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Abstract

The classical Landau–Lifshitz–Gilbert (LLG) equation has long served as a cornerstone

for modeling magnetization dynamics in magnetic systems, yet its classical nature limits its

applicability to inherently quantum phenomena such as entanglement and nonlocal corre-

lations. Inspired by the need to incorporate quantum effects into spin dynamics, recently

a quantum generalization of the LLG equation is proposed [Phys. Rev. Lett. 133, 266704

(2024)] which captures essential quantum behavior in many-body systems. In this work,

we develop a robust numerical methodology tailored to this quantum LLG framework that

not only handles the complexity of quantum many-body systems but also preserves the in-

trinsic mathematical structures and physical properties dictated by the equation. We apply

the proposed method to a class of many-body quantum spin systems, which host topolog-

ical states of matter, and demonstrate rich quantum behavior, including the emergence of

long-time entangled states. This approach opens a pathway toward reliable simulations of

quantum magnetism beyond classical approximations, potentially leading to new discoveries.

Keywords: Quantum Landau-Lifshitz-Gilbert equation, many-body quantum system, quan-

tum correlation and entanglement, Runge-Kutta methods.
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1 Introduction

The classical Landau-Lifshitz (LL) equation [8] and its extension, the Landau-Lifshitz-Gilbert

(LLG) equation [6], are fundamental tools in atomistic spin dynamics and provide a power-
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ful framework for investigating the microscopic behavior of magnetic systems and materials.

These equations, which are mathematically equivalent in the classical regime [7, 10], have been

pivotal in advancing our understanding of diverse magnetic phenomena. Notable applications

include the magnetization dynamics of topological structures [16], ultrafast demagnetization in

face-centered cubic (fcc) Ni during pump-probe experiments [5, 15], magnetization reversal in

ferrimagnetic FeGd alloys [3], and the quantitative characterization of spin texture complexity

[1].

Despite their extensive contributions, classical approaches such as the LL and LLG equations

exhibit inherent limitations. Most notably, the Bohr–van Leeuwen theorem, established over

a century ago, demonstrates that classical statistical mechanics cannot account for magnetic

ordering and shows that magnetism is fundamentally a quantum mechanical phenomenon. A

common justification for employing classical equations has been the assumption that quantum

descriptions converge to classical behavior in the limit of large angular momentum. However, in

real materials, atomic angular momenta are finite, typically ranging from 0.5 to 2.5 in transition

metals, and up to 3.5 in certain rare-earth elements. More critically, essential quantum features

such as many-body quantum correlations and entanglement, which are central to the physics of

quantum systems, including magnetic domains [9, 11, 12, 13, 17, 18], are entirely beyond the

scope of classical equations. To achieve a deeper and more accurate understanding of magnetic

dynamics, it is therefore essential to investigate quantum mechanical analogs of the LL and LLG

equations.

Wieser [22] proposed a quantum analog of the Landau–Lifshitz (LL) equation based on a

phenomenological open-system approach, to derive the classical LL equation and its dynamics

from a more fundamental quantum perspective. Expanding on this idea, in a recent study

[10], a quantum analog of the classical LLG equation has been demonstrated. The new model

provides several nontrivial quantum effects in systems consisting of spin-12 particle pairs such

as spinless local states emerging in antiferromagnetically coupled particles and the formation

of highly entangled states in the long-time limit, despite the presence of dissipation. These

findings lay the groundwork for a new paradigm in exploring the quantum mechanical aspects

of spin dynamics in magnetic materials. All results presented in [10] are restricted to single-

and two-spin systems, whereas quantum effects tend to be more pronounced and complex in

multi-spin systems. Although exact solutions are available in certain special cases, a robust

numerical solver capable of addressing the model in its general form, particularly for multi-spin

systems, is essential for advancing both theoretical understanding and practical applications.

When it comes to numerical simulation, some computational tools and software packages

exist for solving the classical LL and LLG equations, such as the UppASD code [4, 19], which

can handle large-scale spin systems. These classical methods support parameter calculations for

general spin Hamiltonians and incorporate interactions such as Heisenberg exchange, symmet-

ric and antisymmetric anisotropic exchange, and magnetic anisotropy constants. However, no

established computational framework currently exists for solving the quantum analogs of the

LL and LLG equations, which are essential for exploring quantum spin dynamics. A major

2



challenge arises from the fact that quantum equations scale exponentially in size and complexity

compared to their classical counterparts and require numerical solvers that preserve essential

structural properties of the solution.

In this work, we establish a numerical methodology for solving quantum LLG equations

in multi-body spin systems and apply this approach to investigate entanglement dynamics and

emergent quantum behavior in quantum magnetic materials. The method is specifically designed

to overcome the complexity of quantum multi-body dynamics while preserving key physical and

mathematical structures of the quantum LLG equation. We demonstrate the effectiveness of

the method by simulating quantum spin systems that host topological spin textures, including

skyrmions, and reveal the formation of long-lived entangled states. These results provide a con-

crete step toward scalable, structure-preserving simulations of quantum spin dynamics beyond

classical approximations.

2 Quantum Landau-Lifshitz-Gilbert (q-LLG) equation

While the classical LL and LLG equations describe magnetization as a classical vector, the

underlying physical degrees of freedom originate from quantum spins density operators [10, 22].

The quantum version of the LLG equation (q-LLG) has been recently demonstrated by [10]

ρ̇ =
i

ℏ
[ρ,H] + iκ[ρ, ρ̇] (2.1)

where ρ ∈ CN×N (a hermitian, positive semi-definite complex matrix of size N × N with unit

trace) is the density operator, ρ̇ = dρ
dt , ℏ is the Planck constant, and the commutator, [A,B], of

two operators A and B, is defined to be [A,B] = AB−BA. The second term on the right-hand

side of (2.1) has a dissipative (damping-like) character, with κ representing the dimensionless

damping rate.

The q-LLG equation governs the dynamics of the density operator ρ, which describes the

quantum state of given spin system. The dynamics of a simple single spin-12 system and a

dimer system composed of two spin-12 particles have already been discussed in [10]. In the

special case of a single spin, the q-LLG [22] and q-LL [10] equations are equivalent up to a

time rescaling. This mirrors the relationship between their classical counterparts. However, in

multi-spin systems, the q-LLG equation exhibits significant differences from the q-LL equation

[10].

The exact solution to equation (2.1) presented in [10] is limited to simple cases with specific

initial conditions. We also note that solving this equation becomes significantly more challeng-

ing in many-body systems due to the exponential growth in dimensionality. For instance, in

the lowest-dimensional spin-12 (qubit) system, where N = 2n with n denoting the number of

spin-12 particles, the density matrix resides in a space of dimension 4n−1. This exponential scal-

ing, combined with the inherent nonlinearity of the equation, poses substantial computational

challenges for simulating large quantum systems.
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This paper aims to develop a robust numerical procedure for solving equation (2.1), as no

such method currently exists in the literature. The solution of equation (2.1) satisfies certain

properties that are particularly valuable for developing a reliable numerical method. One key

property is that the density operator ρ(t) is Hermitian and positive semi-definite for all t ≥ 0.

More generally, this variable possesses the conservation of the spectrum, i.e.,

d

dt
λk(ρ(t)) = 0 (2.2)

where λk ≡ λk(ρ(t)), k = 1, . . . , N are eigenvalues of ρ(t). This means that the spectrum is

independent of time; λk(ρ(t)) = λk(ρ(0)) for all t ≥ 0. As a consequence, the traces of all powers

of ρ are conserved;
d

dt
Tr(ρm) = 0, m = 1, 2, . . . .

Note that, cases m = 1 and m = 2 are sometimes refered to as conservation of trace and

conservation of purity, respectively. See the supplementary draft of [10] for proofs.

To guarantee the accuracy and physical consistency of the numerical scheme, it is essential

that the proposed method preserves these conservation properties. Below we develop a numer-

ical ODE solver for (2.1) which makes it possible to solve the equation for an arbitrary given

Hamiltonian H and initial state ρ0 = ρ(t = 0), while preserving the structural and physical

properties of the q-LLG equation.

3 Converting to a standard form

In this section, we describe how the q-LLG equation (2.1) can be reformulated in an equivalent

form to be solvable using standard ODE solvers. First, we rewrite equation (2.1) as

(I − iκρ)ρ̇+ ρ̇(iκρ) =
i

ℏ
[ρ,H]. (3.1)

On the other hand, the spectral decomposition (eigendecomposition) of Hermitian matrix ρ is

given by

ρ = V ΛV ∗

where

Λ =


λ1 0

λ2
. . .

0 λN

 ∈ RN×N , V =
[
v1 v2 · · · vN

]
∈ CN×N

are the eigenvalues and eigenvectors of ρ. Substituting this decomposition into (3.1), we obtain

(I + S)V ∗ρ̇ V − V ∗ρ̇ V S =
i

ℏ
V ∗[ρ,H]V

for S = −iκΛ, i.e., sℓ = −iκλℓ for ℓ = 1, 2, . . . , N . Next, we define

X := V ∗ρ̇ V (3.2)
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which leads to

(I + S)X −XS = D (3.3)

where the right-hand side is given by D = i
ℏV

∗[ρ,H]V . Equation (3.3) is a Sylvester equation

with diagonal matrices S and I − S. Since ρ is unknown, all matrices in this system are also

unknown. However, let us explore how we can solve this equation for X using a linear algebra

technique.

Assuming X is expressed in terms of its columns as X = [x1 x2 · · · xN ] and similarly, D in

terms of its columns as D = [d1 d2 · · · dN ], we can rewrite equation (3.3) as[
(I + S)x1 (I + S)x2 · · · (I + S)xN

]
−
[
s1x1 s2x2 · · · sNxN

]
=

[
d1 d2 · · · dN

]
which corresponds to a set of N decoupled diagonal systems

(I + S − sℓI)xℓ = dℓ, ℓ = 1, 2, . . . , N

with solutions

xℓ = cwd(dℓ, e+ s− sℓe), ℓ = 1, 2, . . . , N (3.4)

where s is the diagonal of S, and e = [1, 1, . . . , 1]T . Here, cwd(x,y) denotes the component-wise

division of vectors x and y. The solution is well-defined because the denominators e+ s− sℓe

are nonzero unless sℓ − sj = 1 for some ℓ and j. However, this never occurs because sℓ − sj =

−iκ(λℓ − λj), and κ, λj , λℓ ∈ R.
We remark that equation (3.4) has benefited from the ODE (2.1) to express X in terms of

ρ only (via V and Λ). Now, we can write from (3.2),

ρ̇ = V XV ∗

ρ(0) = ρ0
(3.5)

where X is obtained from (3.4). Note that the right-hand side V XV ∗ is now independent of ρ̇

and depends only on ρ via the eigendecomposition and equation (3.4).

The reformulated system in (3.5) defines an initial value problem suitable for standard ODE

solvers. However, most built-in solvers are designed to handle vector-valued systems, whereas

in this case, the solution ρ is matrix-valued. To apply such solvers, one common approach is to

flatten ρ into a long vector at each time step, solve the corresponding vector-valued ODE, and

then reshape the result back into matrix form.

In this work, however, we do not use built-in solvers. Instead, we employ a class of Runge-

Kutta methods directly in the matrix formulation and enhance them to ensure that the structural

properties of the solution such as symmetry, non-negativity, and traces are preserved throughout

the integration process.

4 Explicit Runge-Kutta methods

Let’s get started with the Euler’s method, the simplest explicit ODE solver which begins with the

initial density matrix ρ0 and computes an approximate solution at each time level tk+1 = (k+1)h
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using the recurrence

ρk+1 = ρk + hVkXkV
∗
k , k = 0, 1, 2, . . . ,

where h = tk+1 − tk denotes the time step, Vk is the eigenmatrix of ρk, and Xk is obtained from

equation (3.4), with S and D derived from ρk. The iteration continues until the final time tF is

reached. The Euler method can be written as

ρk+1 = ρk + hf(ρk), k = 0, 1, 2, . . . ,

where f(ρk) = VkXkV
∗
k . This method gives a first-order approximation provided that the

solution ρ is sufficiently smooth. This basic scheme can be extended to a more general explicit

method

ρk+1 = ρk + hψ(ρk;h), k = 0, 1, 2, . . . ,

where ψ(ρ;h) is a function that replaces f(ρ) and is assumed to be (at least) continuous in h

and Lipschitz continuous in ρ. Imposing additional regularity and consistency conditions on ψ

enables the construction of higher-order schemes.

A prominent family of such high-order methods is the class of explicit RK methods. An

explicit s-stage RK method has the form

z1 = ρk

z2 = ρk + ha2,1f(z1)

z3 = ρk + h [a3,1f(z1) + a3,2f(z2)]
...

zs = ρk + h [as,1f(z1) + · · ·+ as,s−1f(zs−1)]

ρk+1 = ρk + h [b1f(z1) + b2f(z2) + · · ·+ bsf(zs)]

(4.1)

The method is fully defined by the real coefficients {aℓ,j , bj}, which are usually presented in a

compact form called the Butcher tableau (see, e.g., [2]). At minimum, these coefficients must

satisfy
s∑

j=1

bj = 1.

The Euler method is simply a one-stage RK method and provides first-order accuracy, i.e.,

the error decays as O(h1). Among higher-order methods, the most widely used is the classical

4-stage RK method, which gives fourth-order accuracy, i.e., O(h4).

However, all explicit RK methods are conditionally stable, meaning that the time step h

must be sufficiently small to prevent numerical instability and blow-up. Although implicit

methods allow for larger time steps and improved stability properties, their application to the

matrix-valued evolution equations considered here would be computationally expensive due to

the complex structure of the right-hand side. Therefore, we restrict ourselves to explicit methods

with suitably small step sizes.

In what follows, we establish a couple of structural properties of the solution that are pre-

served by the explicit RK methods applied to this class of equations.
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Theorem 4.1. The explicit RK schemes (4.1) preserve the Hermiticity of the density matrices

ρk for k ≥ 0.

Proof. We show that if ρk is Hermitian, then the next iterate ρk+1 computed by (4.1) remains

Hermitian. We prove that f(zj) is Hermitian for all j = 1, . . . , s. It suffices to show that X

matrices at each stage are Hermitian. For j = 1 recall that X is computed as the solution

of equation (3.3). Since both ρk and H are Hermitian matrices, their commutator [ρk, H] is

skew-Hermitian. Therefore,

Dk =
i

ℏ
V ∗
k [ρk, H]Vk

is Hermitian. Given that Dk is Hermitian, the equation (3.3) has a unique Hermitian solution

Xk. This shows that z2 is Hermitian. Similarly, for j = ℓ > 1 we can show that zj and f(zj)

are all Hermitian.

Theorem 4.2. The explicit RK schemes (4.1) preserve the trace of ρk for k ≥ 0.

Proof. According to (4.1) it is enough to show that Tr(f(zj)) = 0 for all j = 1, . . . , s. Starting

with j = 1, we show that Tr(f(z1)) = Tr(VkXkV
∗
k ) = 0. Using the known property Tr(AB) =

Tr(BA), we have Tr(VkXkV
∗
k ) = Tr(Xk). We observe from (3.3) that Tr(Xk) = Tr(XkS) −

Tr(SXk) + Tr(Dk) = 0 because the trace of commutator [ρk, H] is zero. This proves that

Tr(z2) = Tr(ρk). Similarly, we can show that Tr(f(zj)) = 0 and Tr(zj) = Tr(ρk) for j > 1.

However, it can be shown that explicit RK methods do not preserve the trace of higher

powers of ρk, i.e., Tr(ρ
n
k) for n > 1. This indicates a loss of exact conservation under RK time

integration, even though ρ(t), the exact solution of equation (2.1) (or equivalently (3.5)), satisfies

such conserved quantities.

Another important property of the exact solution ρ(t) is that its spectrum remains constant

over time. In contrast, this spectral invariance is not preserved by explicit RK methods. As

a result, it becomes non-trivial to prove that the numerical solution ρk remains positive semi-

definite for all k ≥ 1. In fact, the right-hand side terms f(zj) in the RK scheme are generally not

positive semi-definite. Nevertheless, their contribution to the solution is scaled by the time step

h, which helps to limit their impact on the eigenvalues of ρk over short time intervals. Still, to

achieve long-term stability and preserve key structural properties of the solution, it is necessary

to develop a conservative numerical method.

5 Structure-Preserving Solvers

As previously mentioned, standard Runge-Kutta (RK) methods (4.1) fail to preserve important

structural properties of the density matrix ρ(t), such as non-negativity and the invariance of the

trace of its higher powers. Theoretically, the spectrum of ρ(t) remains constant over time, i.e.

d

dt
λj(t) = 0, j = 1, 2, . . . , N,
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where λj(t) ∈ R are the eigenvalues of ρ(t). This spectral invariance implies other properties

mentioned above.

To guarantee that our numerical scheme respects this key spectral property, we propose a

modified version of the standard explicit RK methods. The idea is to project the intermediate

states of the RK procedure back onto the manifold of matrices with the same spectrum as the

initial density matrix ρ0. Assume that ρ0 admits the spectral decomposition

ρ0 = V0Λ0V
∗
0 ,

where Λ0 = diag(λ1, . . . , λN ) is a diagonal matrix of eigenvalues and V0 is a unitary eigenmatrix.

We now propose the following conservative RK scheme which preserves the spectrum of ρ0 over

the integration process:

z1 = ρk

z̃2 = ρk + ha2,1f(z1)

z2 = Ṽ2Λ0Ṽ
∗
2

z̃3 = ρk + h [a3,1f(z1) + a3,2f(z2)]

z3 = Ṽ3Λ0Ṽ
∗
3

...

z̃s = ρk + h [as,1f(z1) + · · ·+ as,s−1f(zs−1)]

zs = ṼsΛ0Ṽ
∗
s

ρ̃k+1 = ρk + h [b1f(z1) + b2f(z2) + · · ·+ bsf(zs)]

ρk+1 = Ṽ Λ0Ṽ
∗

(5.1)

where Ṽj are eigenvector matrices of the intermediate solutions z̃j for j = 2, . . . , s, and Ṽ is the

eigenvector matrix of ρ̃k+1.

The eigenvector matrices Ṽj and Ṽ are readily available from the computation of the right-

hand side f(ρ) at each stage, so their construction does not impose additional cost compared

to the standard RK methods. In practice, we guarantee numerical consistency by sorting the

eigenvectors according to their corresponding eigenvalues in increasing order. Furthermore, in

our implementation (in MATLAB), we employ and adjust the more robust svd function to

perform the eigendecomposition of Hermitian matrices instead of the default eig function.

Theorem 5.1. The modified Runge-Kutta methods defined in (5.1) preserve the spectrum of the

solution ρk at each time step. Consequently, it also preserves non-negativity and the trace of all

matrix powers of ρk.

This projection-based modification enforces structure preservation in each iteration, making

it suitable for long-time simulations of quantum density matrices where physical constraints

must be respected.
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6 Numerical results

To assess the accuracy and reliability of the developed numerical method for solving the q-LLG

equation (2.1), we apply it to a set of physical examples relevant to quantum spin dynamics.

We focus on the dynamics of quantum entanglement in such spin systems through the q-LLG

equation, as entanglement is a fundamental non-classical feature of quantum systems that cannot

be addressed by classical approaches, including the classical LLG equation.

We consider a many-body quantum model system described by the following spin Hamilto-

nian

H =
2J

ℏ2
∑
ij

Si · Sj +
2

ℏ2
∑
ij

Dij · [Si × Sj ]− µ
∑
i

B · Si (6.1)

where J ∈ R is the isotropic Heisenberg exchange interaction, Dij ∈ R3 (Dij = −Dji) are the

Dzyaloshinskii–Moriya interaction (DMI), B ∈ R3 denotes an external magnetic field uniformly

applied to all spins Si. The constant µ associated with the gyromagnetic ratio is given by

µ = −µBg
ℏ , where µB is the Bohr magneton and g is the Landé g-factor. The spin operators Si

are assumed to be spin-12 vector operators given by

Si = [Sx
i , S

y
i , S

z
i ], Sv

i = I ⊗ I ⊗ · · · ⊗ I ⊗ ℏ
2
σv︸︷︷︸

ith site

⊗I ⊗ · · · ⊗ I, v = x, y, z (6.2)

for each spin at site i, where σx, σy, σz ∈ SU(2) (the special unitary matrices of size 2) are

the Pauli matrices. We adopt the standard computational spin-12 (qubit) basis |0⟩ = | ↑⟩ and

|1⟩ = | ↓⟩, such that σz|i⟩ = (−1)i|i⟩ for i = 0, 1. Throughout the paper, the following constant

values µB = 5.8× 10−2 meV/T, ℏ = 0.658 meV.ps, and g = 2 are used.

The Hamiltonian (6.1) represents a generalized form of the simplest two-spin (qubit) system

discussed in [10]. To extend the numerical analysis to a many-body system, the Hamiltonian

is considered on a triangular lattice with nearest-neighbor interactions, as illustrated in Figure

1. The competition between the exchange interaction and the DMI can give rise to topological

spin textures such as skyrmions, which are typically stabilized by a nonzero magnetic field [20].

Figure 1: Schematics of a triangular lattice with J representing the Heisenberg exchange inter-

action, and Dij representing in-plane DMI vectors in directions perpendicular to bonds between

neighboring i and j spin sites.
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To emphasize the role of nonlinear effects in the quantum LLG equation, the dissipation

parameter is set to be κ = 0.5 throughout the analysis. In the many-body case, without loss of

generality, we have chosen to work with a 16-spin clusters with periodic boundary conditions.

We also choose the following class of density matrices as the initial state ρ(0) of the q-LLG

dynamics:

ρ(0) =
p0
2n
I + p1|AF1⟩⟨AF1|+ p2|AF2⟩⟨AF2|+ p3|GHZ⟩⟨GHZ|+ p4|W ⟩⟨W |

for a probability vector p = (p0, p1, p2, p3, p4), where the probabilities pi ∈ [0, 1] sum to unity.

The antiferromagnetically ordered states are given by

|AFi⟩ =
n⊗

l=1

|(l + i) mod 2⟩, i = 1, 2,

while the generalized GHZ and W states are defined as

|GHZ⟩ = 1√
2

(
|0⟩⊗n + |1⟩⊗n

)
, |W ⟩ = X|0⟩⊗n,

where X = 2
ℏ
√
n

∑n
i=1 S

x
i , with S

x
i defined in (6.2).

Let us first examine the accuracy and convergence order of various standard and conservative

RK methods using a pure (rank-1) state ρ0 as an initial condition. Note that for the special

case of a rank-1 initial density matrix ρ0, there exists an exact solution to (2.1) given by [10]

ρ(t) =
exp

(
− i

ℏH̃t
)
ρ0 exp

(
i
ℏH̃t

)
Tr

(
exp

(
− i

ℏH̃t
)
ρ0 exp

(
i
ℏH̃t

)) , (6.3)

with H̃ =
(

1−iκ
1+κ2

)
H. This exact solution can be used for comparison with the corresponding

numerical results.

Following [10], we begin with the simplest case of tow-spin (n = 2) system with Hamiltonian

parameters J = 1 meV, D21 = −D12 = |D|(0, 0, 1), |D| = 0.4 meV, and |B| = 1 T being

the strength of magnetic field vector B = |B|(1, 0, 0). Given the pure state initial condition,

ρ0 = |AF1⟩⟨AF1| = |01⟩⟨01|, Figure 2 presents the error plots for RK methods (4.1) and the

conservative RK methods (5.1), for orders 1 through 4. The conservative RK family maintains

full order accuracy across all timestep levels, whereas the errors in the classical RK3 and RK4

methods begin to deteriorate for small values of h. This test case involves a small quantum LLG

problem with a 4 × 4 density matrix; for larger systems, such numerical instabilities with the

non-conservative methods would likely to become even more pronounced.

Figure 3 shows the minimum eigenvalue and traces of various powers of the numerical so-

lutions ρk, obtained from both method families. The standard RK methods produce solutions

with negative eigenvalues, violating the semi-positive definiteness required for the density ma-

trix. Additionally, they fail to preserve the traces of higher powers of ρk. However, these

deficiencies are resolved by the conservative RK methods, which preserve both non-negativity

and trace properties throughout the simulation.
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Figure 2: Error plots and convergence orders of standard RK methods (left) and the conservative

RK methods (right) for the 2-spin system.

Figure 3: Minimum eigenvalues (upper panels) and trace values (lower panels) of numerical

2-spin density matrices in time interval [0, 1] using the standard Euler’s method (left panels)

and the conservative Euler’s method (right panels).

We extend the results on convergence to a 16-spin cluster on a triangular lattice with periodic

boundary conditions for the pure-state initial condition ρ0 = |AF1⟩⟨AF1| in Figure 4. The same

values and directions for Hamiltonian parameters as in the 2-spin case are used. Note that here

ρ0 is a rank-1 density matrix of dimension 29 × 29 with entries ρ0(i, j) = δi,171 δ171,j , where δkl

is the Kronecker delta. The exact solution for this case is computed using formula (6.3). As

we observe from Figure 4, the higher-order standard RK methods fail to attain their theoretical

convergence rates, while the conservative methods achieve the expected orders. For brevity, we

have omitted the corresponding figures showing that the standard methods also fail to preserve
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non-negativity and traces.

Figure 4: Error plots and convergence order of standard RK methods (left) and the conservative

RK methods (right) for the 16-spin system.

Although the results presented above correspond to specific parameter values and particular

directions of the DMI and magnetic field, similar convergence plots have been observed for a

variety of parameter settings and directions, which are not shown here.

Having demonstrated the accuracy of the numerical procedure, we now apply it to investi-

gate the dynamics of key physical properties of the 16-spin system (Figure 1), such as energy,

magnetization, and entanglement, for both pure states and more general mixed state initial

conditions where exact solutions are not available. For energy and magnetization, we examine

the expectation values

⟨A⟩ = Tr[Aρ(t)]

where the observable A is either the energy operator H or the magnetization operators Mv =
1
n

∑n
i=1 S

v
i , with v = x, y, z and Sv

i denoting the spin operator at site i in the v direction given in

(6.2). For entanglement, we consider the concurrence C[ρkl(t)] (see the appendix for the defini-

tion) [21] of the reduced two-spin density matrix ρkl(t) = Tr{Si}ni=1&i ̸=k,l
ρ(t), where trace is taken

over all degrees of freedom (basis states) of the spins not in {Sk,Sl}, leaving only the reduced

state of the kth and lth spins [14]. These measurements quantify the entanglement between two

spins at the given sites k and l. Naturally, different spin pairs yield different entanglement values.

However, due to the translational symmetry of the system, the entanglement between any two

adjacent spins is the same. Therefore, we restrict our analysis to a single pair of adjacent spins,

namely, the spins at sites one and two. All results below are obtained with the conservative

RK4 method with time step h = 0.02 for the 16-spin system. Unless otherwise specified, we

use |J | = 1 meV, in-plane Di,j vectors perpendicular to the bonds between neighboring spins at

sites i and j with uniform magnitude |Di,j | = 0.8 meV, and a uniform magnetic field along the

z-direction with strength |B| = 1 T.
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Figure 5 shows the energy dissipation with the initial condition ρ0 being one of the follow-

ing antiferromagnetically ordered states ρ(0) = |AF1⟩⟨AF1|, ρ(0) = |AF2⟩⟨AF2|, and ρ(0) =
1
2 |AF1⟩⟨AF1| + 1

2 |AF2⟩⟨AF2|. The plots clearly confirm the dissipative nature of the nonlinear

term in the quantum LLG equation (2.1). Although results are shown here for only a few initial

conditions, the energy dissipation under quantum LLG dynamics remains consistent regardless

of the initial state.

Figure 5: Quantum LLG dynamics of the energy expectation value, ⟨H⟩ = Tr[Hρ(t)], where H is

the Hamiltonian of the system, are shown for different initial conditions. The dissipative nature

of quantum LLG dynamics is independent of the initial state. Ferromagnetic (antiferromagnetic)

Heisenberg exchange coupling is represented by J < 0 (J > 0). Energy and time are expressed

in millielectronvolts (meV) and picoseconds (ps), respectively.

We also analyze the dynamics of magnetization components and concurrence values for

various initial conditions in Figures 6 and 7. While Figure 6 employs the same initial conditions

as Figure 5, Figure 7 presents results for the GHZ and W states, as well as for a mixed state

defined by a convex combination of the two density matrices.

The developed numerical method enables systematic investigation of the effects of various

mathematical and physical characteristics, such as intrinsic exchange couplings, external fields,

system size, and dimensionality, on quantum spin dynamics governed by the quantum LLG

equation. To illustrate some of these effects, we plot the dynamics of bipartite spin–spin en-

tanglement (quantified via concurrence) for different values of spin–orbit DMI strength |D| and
magnetic field strength |B| in Figure 8. The system is initially prepared in the mixed state

ρ(0) = 1
2 |AF1⟩⟨AF1|+ 1

2 |AF2⟩⟨AF2| with no bipartite entanglement between adjacent spins and

the dynamics are considered in both the ferromagnetic (J < 0) and antiferromagnetic (J > 0)

cases. Different entanglement dynamics are observed in the two cases. For instance, for a fixed

magnetic field of moderate strength (1 T ), the entanglement in the antiferromagnetic case rises

immediately as the evolution begins but dies out over a short time scale for any value of DMI

strength. In contrast, in the ferromagnetic case, although the entanglement is initially zero, it

exhibits a sudden rise after some time and persists for a considerable duration when the DMI

strength is low. However, the lifetime of entanglement decreases as the DMI strength increases.

Moreover, while a stronger magnetic field in the ferromagnetic case shortens the lifetime of

non-zero entanglement, the entanglement dynamics in the antiferromagnetic case become more

13



Figure 6: Dynamics of magnetization and spin–spin entanglement using the same initial con-

ditions as in Figure 5. Upper panels: average magnetization components, where solid and

dashed curves correspond to the ρ(0) = |AF1⟩⟨AF1| and ρ(0) = |AF2⟩⟨AF2| initial conditions,
respectively. Lower panels: concurrence quantifying bipartite entanglement between two nearest-

neighbor spins. Ferromagnetic (antiferromagnetic) Heisenberg exchange coupling is represented

by J < 0 (J > 0). Time is measured in picoseconds (ps).

complex, exhibiting fluctuations as the magnetic field strength increases. Such complex and

unconventional entanglement dynamics under the quantum LLG equation suggest further and

detailed studies on the physical nature and characteristics of these dynamics.

We also investigate the effect of system size on spin–spin entanglement dynamics by compar-

ing the results of the 2-spin and 16-spin systems using the initial state ρ(0) = 1
2I/2

n+ 1
2 |W ⟩⟨W |,

as illustrated in Figure 9. For the 2-spin case (n = 2), the corresponding initial state is entan-

gled, and the entanglement oscillates during the evolution, eventually retaining and stabilizing

at its initial value. In contrast, for the 16-spin system (n = 9 with periodic boundary condi-

tion), the initially zero bipartite entanglement remains unchanged throughout the time evolution

under the quantum LLG dynamics. This observation is qualitatively the same in both the ferro-

magnetic and antiferromagnetic cases, indicating that system size plays a significant role in the

emergence of entanglement dynamics. The vanishing bipartite entanglement in the many-body

setting suggests that entanglement may be distributed more globally across the system, under-

scoring the complexity of entanglement dynamics in larger quantum systems. This complexity

is particularly interesting and motivates further theoretical and numerical investigation to fully

understand the physical origin of entanglement behavior and its redistribution as the number of

particles increases.
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Figure 7: Dynamics of magnetization and spin–spin entanglement using ρ(0) = |GHZ⟩⟨GHZ|,
ρ(0) = |W ⟩⟨W |, and ρ(0) = 1

2 |GHZ⟩⟨GHZ| + 1
2 |W ⟩⟨W | as the initial state ρ0. Upper panels:

average magnetization components, where solid and dashed curves correspond to the GHZ andW

initial conditions, respectively. Lower panels: concurrence quantifying bipartite entanglement

between two nearest-neighbor spins. Ferromagnetic (antiferromagnetic) Heisenberg exchange

coupling is represented by J < 0 (J > 0). Time is measured in picoseconds (ps).

7 Summary

We have developed and demonstrated a numerical framework tailored to the recently proposed

quantum generalization of the Landau–Lifshitz–Gilbert (LLG) equation which enables the sim-

ulation of quantum spin dynamics in many-body spin systems. Our methodology addresses

the intrinsic challenges of quantum many-body dynamics by preserving essential physical and

mathematical properties of the quantum state, including Hermiticity, trace preservation, and

non-negativity. By applying the method to a class of quantum spin systems, we have observed

unconventional and rich quantum phenomena, including the formation of long-lived entangled

states and the emergence of spin correlations. These results highlight the capability of the

quantum LLG equation to capture quantum behavior that lies beyond the reach of classical spin

dynamics. This work contributes to a significant step toward scalable and structure-preserving

simulations of quantum magnetism. It opens up new possibilities for investigating emergent

quantum effects in complex magnetic systems and for exploring quantum technologies based on

spin phenomena.
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Figure 8: Bipartite spin–spin entanglement (concurrence) dynamics for various spin–orbit DMI

and magnetic field strengths, shown for both ferromagnetic (J < 0, left panels) and antiferro-

magnetic (J > 0, right panels) regimes. The upper panels show the effect of different DMI

strengths on entanglement dynamics when the magnetic field is fixed at |B| = 1 T. Con-

versely, the lower panels illustrate how entanglement dynamics vary with different magnetic

field strengths, while the DMI interaction is fixed at |D| = 0.8 meV. The initial condition is

taken as ρ(0) = 1
2 |AF1⟩⟨AF1|+ 1

2 |AF2⟩⟨AF2|. Time is measured in picoseconds (ps).

Figure 9: Bipartite spin–spin entanglement (concurrence) dynamics, plotted for both the 2-spin

and 16-spin quantum systems. The magnetic field B and the DMI vectors Dij are aligned

along the z-axis, with fixed strengths |D| = 0.8 meV and |B| = 1 T. The sign of the Heisenberg

exchange coupling J distinguishes between ferromagnetic (J < 0) and antiferromagnetic (J > 0)

spin systems. Time is measured in picoseconds (ps).
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A Appendix

Let ρ ∈ C4×4 be the density matrix of a two-qubit (spin-12) system. The concurrence C(ρ) is

defined as [23]

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} , (A.1)

where λ1, λ2, λ3, λ4 are the square roots of the eigenvalues (in decreasing order) of the matrix

R = ρ ρ̃

and ρ̃ is the spin-flipped state, given by

ρ̃ = (σy ⊗ σy) ρ
∗ (σy ⊗ σy).

Here ρ∗ is the complex conjugate of ρ in the computational basis, and σy is the Pauli-Y matrix.
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