝑞∑

𝑗=1

𝑛∑
𝑘=1

𝜔𝑗,𝑘𝐹 (𝑢(𝑡, 𝑧𝑗,𝑘)) ⋅ 𝜈𝑗 ≈ 0, (3.4)

where 𝜔𝑗,𝑘 and 𝑧𝑗,𝑘 for 𝑘 = 1, … , 𝑛 are integration weights and integration points, respectively, on interface Γ𝑗 .
The next step replaces the exact flux 𝐹 (𝑢) ⋅ 𝜈 by a numerical flux function 𝐹 (𝑢+, 𝑢−; 𝜈) in order to couple the subproblems defined 

on each FVM cells, and to ensure that information in the problem travels in the direction of the characteristic curves of the equation. 
Here, 𝑢+ and 𝑢− are solutions on the boundary 𝜕𝑉 from inside and outside, respectively. From the list of available numerical fluxes, 
this paper employs the Lax-Friedrichs numerical flux function [33,34]

𝐹 (𝑢+, 𝑢−; 𝜈) = 1
2
(
𝐹 (𝑢+) + 𝐹 (𝑢−)

)
⋅ 𝜈 + 𝜎

2
(𝑢+ − 𝑢−)

where 𝜎 is the maximum local speed and is obtained by

𝜎 = max
min(𝑢+ ,𝑢−)≤𝑢≤max(𝑢+ ,𝑢−)

|𝐹 ′(𝑢) ⋅ 𝜈𝑗 |, 𝐹 ′(𝑢) =
[
𝑑𝑓1
𝑑𝑢

,… ,
𝑑𝑓𝑑

𝑑𝑢

]
.

When substituted into (3.4), 𝑢+(⋅, 𝑧𝑗,𝑘) represents the solution at integration point 𝑧𝑗,𝑘 within volume 𝑉 itself, whereas 𝑢−(⋅, 𝑧𝑗,𝑘)
represents the solution at the same point, but obtaining from an adjacent volume that shares Γ𝑗 as a common interface with volume 
𝑉 .

Finally, the cell average values {𝑢𝑉 (𝑡)}𝑉 ∈ are updated by solving the system of ODEs

𝑑

𝑑𝑡
𝑢𝑉 (𝑡) =𝐿𝑉 (𝑢𝑉 (𝑡)), 𝑉 ∈  , (3.5)

where

𝐿𝑉 (𝑢𝑉 (𝑡)) = − 1|𝑉 | 𝑞∑
𝑗=1

𝑛∑
𝑘=1

𝜔𝑗,𝑘𝐹 (𝑢+(𝑡, 𝑧𝑗,𝑘), 𝑢−(𝑡, 𝑧𝑗,𝑘); 𝜈𝑗 ). (3.6)

Reconstructing 𝑢+ and 𝑢− from the current cell-averaged values {𝑢𝑉 (𝑡)}𝑉 ∈ is essential for updating the solution from time level 𝑡
to the next time level 𝑡 +Δ𝑡. Detailed explanations of some numerical methods for reconstruction will be provided later.

3.2. Time discretization

The system (3.5) can be integrated in time using an appropriate numerical ODE solver. The strong stability preserving (SSP) 
methods were originally developed for time integration in semi-discretizations of hyperbolic conservation laws [11–13,46]. In this 
paper, we employ the optimal third-order Shu-Osher SSP Runge-Kutta scheme [13,46]

𝑢
(1)
𝑉

= 𝑢𝑉 (𝑡𝑗 ) + Δ𝑡𝐿𝑉 (𝑢𝑉 (𝑡𝑗 )),

𝑢
(2)
𝑉

= 3
4
𝑢𝑉 (𝑡𝑗 ) +

1
4
𝑢
(1)
𝑉

+ 1
4
Δ𝑡𝐿𝑉 (𝑢

(1)
𝑉
),

𝑢 (𝑡 ) = 1
𝑢 (𝑡 ) + 2

𝑢
(2) + 2Δ𝑡𝐿 (𝑢(2)),
4

𝑉 𝑗+1 3 𝑉 𝑗 3 𝑉 3 𝑉 𝑉
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to move from data {𝑢𝑉 (𝑡𝑗 )}𝑉 ∈ at time 𝑡𝑗 = 𝑗Δ𝑡 to data {𝑢𝑉 (𝑡𝑗+1)}𝑉 ∈ at time 𝑡𝑗+1. The above three-stage third-order scheme is 
denoted by SSPRK(3,3). The global order of (Δ𝑡)3 is achieved if the CFL condition

Δ𝑡 ≤ min
𝑉 ∈

𝑟𝑉

𝑠max
(3.7)

is satisfied [30,36]. Here 𝑟𝑉 denotes the radius of the inscribed ball of volume 𝑉 , and 𝑠max = max |𝐹 ′(𝑢) ⋅𝜈|, with the maximum taken 
over all integration points on the boundary of 𝑉 . In cases where the order of spatial discretization exceeds three, we may choose to 
employ SSPRK(3,3) with a very smaller time step, or use the five-stage fourth-order scheme SSPRK(5,4) [11].

3.3. Reconstruction

In the reconstruction step, our goal is to approximate the density values 𝑢+ and 𝑢− in equation (3.6) (at integration points on cell 
interfaces) by reconstructing the function 𝑢 from the cell average values {𝑢𝑉 (𝑡)}𝑉 ∈ at each time step. Reconstruction schemes are 
typically based on piecewise polynomials as seen in, for example, [34]. However, in this paper we explore a reconstruction method 
based on polyharmonic spline interpolation, as detailed in [2,3,23].

Suppose we have a fixed volume 𝑉 ∈  , and consider its corresponding stencil

 ∶= {𝐶}𝐶∈ ⊂  ,
where 𝑉 ∈  . Each cell 𝐶 ∈  is associated with a linear functional (cell average functional), represented as 𝓁𝐶 , defined as follows:

𝓁𝐶 (𝑢) =
1|𝐶| ∫

𝐶

𝑢(𝑥)d𝑥, for all 𝐶 ∈  , 𝑢(𝑥) ≡ 𝑢(𝑡, 𝑥). (3.8)

To reconstruct cell averages {𝓁𝐶} within the stencil  , we employ a generalized RBF interpolation method [53], which is expressed 
as

𝑠(𝑥) =
∑
𝐶∈

𝛼𝐶𝓁
𝑦

𝐶
𝜙(‖𝑥− 𝑦‖) + 𝑄∑

𝑗=1
𝛽𝑘𝑝𝑗 (𝑥). (3.9)

Here, 𝓁𝑦
𝐶

denotes that the functional 𝓁𝐶 operates on the variable 𝑦 of 𝜙, i.e.,

𝓁𝑦
𝐶
𝜙(‖𝑥− 𝑦‖) = 1|𝐶| ∫

𝐶

𝜙(‖𝑥− 𝑦‖)d𝑦, 𝐶 ∈  .

The coefficients 𝛼𝐶 and 𝛽𝑗 in (3.9) are determined by imposing the interpolation conditions

𝓁𝐶′ (𝑢) = 𝓁𝐶′ (𝑠), ∀𝐶 ′ ∈  ,
along with the side condition∑

𝐶′∈
𝛼𝐶′𝓁𝐶′ (𝑝𝑗 ) = 0, 𝑗 = 1,2,… ,𝑄.

The interpolation conditions give

𝓁𝐶′ (𝑢) = 𝓁𝐶′ (𝑠) =
∑
𝐶∈

𝛼𝐶𝓁
𝑥
𝐶′𝓁

𝑦

𝐶
𝜙(‖𝑥− 𝑦‖) + 𝑄∑

𝑗=1
𝛽𝑘𝓁𝐶′ (𝑝𝑗 ), 𝐶,𝐶 ′ ∈ 

which together with the side condition can equivalently be expressed as solving the system of linear equations[
𝐴𝐿 𝑃𝐿
𝑃 𝑇
𝐿

0

][
𝛼

𝛽

]
=
[
𝓁
0

]
, (3.10)

where

𝐴𝐿 =(𝓁𝑥
𝐶′𝓁

𝑦

𝐶
𝜙(‖𝑥− 𝑦‖)), 𝐶,𝐶 ′ ∈  ,

𝑃𝐿 =(𝓁𝐶 (𝑝𝑗 )), 𝐶 ∈  , 1 ⩽ 𝑗 ⩽𝑄,

𝓁 =(𝓁𝐶 (𝑢)), 𝐶 ∈  .
(3.11)

To ensure a unique solution, the set {𝓁𝐶}𝐶∈ must satisfy the property of being ℙ𝑑
𝑚-unisolvent, meaning that if 𝓁𝐶 (𝑝) = 0 for all 

𝐶 ∈  , then 𝑝 ≡ 0. In other words, any polynomial 𝑝 ∈ ℙ𝑑
𝑚 should be uniquely reconstructed from cell averages {𝓁𝐶 (𝑝)}𝐶∈ .

Nonetheless, a high-order reconstruction can lead to non-physical oscillations near discontinuities and shock fronts, and conse-
5

quently can destabilize the solution.
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3.4. WENO reconstruction

To suppress nonphysical oscillations near discontinuities and steep fronts, various techniques have been developed to enhance 
the reconstruction process [34]. In this section, we review the WENO reconstruction, which represents a weighted adaptation of 
the originally formulated ENO schemes. An ENO scheme was initially introduced in [16] for one-dimensional conservation laws. 
In the WENO reconstruction, first proposed in [35,27], a set of neighboring stencils {𝑘, 𝑘 = 1, … , 𝐾} is selected for each control 
volume 𝑉 , and in each stencil a reconstruction function is computed and weighted using an oscillation indicator that quantifies the 
smoothness of each function. Finally, the weighted (convex) combination of all 𝐾 reconstructed functions is used as the ultimate 
reconstruction. In contrast, ENO schemes only utilize the smoothest reconstruction and discard the others. Different variants of 
ENO and WENO reconstructions have been developed and are frequently employed for solving various types of hyperbolic PDEs. 
For detailed examples refer to [45]. The authors of [2,3,23], employed the polyharmonic spline interpolation for reconstruction, as 
discussed in Section 3.3. They define the oscillation indicator  by

(𝑠) = |𝑠|BL𝑘(ℝ𝑑 ), 𝑠 ∈ BL𝑘(ℝ𝑑 ),

as the Beppo-Levi space BL𝑘(ℝ𝑑 ) is the optimal recovery space for polyharmonic splines [53]. A reconstructed function 𝑠𝑗 (associated 
with stencil 𝑗 ) with a smaller (𝑠𝑗 ) is assumed to be smoother and should therefore receive a higher weight. They introduce 
intermediate values

𝑤̃𝑗 =
1

(𝜖 + (𝑠𝑗 ))𝜌 , 𝑗 = 1,2,… ,𝐾

for some 𝜖, 𝜌 > 0, and then compute the final weights

𝑤𝑗 =
𝑤̃𝑗∑𝐾
𝑖=1 𝑤̃𝑖

, 𝑗 = 1,2,… ,𝐾,

ensuring that 𝑤1 +⋯ +𝑤𝐾 = 1. The WENO reconstruction is then defined as

𝑠 =𝑤1𝑠1 +⋯+𝑤𝐾𝑠𝐾.

To find other RBF-ENO/WENO reconstructions see [4,18,19,56], and to explore other variations involving different approximation 
techniques, refer to [5,25,26].

To render the WENO process applicable to a wide range of problems, the configuration and size of stencils are crucial and 
significantly impact the quality and accuracy of the reconstruction. Three types of such stencils are experimentally examined and 
introduced in [3].

4. Approximate interpolation and smoothing

Our approach to avoid nonphysical oscillations in the solution (see Section 5 below) is motivated by approximate interpolation

on scattered data points. Let us consider 𝑁 centers 𝑋 = {𝑥1, … , 𝑥𝑁} distributed within the bounded region Ω ⊂ ℝ𝑑 , along with 
their corresponding values, 𝑦1, … , 𝑦𝑁 ∈ ℝ. We assume that these values are sampled from an unknown function 𝑓 ∈ 𝐶(Ω) where 
𝑦𝑗 = 𝑓 (𝑥𝑗 ) for 𝑗 = 1, … , 𝑁 . The aim is to find a function 𝑠 ∈ 𝐶(Ω) that approximates the function 𝑓 by utilizing the available values 
of 𝑓 at 𝑋. In an interpolation process, the error function 𝑓 − 𝑠 vanishes at point set 𝑋 while in an approximation process, such as 
a curve fitting method, small errors at centers are admissible. When the data values are noisy or inaccurate, the second approach 
provides a better and smoother overall approximation. This process is referred to as approximate interpolation if we permit slight 
deviations from interpolation constraints to regularize the solution. This concept is related to Tikhonov regularization and smoothing 
splines in the context of approximation theory [40].

Suppose  ⊂ 𝐶(Ω) is a normed linear space of continuous functions. Also, assume that  is another normed linear space, and 
𝑇 ∶  →  is a linear mapping. If 𝐽 ∶  → ℝ is defined as 𝐽 (𝑠) = |𝑇 𝑠|, then for the given data sites 𝑋 = {𝑥1, … , 𝑥𝑁} and their 
corresponding values 𝑓 (𝑥1), … , 𝑓 (𝑥𝑁 ) ∈ ℝ, the smoothing spline 𝑠𝜆 ∈  is defined as the solution of the following minimization 
problem:

min

{
𝑁∑
𝑗=1

[𝑓 (𝑥𝑗 ) − 𝑠(𝑥𝑗 )]2 + 𝜆𝐽 (𝑠) ∶ 𝑠 ∈
}

, (4.1)

where 𝜆 ⩾ 0 is a smoothing parameter. If 𝜆 gets smaller toward zero, then (4.1) tends to be an interpolation problem. Too large 
values of 𝜆, on the other hand, violate the interpolation conditions and result in a solution which might smear out the data too much. 
Thus, determining a proper value for this parameter is a challenging task.

Duchon [8] (see also Wendland and Rieger [54]) considered the smoothing spline problem using polyharmonic splines 𝜙𝑑,𝑘(‖𝑥‖), 
𝑥 ∈ℝ𝑑 . The approximation space  is assumed to be the Beppo-Levi space

 = BL𝑘(ℝ𝑑 ), 𝑘 > 2𝑑,
6

and the functional 𝐽 on this space is defined as
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Fig. 1. Standard PHS interpolation vs. the smoothed PHS interpolation. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

𝐽 (𝑓 ) ∶= |𝑓 |2BL𝑘(ℝ𝑑 ).

The solution of the minimization problem is then given by

𝑠(𝑥) =
𝑁∑
𝑗=1

𝛼𝑗𝜙𝑑,𝑘(‖𝑥− 𝑥𝑗‖) + 𝑄∑
𝑗=1

𝛽𝑗𝑝𝑗 (𝑥) (4.2)

where 𝜙𝑑,𝑘 is the PHS kernel (2.4), {𝑝1, … , 𝑝𝑄} is a basis for polynomial space ℙ𝑑
𝑘−1, and the coefficients 𝛼𝑗 and 𝛽𝑗 solve the linear 

system of equations[
𝐴+ 𝜆𝐼 𝑃

𝑃 𝑇 0

][
𝛼

𝛽

]
=
[
𝑓𝑋
0

]
(4.3)

provided that 𝑋 is a ℙ𝑑
𝑘−1-unisolvent set. Here, 𝜙𝑑,𝑘 is considered to be conditionally positive definite of order 𝑘 instead of 𝑘 −⌈𝑑∕2⌉ + 1. The matrix 𝐼 is the identity matrix of size 𝑁 . The proof for a generalized form of this problem is given in Theorem 4.2

below.

The difference between the approximate interpolation system in (4.3) and the pure interpolation in (2.2) is a diagonal increment 
with 𝜆, causing the interpolant to pass close to interpolation points (if 𝜆 is small) but not exactly through them. For a given set of 
noisy data, this leads to a smooth (non-oscillatory) approximation. See Fig. 1. However, this type of smoothing is not appropriate for 
suppressing the oscillations near discontinuities in the FVM setting.

In this paper, we introduce a more general approximate interpolation problem that allows different weights for different interpo-

lation points:

min

{
𝑁∑
𝑗=1

1
𝜆𝑗

[𝑓 (𝑥𝑗 ) − 𝑠(𝑥𝑗 )]2 + |𝑓 |2BL𝑘(ℝ𝑑 ) ∶ 𝑠 ∈ BL𝑘(ℝ𝑑 )

}
, (4.4)

where 𝜆 is replaced by 𝑁 given smoothing parameters 𝜆𝑗 > 0, each corresponding to interpolation point 𝑥𝑗 for 𝑗 = 1, … , 𝑁 . To 
obtain the form of the solution of this problem we need the following result.

Lemma 4.1. Assume that 𝜙 is the native space corresponding to conditionally positive definite kernel 𝜙 with respect to polynomial space 
ℙ𝑑
𝑚 = span{𝑝1, … , 𝑝𝑄}. For a given ℙ𝑑

𝑚-unisolvent set 𝑋 = {𝑥1, … , 𝑥𝑁} ⊂ Ω, assume that 𝑃 = (𝑝𝑗 (𝑥𝑖)) ∈ ℝ𝑁×𝑄, and 𝐻𝜙,𝑋 is a finite 
dimensional space of the form

𝐻𝜙,𝑋 ∶=

{
𝑁∑
𝑗=1

𝛼𝑗𝜙(‖ ⋅−𝑥𝑗‖) ∶ 𝛼 ∈ℝ𝑁 with 𝑃𝑇 𝛼 = 0

}
.

Moreover, assume that  is the orthogonal complement of subspace 𝐻𝜙,𝑋 + ℙ𝑑
𝑚 of 𝜙. Then for every function 𝑣 ∈ the vector 𝑣𝑋 =

(𝑣(𝑥1), … , 𝑣(𝑥𝑁 ))𝑇 is perpendicular to the null space of 𝑃𝑇 , i.e., 𝑣𝑇
𝑋
𝛼 = 0 provided that 𝑃𝑇 𝛼 = 0.

Proof. According to definition of space 𝐻𝜙,𝑋 , every function 𝑤 ∈𝐻𝜙,𝑋 + ℙ𝑑
𝑚

can be written as 𝑤 = 𝜇𝑥𝜙(‖ ⋅ −𝑥‖) + 𝑞 with 𝑞 ∈ ℙ𝑑
𝑚

and a certain linear functional

𝜇 =
𝑁∑
𝛼 𝛿
7

𝑗=1
𝑗 𝑥𝑗
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for some coefficients 𝛼𝑗 with 𝜇(𝑝) = 0 for all 𝑝 ∈ ℙ𝑑
𝑚. Here, 𝛿𝑥 is the point evaluation functional; 𝛿𝑥𝑓 ∶= 𝑓 (𝑥). The superscript 𝑥 on 

functional 𝜇𝑥 means that 𝜇 acts on variable 𝑥 of 𝜙(‖𝑦 − 𝑥‖). Consider a set of ℙ𝑑
𝑚-unisolvent points 𝐸 = {𝜉1, … , 𝜉𝑄} ⊂Ω and assume 

that Π ∶𝜙 → ℙ𝑑
𝑚

is the polynomial interpolation operator on centers 𝐸. Also assume that 𝐺(⋅, 𝑥) = 𝜙(‖ ⋅ −𝑥‖) −Π𝑥𝜙(‖ ⋅ −𝑥‖), the 
pointwise polynomial interpolation error of basis function 𝜙 with respect to the second argument. Now, for a function 𝑣 in  we 
have

0 = ⟨𝑣,𝑤⟩𝜙

= ⟨𝑣,𝜇𝑥𝜙(‖ ⋅−𝑥‖) + 𝑞⟩𝜙

= ⟨𝑣,𝜇𝑥𝜙(‖ ⋅−𝑥‖)⟩𝜙

= 𝜇(Π𝑣) + ⟨𝑣,𝜇𝑥𝐺(⋅, 𝑥)⟩𝜙

= 𝜇(𝑣) =
𝑁∑
𝑗=1

𝛼𝑗𝑣(𝑥𝑗 )

for every function 𝑤 ∈𝐻𝜙,𝑋 +ℙ𝑑
𝑚

. The third equality holds true because ⟨𝑣, 𝑞⟩𝜙
= 0. For the fourth and fifth equalities we use the 

fact that 𝜇(Π𝑣) = 0, and Theorem 10.17 of [53]. This means that for every vector 𝛼 in the null space of 𝑃𝑇 we have

𝑁∑
𝑗=1

𝛼𝑗𝑣(𝑥𝑗 ) = 0. □

Theorem 4.2. The solution of problem (4.4) is given by (4.2) where 𝛼 and 𝛽 satisfy the following system of equations[
𝐴+Λ 𝑃

𝑃𝑇 0

][
𝛼

𝛽

]
=
[
𝑓𝑋
0

]
(4.5)

for Λ = diag{𝜆1, … , 𝜆𝑁}. Here, 𝐴, 𝑃 , and 𝑓𝑋 are defined as (2.3) for 𝜙 = 𝜙𝑑,𝑘 and 𝑚 = 𝑘 − 1.

Proof. The native space corresponding to kernel 𝜙𝑑,𝑘 is known to be the Beppo-Levi space BL𝑘(ℝ𝑑 ), and 𝐻𝜙𝑑,𝑘,𝑋
+ℙ𝑑

𝑚 is a subspace 
of the native space [53, Chapter 10]. Every function 𝑠 ∈ BL𝑘(ℝ𝑑 ) can be written as 𝑠 =𝑤 + 𝑣 where 𝑤 ∈𝐻𝜙𝑑,𝑘,𝑋

+ℙ𝑑
𝑚 and 𝑣 is some 

element in  ⊂ BL𝑘(ℝ𝑑 ), the orthogonal complement of subspace 𝐻𝜙𝑑,𝑘,𝑋
+ℙ𝑑

𝑚. In fact,

𝑤 =
𝑁∑
𝑗=1

𝛼𝑗𝜙(‖ ⋅−𝑥𝑗‖) + 𝑄∑
𝑗=1

𝛽𝑗𝑝𝑗

for some vectors 𝛼 ∈ ℝ𝑁 and 𝛽 ∈ ℝ𝑄 with 𝑃𝑇 𝛼 = 0, and 𝑣 ∈. It is known that the native space semi-norm of 𝑤 is 𝛼𝑇𝐴𝛼 as the 
norm of polynomials in ℙ𝑑

𝑚
is zero [53, Chapter 10]. This means that

|𝑠|2BL𝑘(ℝ𝑑 ) = 𝛼𝑇 𝐴𝛼 + |𝑣|2BL𝑘(ℝ𝑑 ).

Using these, the target function of minimization problem (4.4) can be reformulated as

𝑇 (𝛼, 𝛽, 𝑣) ∶=
[
𝑓𝑋 − (𝐴𝛼 + 𝑃𝛽 + 𝑣𝑋 )

]𝑇Λ−1[𝑓𝑋 − (𝐴𝛼 + 𝑃𝛽 + 𝑣𝑋 )
]
+ 𝛼𝑇𝐴𝛼 + |𝑣|2BL𝑘(ℝ𝑑 )

which must be minimized over all [𝛼𝑇 𝛽𝑇 ] ∈ℝ𝑁+𝑄 with 𝑃𝑇 𝛼 = 0 and all 𝑣 ∈. First, for a given 𝑣 ∈ we minimize 𝑇 (𝛼, 𝛽, 𝑣) over 
all [𝛼𝑇 𝛽𝑇 ] ∈ℝ𝑁+𝑄 with 𝑃𝑇 𝛼 = 0. This is a quadratic optimization problem as the target function 𝑇 (𝛼, 𝛽, 𝑣) can be rewritten as

𝑇 (𝛼, 𝛽, 𝑣) =[𝛼𝑇 𝛽𝑇 ]
[
𝐴Λ−1𝐴+𝐴 𝐴Λ−1𝑃
𝑃𝑇Λ−1𝐴 𝑃𝑇Λ−1𝑃

][
𝛼

𝛽

]
− 2[𝛼𝑇 𝛽𝑇 ]

[
𝐴Λ−1(𝑓𝑋 − 𝑣𝑋 )
𝑃𝑇Λ−1(𝑓𝑋 − 𝑣𝑋 )

]
+ (𝑓𝑋 − 𝑣𝑋 )𝑇Λ−1(𝑓𝑋 − 𝑣𝑋 ) + |𝑣|2BL𝑘(ℝ𝑑 ).

Since 𝐴 is positive definite on the null space of 𝑃𝑇 , the block matrix is positive definite, and the unique solution of the minimization 
problem satisfies[

𝐴Λ−1𝐴+𝐴 𝐴Λ−1𝑃
𝑃𝑇Λ−1𝐴 𝑃𝑇Λ−1𝑃

][
𝛼

𝛽

]
=
[
𝐴Λ−1(𝑓𝑋 − 𝑣𝑋 )
𝑃𝑇Λ−1(𝑓𝑋 − 𝑣𝑋 )

]
or [

𝐴Λ−1 0
𝑃𝑇Λ−1 −𝐼

][
𝐴+Λ 𝑃

𝑃𝑇 0

][
𝛼

𝛽

]
=
[
𝐴Λ−1 0
𝑃𝑇Λ−1 −𝐼

][
𝑓𝑋 − 𝑣𝑋

0

]

8

which is equivalent to
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Fig. 2. Standard PHS interpolation (left) vs. the generalized smoothed PHS interpolation (right) for a discontinuous 1D function.[
𝐴+Λ 𝑃

𝑃𝑇 0

][
𝛼

𝛽

]
=
[
𝑓𝑋 − 𝑣𝑋

0

]
(4.6)

as the premultiplied matrix is non-singular on the null space of 𝑃𝑇 . Note that the linear system (4.6) is non-singular because 𝑃 is 
full-rank and 𝐴 +Λ is positive definite on the null space of 𝑃𝑇 (since 𝐴 has this property and Λ is non-negative). The target function 
evaluated at optimal vectors 𝛼 and 𝛽 becomes (as a function of 𝑣)

𝑇 (𝛼, 𝛽, 𝑣) = 𝛼𝑇 (𝐴+Λ)𝛼 + |𝑣|2BL𝑘(ℝ𝑑 )

= 𝛼𝑇 (𝑓𝑋 − 𝑣𝑋 ) + |𝑣|2BL𝑘(ℝ𝑑 )

= 𝛼𝑇 𝑓𝑋 + |𝑣|2BL𝑘(ℝ𝑑 ).

In the final equality we have used 𝛼𝑇 𝑣𝑋 = 0 from Lemma 4.1. The optimal solution is clearly obtained at 𝑣 = 0, also rendering (4.6)

equivalent to (4.5). □

In the setting given above, the polyharmonic kernel 𝜙𝑑,𝑘 can be replaced by other (conditionally) positive definite functions. In 
this case, the space  and functional 𝐽 are replaced by the native space of the new kernel and the (semi-) norm defined on the native 
space, respectively.

In Fig. 2, the standard and generalized smoothing interpolations are plotted for a discontinuous 1D function. When we prioritize 
the accuracy of the approximation on the left side of the discontinuity, with no emphasis on the right side, the generalized smoothing 
approach is an appropriate choice. A comparable scenario arises in transport equations when waves propagate either to the right or 
left side, requiring a careful selection of either a backward or forward stencil to guarantee the stability of solution.

In the sequel, we will use an extended and localized version of the above generalized smoothing interpolation problem to recon-

struct function values on cell boundaries from cell averages in the course of the FVM algorithm for conservation laws.

5. FVM with weighted smoothed reconstruction

As previously described, the central idea behind WENO reconstruction technique is to employ one-sided stencils in regions of the 
domain where the solution function changes rapidly or contains discontinuities and shocks. This process involves creating different 
stencils for each volume, interpolating within each of these stencils, calculating the oscillation indicator of each interpolant, and 
finally determining a weighted interpolation. In this section, we propose an alternative technique based on a tricky smoothing 
approach that employs only one central stencil, even in regions with high gradients or discontinuities. The new method suppresses 
the oscillations by degrading the impact of unfitted interpolation points. This approach is built upon the generalized smoothing 
technique we introduced in Section 4.

5.1. Reconstruction from cell averages using WSR

The smoothing spline problem (4.4) can be extended to the more general setting

min

{
𝑁∑
𝑗=1

1
𝜆𝑗

[𝓁𝑗 (𝑓 ) − 𝓁𝑗 (𝑠)]2 + |𝑓 |2BL𝑘(ℝ𝑑 ) ∶ 𝑠 ∈ BL𝑘(ℝ𝑑 )

}
, (5.1)

where 𝓁𝑗 , 𝑗 = 1, … , 𝑁 are 𝑁 linearly independent functionals from BL∗
𝑘
(ℝ𝑑 ), the dual space of BL𝑘(ℝ𝑑 ), with the property that 
9

𝓁𝑗 (𝑝) = 0 for all 𝑗 = 1, … , 𝑁 and 𝑝 ∈ ℙ𝑑
𝑚 implies that 𝑝 = 0. The same proof shows that the solution of (5.1) is of the form
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𝑠(𝑥) =
𝑁∑
𝑗=1

𝛼𝑗𝓁
𝑦
𝑗
𝜙𝑑,𝑘(‖𝑥− 𝑦‖) + 𝑄∑

𝑗=1
𝛽𝑗𝑝𝑗 (𝑥)

where 𝛼 and 𝛽 satisfy the following system of equations[
𝐴𝐿 +Λ 𝑃𝐿
𝑃 𝑇
𝐿

0

][
𝛼

𝛽

]
=
[
𝓁(𝑓 )
0

]
where Λ = diag{𝜆1, … , 𝜆𝑁}, and 𝐴, 𝑃 , and 𝓁(𝑓 ) are defined as

𝐴𝐿 =(𝓁𝑥𝑖 𝓁
𝑦
𝑗
𝜙(‖𝑥− 𝑦‖)), 𝑖, 𝑗 = 1,… ,𝑁,

𝑃𝐿 =(𝓁𝑗 (𝑝𝑖)), 𝑗 = 1,… ,𝑁, 𝑖 = 1,… ,𝑄,

𝓁(𝑓 ) = (𝓁1(𝑓 ),… ,𝓁𝑁 (𝑓 ))𝑇 .

To apply this approximation on FV stencils, consider a specific volume 𝑉 and a central stencil  around it. Define the cell average 
functionals {𝓁𝐶 ∶ 𝐶 ∈ } as (3.8), and for the purpose of reconstruction from these cell averages, employ the smoothing problem 
(5.1) with 𝑓 = 𝑢, 𝑁 = || (number of cells in ), 𝓁𝑗 = 𝓁𝐶 , and 𝜆𝑗 = 𝜆𝐶 for 𝐶 ∈  . The reconstructed function then has the form

𝑠(𝑥) =
∑
𝐶∈

𝛼𝐶𝓁
𝑦

𝐶
𝜙𝑑,𝑘(‖𝑥− 𝑦‖) + 𝑄∑

𝑗=1
𝛽𝑗𝑝𝑗 (𝑥),

where the coefficients 𝛼 and 𝛽 satisfy the linear system[
𝐴𝐿 +Λ 𝑃𝐿
𝑃 𝑇
𝐿

0

][
𝛼

𝛽

]
=
[
𝓁
0

]
(5.2)

where

Λ = diag{𝜆𝐶}𝐶∈ , (5.3)

and 𝐴𝐿, 𝑃𝐿 and 𝓁 are defined as (3.11). Furthermore, we assume that

𝜆𝐶 = 𝜓(𝑢;𝐶;), 𝐶 ∈ 
where 𝜓 is a suitable nonnegative function that depends on the solution function 𝑢 and all cells in the stencil  . This function should 
be chosen such that it gives higher weights to more important cells and lower weights to the others. We apply the following criterion:

The closer the values of the average of function 𝑢 on cells in stencil  are to its average value on the central stencil 𝑉 , the smaller the 
smoothing parameters associated with these cells become, thereby granting them greater importance. In this paper, we use the function

𝜆𝐶 = 𝜓(𝑢;𝐶,) = |𝑢𝑉 − 𝑢𝐶 |𝜂 , 𝐶 ∈  , 𝜂 ≥ 1, (5.4)

as a model for this criterion. See subsection 5.4 below. This process is referred to as weighted smoothed reconstruction (WSR) and 
yields a smooth approximation around the cell 𝑉 within the stencil  where the function 𝑓 has a discontinuity or a steep gradient. 
The approximate interpolation obtained from WSR can be employed to compute the numerical flux along the boundaries of volume 
𝑉 . The remaining steps of the classical FVM are executed as usual. This new scheme is abbreviated as FVM-WSR.

We note that the WSR method can use not only the polyharmonic spline kernels but also other radial basis functions and various 
types of approximation functions such as polynomials. However, in this paper, our focus is primarily on polyharmonic splines.

5.2. About conditioning of local systems

The issue of ill-conditioning arises in the PHS reconstruction when dealing with small meshsizes to set up the system (5.2). To 
overcome this problem, one can solve the generalized interpolation problem (5.2) on a blown-up stencil ̂ by scaling the original 
stencil  . Out of all the well-known RBFs, this technique is only applicable to PHS kernels (2.4) [7,22,37]. In our setting with special 
functionals 𝓁𝐶 we use a method similar to the one described in [29]. Consider the weighted smoothed approximation 𝑠(𝑥) on the 
stencil  = {𝐶}𝐶∈ corresponding to the volume 𝑉 ∈  . To perform this reconstruction on a scaled stencil, we use the mapping

𝑇𝑉 (𝑥) ∶=
𝑥− 𝑏𝑉

ℎ
∶  ⟶ ̂

where 𝑏𝑉 is the barycenter of volume 𝑉 , and ℎ is the meshsize. Then we can show that the weighted smoothed approximation on 
the new shifted and scaled stencil ̂ = {𝐶̂ = 𝑇𝑉 (𝐶) ∶ 𝐶 ∈ } is equivalent to the original approximation, i.e.,

𝑠(𝑥) =
∑
𝐶̂∈̂

𝛼̂𝐶̂𝓁
𝑦̂

𝐶̂
𝜙(‖𝑥̂− 𝑦̂‖) + 𝑄∑

𝑗=1
𝛽𝑗𝑝𝑗 (𝑥̂),
10

where 𝑥̂ = 𝑇𝑉 (𝑥) and the coefficients 𝛼̂ and 𝛽 satisfy the linear system
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Fig. 3. The blue triangle stands for central triangle 𝑉 , and the yellow triangles form a central stencil for 𝑉 . From left to right: the 𝑁 (𝑉 ) stencil, the 𝑀 (𝑉 ) stencil, 
a subset of 𝑀 (𝑉 ) of size 7, a subset of 𝑀 (𝑉 ) of size 9.[

𝐴̂𝐿 + Λ̂ 𝑃𝐿
𝑃 𝑇
𝐿

0

][
𝛼̂

𝛽

]
=
[
𝓁
0

]
for

Λ̂ = ℎ−2𝑘+𝑑Λ,

where 2𝑘 − 𝑑 is the exponent of the polyharmonic kernel (2.4), and

𝐴̂𝐿 =(𝓁𝑥
𝐶̂
𝓁𝑦
𝐶̂′𝜙(‖𝑥− 𝑦‖)), 𝐶̂, 𝐶̂ ′ ∈ ̂ ,

𝑃𝐿 =(𝓁𝐶̂ (𝑝𝑗 )), 𝐶̂ ∈ ̂ , 1 ⩽ 𝑗 ⩽𝑄,

𝓁 =(𝓁𝐶 (𝑢)), 𝐶 ∈  .
The proof closely follows that given in [29, Chapter 3] with a slight modification for additional matrix Λ in the coefficient matrix 
of linear system (5.2). This matrix needs to be replaced by Λ̂ in the scaled version. The matrices 𝐴̂𝐿 and 𝑃𝐿 are now independent 
of the mesh parameter ℎ, and if we appropriately scale the matrix Λ, the condition number of the scaled system remains constant, 
independent of ℎ. For example, if the smoothing parameters 𝜆𝐶 are chosen as (5.4) then Λ = Λ̃ ⋅ (ℎ𝜂) where Λ̃ depends on the 
gradient of 𝑢 and is independent of ℎ. Therefore, scaling Λ by ℎ2𝑘−𝑑−𝜂 renders Λ̂ independent of ℎ and results in an ℎ-independent 
condition number for the entire system. However, this scaling of Λ may not always yield the most accurate results. If the user opts 
for a different scaling, the contribution of Λ̂ may lead to some worse condition numbers for very small values of ℎ. In such cases, the 
adaptation of preconditioning techniques for saddle point systems would be helpful, although this aspect has not been addressed in 
this work.

5.3. Central stencils

In this paper, we use a conforming triangulation to form the volumes. A requirement for applying polyharmonic spline RBFs in 
the reconstruction step of FVM-WSR is that the stencil size matches or exceeds the associated polynomial space dimension. In the 
experimental section we employ polyharmonic splines 𝜙2,2(𝑟) = 𝑟2 log(𝑟), 𝜙2,3(𝑟) = 𝑟4 log(𝑟) and 𝜙2,4(𝑟) = 𝑟6 log(𝑟). The polynomial 
space dimensions associated with these kernels in the two-dimensional space are 3, 6 and 10, respectively. We address how a central 
stencil can be formed to fulfill the solvability requirement and yield the expected accuracy.

For a given volume (triangle) 𝑉 , the Neumann neighborhood of 𝑉 is denoted by 𝑁 (𝑉 ) and includes all triangles that share 
an edge with 𝑉 . On the other hand, the Moore neighborhood of 𝑉 is denoted by 𝑀 (𝑉 ) and includes all triangles that share an 
edge or a vertex with 𝑉 . It is clear that 𝑁 (𝑉 ) ⊂ 𝑀 (𝑉 ). The Moore neighborhood is usually well distributed in all directions 
around the central volume 𝑉 . Experimental results showed that the optimal stencil size for WSR depends on the smoothness of the 
solution: smaller stencils are preferable for smooth solutions, while larger stencils are needed for solutions with discontinuities or 
steep gradients. We may use a subset of 𝑀 (𝑉 ) with certain number of triangles for different types of RBFs. In Fig. 3 some stencils 
are depicted for a sample triangle 𝑉 (the blue triangle).

5.4. Smoothing parameters

The choice of smoothing parameters in (5.3) requires some consideration to achieve an approximation with minimal oscillation 
and optimal rate of convergence. This choice depends on the behavior of the solution within the stencil where we intend to recon-

struct the function. As previously explained, the value of 𝜆𝐶 inversely correlates with the influence of volume 𝐶 on the weighted 
approximation. For instance, volume 𝑉 holds the highest influence as 𝜆𝑉 = 0. When a discontinuity traverses through a stencil, sharp 
differences between cell averages within that stencil can arise. To address this, the smoothing function should assign a small 𝜆𝐶 (re-

sulting in a large weight) to a cell 𝐶 whose cell average closely aligns with that of volume 𝑉 . Conversely, cells with cell averages 
significantly different from that of 𝑉 should be assigned a large 𝜆𝐶 (resulting in a small weight). To model such a behavior, we 
employ the expression (5.4) for 𝜆𝐶 values, although the user can design other possible formulations. See Fig. 4 for different powers 
𝜂.

Our experiments show that using a power value of 𝜂 = 3 yields accurate and less oscillatory solutions for problems with both 
11

smooth and discontinuities (and shock front) solutions. However, for problems with smooth solutions specifically, using a power 
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Fig. 4. A model for the smoothing function.

value of 𝜂 between 1 and 2 results in convergence orders that are closer to the expected theoretical orders. To introduce adaptability 
into this approach for problems with discontinuous and shock solutions, we follow this procedure:

1. Calculate 𝑢𝑚𝑎𝑥 =max
𝐶∈{|𝓁𝐶 (𝑢)|} and 𝑢𝑚𝑖𝑛 = min

𝐶∈{|𝓁𝐶 (𝑢)|},

2. Compute 𝑝 = (𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)∕(ℎ
√||),

3. If 𝑝 <𝐾 , set 𝜂 = 2; otherwise, set 𝜂 = 3.

Here, || represents the size of stencil, ℎ denotes the meshsize, and 𝐾 is a user-defined constant. For our experiments, we have 
chosen 𝐾 = 2.

6. Experimental results

In this section, we apply FVM-WSR to both linear and nonlinear conservation law equations with smooth and discontinuous 
initial conditions. We compare errors with those obtained using FVM-WENO. For temporal discretization, we employ SSPRK(3,3) in 
all examples except for one case, in which we use SSPRK(5,4). The code is implemented in MATLAB and executed on a machine 
equipped with a Core(TM) i7-6700k CPU running at 4 GHz, and 16 GB of RAM.

Since all experiments are provided for two-dimensional hyperbolic PDEs, we employ the notation 𝑥 = (𝑥1, 𝑥2) to denote a point 
in ℝ2. We have also implemented the method for various 1D conservation laws and obtained the expected results. However, in the 
interest of brevity and to control the length of paper, we do not include them here. Instead, we focus on presenting 2D problems 
exclusively.

In the reconstruction step, we utilize the PHS kernels 𝜙2,2(𝑟) = 𝑟2 log(𝑟) (2nd order), 𝜙2,3(𝑟) = 𝑟4 log(𝑟) (3rd order), and 𝜙2,4(𝑟) =
𝑟6 log(𝑟) (4th order), each with central stencils of sizes 7, 9, and 15, respectively. For the highest-order RBF, we employ SSPRK(5,4) 
for time discretization while we use SSPRK(3,3) for the others. In all cases, the steplength Δ𝑡 is chosen small enough to satisfy the 
CFL condition (3.7) on all stencils.

6.1. Linear advection with a smooth initial condition

Consider the linear advection equation

𝑢𝑡 + 𝑢𝑥1 + 𝑢𝑥2 = 0, (6.1)

where 𝑢 ∶= 𝑢(𝑡, 𝑥) ∶ [0, 𝑡𝑓 ] × [−0.5, 0.5]2 ⟶ℝ, with periodic boundary conditions. We apply the initial condition:

𝑢(0, 𝑥) = sin2
(
𝜋
(
𝑥1 +

1
2

))
sin2

(
𝜋
(
𝑥2 +

1
2

))
, (6.2)

as depicted in the top-left of Fig. 5. As time advances, the exact solution of (6.1) propagates in the direction [1, 1] and retains its 
initial shape in an extended domain at 𝑡 = 1.

Table 2 presents the norm-1 and norm-infinity errors at the final time 𝑡 = 1 for both WSR and WENO methods. The results are 
obtained on a sequence of triangulations with meshsizes ℎ = 1

8 , 
1
16 , 

1
32 , 

1
64 , and 1

128 . The steplength Δ𝑡 is initially set to 0.02 for ℎ = 1
8

and is halved successively as the values of ℎ are divided by 2. As shown, FVM with WSR achieves (approximately) the expected 
convergence orders in norm-1 and norm-infinity (also in norm 2, though not reported in the table), except for the norm infinity of 
the 4th order scheme, where the order appears to stay about 3.2. However, the experiment demonstrates a superior convergence 
compared to the WENO scheme. The results of the WENO method depend on the selection of forward and backward stencils where 
12

different choices may yield more or less accurate solutions. In this study, we follow the criteria outlined in [3] for our selection 
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Table 2

The 𝓁1-norm and 𝓁∞ errors (L1E and InfE) and orders of convergence for the numerical solutions of the advection equation (6.1) with initial 
condition (6.2) at 𝑡 = 1 using FVM-WSR and FVM-WENO, with polyharmonic spline RBFs 𝑟2 log 𝑟 (2nd order), 𝑟4 log 𝑟 (3rd order), and 𝑟6 log 𝑟 (4th 
order).

ℎ 2nd order 3rd order 4th order

L1E 𝑞 InfE 𝑞 L1E 𝑞 InfE 𝑞 L1E 𝑞 InfE 𝑞

1∕8 3.05e − 2 − 1.17e − 1 − 2.14e − 2 − 6.80e − 2 − 4.21e − 3 − 2.17e − 2 −
W 1∕16 7.11e − 3 2.10 3.57e − 2 1.71 3.28e − 3 2.70 1.11e − 2 2.61 4.24e − 4 3.31 2.74e − 3 2.98
S 1∕32 1.94e − 3 1.87 8.59e − 3 2.06 4.53e − 4 2.86 1.43e − 3 2.96 2.80e − 5 3.92 3.04e − 4 3.17
R 1∕64 5.37e − 4 1.85 3.17e − 3 1.44 5.82e − 5 2.96 1.85e − 4 2.94 2.01e − 6 3.79 3.17e − 5 3.26

1∕128 1.40e − 4 1.94 7.46e − 4 2.09 7.39e − 6 2.98 2.55e − 5 2.86 1.37e − 7 3.88 3.42e − 6 3.21

W 1∕8 3.02e − 2 − 9.41e − 2 − 2.05e − 2 − 6.73e − 2 − − − − −
E 1∕16 8.79e − 3 1.78 3.12e − 2 1.59 6.22e − 3 1.72 2.11e − 2 1.67 − − − −
N 1∕32 2.33e − 3 1.91 9.69e − 3 1.69 1.15e − 3 2.43 6.02e − 3 1.81 − − − −
O 1∕64 6.96e − 4 1.74 4.02e − 3 1.27 2.14e − 4 2.42 1.21e − 3 2.31 − − − −

1∕128 2.18e − 4 1.68 1.25e − 3 1.69 4.45e − 5 2.27 3.29e − 4 1.88 − − − −

Fig. 5. The initial condition (6.2) and numerical solutions using FVM-WSR for the advection equation at time levels 𝑡 = 0.25, 𝑡 = 0.5, and 𝑡 = 1.

Table 3

Runtime comparison: FVM-WSR vs. FVM-WENO.

ℎ
1
8

1
16

1
32

1
64

1
128

WENO

WSR
2.25 2.24 2.12 1.97 1.84

process. However, as there is no reported selection criterion for a 4th order RBF-based method in the mentioned reference or any 
other sources, we have chosen not to include the corresponding results in the table.

The numerical solutions, surface plots and heatmaps, employing FVM-WSR with RBF 𝑟4 log 𝑟 and meshsize ℎ = 1
128 are illustrated 

in Fig. 5 at various time levels.

FVM-WSR offers the advantage of a lower computational cost in comparison to FVM-WENO, as it employs only one stencil for each 
reference volume. Table 3 presents a comparison of running times for both methods. Our experiments demonstrate (approximately) 
a 2x speedup with the new approach. There could still be some opportunities to speed up the WSR scheme when it comes to solving 
13

local linear systems of the form (5.2) for a varying diagonal matrix Λ. We will pursue these possibilities in our future studies.
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Fig. 6. The initial condition (6.3) (left plots) and numerical solutions using FVM-WSR for the advection equation at time levels 𝑡 = 0.25, 𝑡 = 0.5 and 𝑡 = 1.

6.2. Linear advection with steep gradient or discontinuous initial conditions

Consider equation (6.1) defined on the same domain as before but with different initial conditions

𝑢(0, 𝑥) =

{
exp

( ‖𝑥−𝑐‖2‖𝑥−𝑐‖2−𝑅2

)
, ‖𝑥− 𝑐‖ <𝑅,

0, otherwise,
(6.3)

and

𝑢(0, 𝑥) =
{

1, ‖𝑥− 𝑐‖ <𝑅,

0, otherwise,
(6.4)

where 𝑐 = (−0.25, −0.25) and 𝑅 = 0.1. These functions are depicted in the top-left of Figs. 6 and 7, respectively. As 𝑡 increases, 
the initial profiles move in the direction [1, 1], but preserve their initial forms. Numerical solutions using FVM-WSR with RBF 
𝜙2,3(𝑟) = 𝑟4 log(𝑟) and meshsize ℎ = 1

128 are presented in Figs. 6 and 7 at various time levels. In the reconstruction step, central 
stencils of 𝑀 (𝑉 ) type are employed. Both cases exhibit minimal damping and oscillations, with slight smearing observed in the 
discontinuous solution. For a closer examination, we plot a cross-section of the solution along the direction [1, 1] (on the plane 
𝑥1 = 𝑥2) at the final time in Fig. 8, and compare them with the exact and WENO solutions. We observe that the new method excels in 
capturing discontinuities. The same meshsize and temporal steplength are used for both methods. We followed the approach given 
in [3] to select the (forward and backward) stencils in the RBF-WENO method. However, one may opt for an alternative stencil 
selection or use a different oscillation indicator to enhance the result obtained by the WENO reconstruction.

6.3. Burgers’ equation with a smooth initial condition

Consider the nonlinear Burgers’ equation

𝑢𝑡 + 𝑢𝑢𝑥1 + 𝑢𝑢𝑥2 = 0, (6.5)

where 𝑢 ∶= 𝑢(𝑡, 𝑥) ∶ [0, 𝑡𝑓 ] × [−0.5, 0.5]2 ⟶ ℝ, with periodic boundary conditions and with initial condition (6.3) for 𝑐 =
(−0.25, −0.25) and 𝑅 = 0.1. As the time advances, a rarefaction develops behind the wave, while a shock forms in front of it. 
Numerical solutions using FVM-WSR with ℎ = 1

128 at time levels 𝑡 = 0.25, 𝑡 = 1 and 𝑡 = 2.3 are shown in Figs. 9. Cross-section so-

lutions on plane 𝑥1 = 𝑥2 at different time levels are also shown in Fig. 10. As we observe from the figures, the shock is perfectly 
captured and moves in the northeast direction without any significant oscillations. The polyharmonic RBF 𝜙2,3(𝑟) = 𝑟4 log(𝑟) and 
14

central stencils of type 𝑀 (𝑉 ) are used in the reconstruction step.
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Fig. 7. The initial condition (6.4) (left plots) and numerical solutions using FVM-WSR for the advection equation at time levels 𝑡 = 0.25, 𝑡 = 0.5 and 𝑡 = 1.

Fig. 8. The cross-section solutions in plane 𝑥1 = 𝑥2 . Numerical solutions using WSR and WENO schemes with ℎ = 1∕128 are compared with exact solutions at final 
15

time 𝑡 = 1 with initial condition (6.3) (first row) and initial condition (6.3) (second row).
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Fig. 9. The initial condition (upper left) and numerical solutions using FVM-WSR for the Burgers’ equation at time levels 𝑡 = 0.25, 𝑡 = 1 and 𝑡 = 2.3.

6.4. Burgers’ equation with discontinuous initial condition

Consider the nonlinear Burgers’ equation (6.5) for 𝑢 ∶= 𝑢(𝑡, 𝑥) ∶ [0, 0.5] × [0, 1]2 ⟶ℝ, and with initial condition

𝑢(0, 𝑥) =
⎧⎪⎨⎪⎩
−1.0, if 𝑥1 > 0.5, 𝑥2 > 0.5,
−0.2, if 𝑥1 < 0.5, 𝑥2 > 0.5,
0.5, if 𝑥1 < 0.5, 𝑥2 < 0.5,
0.8, if 𝑥1 > 0.5, 𝑥2 < 0.5.

(6.6)

The color contour plot of the (discontinuous) initial condition is shown in Fig. 11 (left panel). This is a challenging problem due to 
the emergence of different shocks and rarefaction waves as time increases. Following [19] we extend the problem domain to [−1, 2]2
and apply a periodic boundary condition. The results are finally presented in the original domain [0, 1]2. The plot of the FVM-WSR 
solution with meshsize ℎ = 1

128 at final time 𝑡 = 0.5 is shown in Fig. 11. We have employed the polyharmonic RBF 𝜙2,3(𝑟) and 𝑀 (𝑉 )
stencils.

6.5. Kurganov-Petrova-Popov (KKP) rotating wave

Consider the rotating wave equation

𝑢𝑡 + sin(𝑢)𝑢𝑥1 + cos(𝑢)𝑢𝑥2 = 0, (6.7)
16

where 𝑢 ∶= 𝑢(𝑡, 𝑥) ∶ [0, 1] × [−2, 2] × [−2.5, 1.5] ⟶ℝ, with periodic boundary conditions and with initial condition
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Fig. 10. Cross-section solutions at time levels 𝑡 = 0.25, 𝑡 = 1 and 𝑡 = 2.3 for the Burgers’ equation.

Fig. 11. The initial condition (6.6) (left) and FVM-WSR solution at final time 𝑡 = 0.5.

𝑢(0, 𝑥) =
{

3.5𝜋, 𝑥2 + 𝑦2 < 1,
0.25𝜋, otherwise.

(6.8)

The KKP problem, which involves nonconvex advective fluxes, was initially introduced by Kurganov [32] (see also [17,49]). This 
equation is specifically designed to serve as a test problem for evaluating different schemes in handling entropy-violating solutions. 
In Fig. 12, we present the FVM-WSR solution at the final time 𝑡 = 1, computed with meshsize ℎ = 1

64 . The reconstruction step employs 
17

the polyharmonic RBF 𝜙2,3 and 𝑀 (𝑉 ) stencils.
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Fig. 12. The initial profile (left) and FVM-WSR solution at time 𝑡 = 1 (right) for the KKP rotating equation.

7. Conclusions

In this paper, we introduced the novel FVM-WSR method for solving scalar conservation laws on unstructured meshes. This 
scheme incorporates a weighted smoothed reconstruction (WSR) and effectively suppresses nonphysical oscillations in the presence 
of discontinuities, shocks, and sharp fronts. Our experimental results show that this method achieves accuracy on par with (and 
sometimes superior to) other numerical approaches, such as RBF-WENO, while using only a single central stencil in its reconstruction 
step. This property contributes to the method’s brevity, simplicity, and reduced computational cost. Additionally, this method can 
be easily adapted to deal with more complex problems such as 3D hyperbolic problems and systems of conservation laws. In an 
upcoming research paper, we will further extend the application of this technique for solving Euler’s and Navier-Stokes equations.
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