
Lecture Notes

Numerical Linear Algebra
Least Squares, QR and SVD

Davoud Mirzaei
Uppsala University

September 1, 2023

Contents
1 Least squares problem 1

1.1 Existence and uniqueness . 3
1.2 Normal equations . 4
1.3 Conditioning of the least squares problem 5

2 Projectors* 8

3 Orthogonality and QR factorization 11
3.1 Householder transformations . 12
3.2 Plane rotations . 15
3.3 QR factorization . 18
3.4 QR factorization using Householder transformations 19
3.5 QR factorization using Givens rotations . 23
3.6 Other algorithms . 24
3.7 QR factorization for solving the least squares problem 24
3.8 QR factorization with column pivoting . 26

4 Singular Value Decomposition (SVD) 29
4.1 Geometric interpretation . 30
4.2 Properties of SVD . 32
4.3 Computation of SVD . 34
4.4 Solving the least squares problem using SVD 37
4.5 Pseudoinverse . 39
4.6 Low-rank approximation . 40
4.7 Some applications of SVD . 41

2

These lecture notes focus on some numerical linear algebra algorithms in scientific comput-
ing. We assume that students are familiar with elementary linear algebra concepts such as
vector spaces, systems of equations, matrices, norms, eigenvalues, and eigenvectors. In the
numerical part, we do not pursue Gaussian elimination and other LU factorization algorithms
for square systems. Instead, we mainly focus on overdetermined systems, least squares solu-
tions, orthogonal factorizations, and some applications to data analysis and other areas. The
reference textbooks [Datta:2010], [Heath:2018], and [Trefethen-Bau:1997] are our main
sources in this lecture.

1 Least squares problem
Let A ∈ Rm×n, where m > n. The system

Ax = b

for a given vector b ∈ Rm and solution x ∈ Rn is termed overdetermined because it contains
more equations than unknowns. This system essentially asks whether b can be expressed as a
linear combination of the columns of A:

b = x1a·1 + x2a·2 + · · · + xna·n.

For the square system (the case m = n), the answer is “yes” provided that the column vectors
{a·1, a·2, . . . , a·n} are linearly independent (or equivalently for a nonsingular matrix A). How-
ever, for overdetermined systems (m > n), the answer is usually “no” unless b happens to lie
in the span of {a·1, a·2, . . . , a·n} (often denoted span(A) or range(A)), which is highly unlikely
in most applications. Therefore, in general, such a system has no solution.

To illustrate this, consider the case where m = 3 and n = 2. In this scenario, a·1 and a·2

represent two vectors in R3. If a·1 and a·2 are linearly independent, then their span forms a
plane (a 2-dimensional subspace) in R3. The system Ax = b has a solution if b lies in that
plane; otherwise, the system has no solution. The probability of a vector b ∈ R3 lying in a
plane is zero.

In such situations, one obvious alternative to “solving the linear system exactly” is to min-
imize the residual vector

r = b − (x1a·1 + x2a·2 + · · · + xna·n) = b − Ax.

The solution to the problem depends on how we measure the length of the residual vector. It
is preferred to use the 2-norm, although any norm could be used. The 2-norm is induced by
the inner product, thus is related to the notion of orthogonality, and it is smooth and strictly
convex. These properties make the theory and computation with this norm much easier than
with other norms. With the use of the 2-norm, the solution is the vector x that minimizes the
sum of squares of differences between the components of b and Ax. This method is known as
least squares. In the least squares method, we seek to find an optimal vector that solves the

1

minimization problem:
min
x∈Rn

∥Ax − b∥2. (1.1)

As we pointed out, the solution x of this problem (which always exists) may not exactly satisfy
Ax = b. To reflect the lack of exact equality, we may write the linear least squares problem as

Ax ∼= b,

and approximation is understood in the least square sense.

Example 1.1 ([Heath:2018]). A surveyor tries to measure the heights of three hills. Sight-
ing first, his/her initial measurements are x1 = 1237 ft, x2 = 1941 ft, and x3 = 2417 ft.
To confirm these measurements, the surveyor climbs to the top of the first hill and mea-
sures the heights of the second and third hills above the first and obtain x2 − x1 = 711
ft and x3 − x1 = 1177 ft. Then he/she climbs to the top of the second hill and measures
x3 − x2 = 475 ft. It is obvious that there exists an inconsistency with measurements. These
can be written in an overdetermined linear system of equations:

Ax =



1 0 0
0 1 0
0 0 1

−1 1 0
−1 0 1
0 −1 1




x1

x2

x3

 ∼=



1237
1941
2417
711
1177
475


= b.

The least squares solution of this system (as we will see soon) is x = [1236, 1943, 2416]T

which differs slightly from the initial measurements. The last three observations helped to
obtain a better measurement.

Example 1.2. Data fitting (or curve fitting) is a procedure for finding the curve of best
fit to a given set of data points. Trying to find the best curve by minimizing the sum of
the squares of the residuals of the points from the curve leads to a linear least squares
problem of the form (1.1). Given data (tk, yk), k = 1, 2, . . . , m, we wish to find a function
p ∈ span{ϕ1(t), ϕ2(t), . . . , ϕn(t)} such that p is the best fit to data values yk in the sense
that

n∑
k=1

(yk − p(tk))2 → min .

By expanding p in terms of basis functions ϕj with coefficients cj, i.e.,

p(t) = c1ϕ1(t) + c2ϕ2(t) + · · · + cnϕn(t),

the problem is equivalent with finding a vector c = (c1, . . . , cn)T ∈ Rn that solves the
minimization problem

min
c∈Rn

m∑
k=1

(
yk − (c1ϕ1(tk) + · · · + cnϕn(tk))

)2
.

2

If we define the m × n matrix A with entries akj = ϕj(tk) and m-vector b = (y1, . . . , ym)T ,
then the above data-fitting problem takes the form

min
c∈Rn

∥Ac − b∥2.

In the case where the approximation space is the space of polynomials (with basis
{1, t, . . . , tn−1}, or any other basis), the problem is known as polynomial curve fitting. A
schematic of a cubic curve fitting (n = 4) is illustrated in Figure 1.

t

y

data points
polynomial fit

Figure 1: A least squares polynomial fit to a given data set

The special case with basis {1, t} is refereed to as linear curve fitting or linear regression. As
an example, to find a cubic fit p3(t) = c1 + c2t + c3t

2 + c4t
3 to six points (t1, y1), . . . , (t6, y6)

the matrix A is 6 × 4 and the problem has the form

Ac =



1 t1 t2
1 t3

1

1 t2 t2
2 t3

2

1 t3 t2
3 t3

3

1 t4 t2
4 t3

4

1 t5 t2
5 t3

5

1 t6 t2
6 t3

6




c1

c2

c3

c4


∼=



y1

y2

y3

y4

y5

y6


= b.

The matrix A here is a Vandemonde matrix which will be ineffectively ill-conditioned for
higher order polynomial curve fittings.

1.1 Existence and uniqueness
Assume that y = Ax so y ∈ range(A). The function f(y) = ∥b − y∥2 is continuous and

coercive on Rm, so it has at least a minimum on the closed and unbounded set range(A).
Moreover, f is strictly convex on the convex set range(A), so the minimum vector y is unique.
It does not mean that the solution x of the least square problem (1.1) is unique in general.
Suppose x and x̃ are two solutions for the least square problem and z = x − x̃. Then Az = 0

3

because Ax = Ax̃. If the columns of A are linearly independent then z = 0 and x = x̃. We
conclude that if A has full column rank, i.e., rank(A) = n then the solution of least squares
problem is unique (the inverse is also true). If rank(A) < n, then A is said to be rank-deficient.

1.2 Normal equations
To find the solution of the least squares problem (1.1), we define the n-variate function

f : Rn → R by

f(x) := ∥Ax − b∥2
2 = (Ax − b)T (Ax − b) = xT AT Ax − 2xT AT b + bT b

and aim to minimize it on Rn. The function f is quadratic, and a necessary condition for a
minimizer x is that ∇f(x) = 0, i.e., 2AT Ax − 2AT b = 0. Therefore, any minimizer of f should
satisfy

AT Ax = AT b. (1.2)
The Hessian of f is 2AT A, which is semi-positive definite in general. However, if the columns
of A are linearly independent (meaning A has full rank), then AT A is positive definite (you
should prove this!). In this case, (1.2) becomes a sufficient condition as well. The linear system
(1.2) is known as the system of normal equations and suggests a method for solving the least
squares problem. However, it is advisable to avoid it in favor of other computationally more
stable algorithms, as we will describe later.

b

Ax

b−
A

x

a·1

a·2

Figure 2: Geometric interpretation of the least squares problem.

Another approach, equivalent with one we derived above, is as below. The vector Ax =
x1a·1 + · · · + xna·n out of subspace range(A) closest to b in the Euclidean norm occurs when
the residual vector b − Ax is perpendicular to range(A). See Figure 2. Thus, the inner product
of b − Ax and any column of A should be zero, equivalently

AT (b − Ax) = 0

which is the same system of normal equations (1.2).

4

Example 1.3. Returning to Example 1.1, since A has full rank, we can obtain the least
squares solution by solving the normal system AT A = AT b. We have

AT A =


3 −1 −1

−1 3 −1
−1 −1 3

 , AT b =


−651
2177
4069


Since matrix AT A is positive definite, the solution of the normal system can be obtained by
the Cholesky factorization AT A = LLT where L is a lower triangular matrix. We therefore
need to solve two triangular systems Lz = AT b (lower triangular) and LT x = z (upper
triangular) using forward and backward substitutions for final solution x. In Python write

import numpy as np
import scipy as sp
A = np.array([[1,0,0],[0,1,0],[0,0,1],[-1,1,0],[-1,0,1],[0,-1,1]])
b = np.array([1237,1941,2417,711,1177,475])
L = np.linalg.cholesky(A.T@A) # Cholesky factorization
z = sp.linalg.solve_triangular(L, A.T@b, lower = True) # forward
x = sp.linalg.solve_triangular(L.T, z, lower = False) # backward
print(’Hill heights =’, x)

The final solution will be x = [1236, 1943, 2416]T . From a computational point of view,
the normal equation is effective for solving this small-sized least squares system. However,
in practical scenarios and for larger matrix sizes, solving through the normal equation is
strongly discouraged, as we will discuss it later.

1.3 Conditioning of the least squares problem
The conditioning of linear system Ax = b for a square and nonsingular matrix A is measured

by the condition number
cond(A) = ∥A∥∥A−1∥.

For the overdetermined system Ax ∼= b, however, the inverse of A can not be defined in the
conventional sense, but it is possible to define a pseudoinverse or Moore–Penrose inverse,
denoted by A+, that behaves like an inverse in many respects1. The pseudoinverse A+ exists
for any matrix A, in particular, when A has linearly independent columns then

A+ = (AT A)−1AT

which is indeed a left inverse because A+A = I. On the other hand, P := AA+ is an orthogonal
projector onto range(A), so that the solution of the least squares problem can be written as

1Such definition of inverse matrix was independently described by E. H. Moore in 1920, Arne Bjerhammar
in 1951, and Roger Penrose in 1955. Earlier, Erik Ivar Fredholm had introduced the concept of a pseudoinverse
of integral operators in 1903.

5

x = A+b.

In Section 4, we explore how the pseudoinverse can be computed for any matrix A using the
SVD. Now, for a matrix A ∈ Rm×n with m ⩾ n and rank(A) = n, the condition number is
defined as

cond2(A) := ∥A∥2∥A+∥2.

This definition remains valid even if rank(A) < n, provided that we can compute A+.
While the conditioning of a square system depends solely on A, the conditioning of a least

squares problem Ax ∼= b relies on both the coefficient matrix A and the right-hand side vector
b. In fact, the closeness of b to range(A) will affect the conditioning. From Figure 2 we observe

∥Ax∥2

∥b∥2
= cos θ,

where θ is the angle between Ax and b. To measure the sensitivity of the least squares solution to
input perturbations, we consider perturbations in b and A separately. For the perturbed vector
b+δ the least squares solution x+ε is given by the normal equation as AT A(x+ε) = AT (b+δ).
Combining with AT Ax = AT b yields AT Aε = AT δ or ε = A+δ. This gives

∥ε∥2 ⩽ ∥A+∥2∥δ∥2.

Dividing both sides by ∥x∥ then yields
∥ε∥2

∥x∥2
⩽ ∥A+∥2

∥δ∥2

∥x∥2

= cond(A) ∥b∥2

∥A∥2∥x∥2

∥δ∥2

∥b∥2

⩽ cond(A) ∥b∥2

∥Ax∥2

∥δ∥2

∥b∥2

= cond(A) 1
cos θ

∥δ∥2

∥b∥2
.

We observe that the condition number for the least squares solution x with respect to pertur-
bations in b depends on both cond(A) and the angle θ between b and Ax. In particular, the
condition number is approximately cond(A) when the residual is small (cos θ ≈ 1), however, it
can be arbitrarily worse than cond(A) when the residual is large (cos θ ≈ 0).

Workout 1.1. Assume that the perturbed least squares solution x + ε is obtained by per-
turbing the input matrix A + E, while the right-hand side vector b remains unchanged.
Show that

∥ε∥2

∥x∥2
⩽

(
[cond(A)]2 tan θ + cond(A)

)
ϵA + O(ϵ2

A) (1.3)

where ϵA = ∥E∥2
∥A∥2

. Conclude that the condition number is approximately cond(A) when the
residual is small. However, the condition number is squared for a moderate residual, and it
becomes arbitrarily large when the residual is large.

6

The most striking feature of (1.3) is that it depends on the square of cond(A). This implies
that even if A is only mildly ill-conditioned, a small perturbation in A can cause a large change
in x. An exception occurs in problems where the least squares solution fits the data very well,
i.e., tan θ ≈ 0, causing the factor [cond(A)]2 to cancel out.

Example 1.4. Let us again consider the height measurements of hills in Example 1.1 with
the least squares solution x = [1236, 1943, 2416]T . The pseudoinverse of A is given by

A+ = (AT A)−1AT = 1
4


2 1 1 −1 −1 0
1 2 2 1 0 −1
1 1 2 0 1 1

 .

We have ∥A∥2 = 2 and ∥A+∥2 = 1, so that

cond(A) = ∥A∥2∥A+∥2 = 2.

On the other side, the ratio is computed as

cos θ = ∥Ax∥2

∥b∥2

.= 3640.8761
3640.8809

.= 0.99999868,

Hence, the angle between Ax and b is the small value θ = 0.001625, indicating that the
norm of the residual r = b − Ax is very small. Given the small condition number and the
angle θ, we can conclude that this particular least squares problem is well-conditioned.

Example 1.5. Consider a least squares problem with coefficient matrix

A =


1 1
ϵ −ϵ

0 0


and right-hand side vector b = [1, 0, ϵ]T , where ϵ > 0 is a small parameter. The pseudoinverse
of A is computed as

A+ = 1
2

1 1
ϵ

0
1 −1

ϵ
0

 .

The condition number of A is

cond(A) = ∥A∥2∥A+∥2 =
√

2 1
ϵ
√

2
= 1

ϵ
,

and the least squares solution is given by x = A+b = [1/2, 1/2]T . Assume a tiny perturbation

E =


0 0
0 0

−ϵ ϵ


for matrix A. The perturbed solution then is obtained as

x + ε = (A + E)+b = 1
2

1 1
2ϵ

− 1
2ϵ

1 − 1
2ϵ

1
2ϵ



1
0
ϵ

 =
1

4
3
4

 ,

7

which shows that ε = [−1/4, 1/4] and ∥ε∥2
∥x∥2

= 1/2. We can observe this large error from
stability bound (1.3). We have ∥E∥2

∥A∥2
= ϵ

√
2√
2 = ϵ, and θ = cos−1 ∥Ax∥2

∥b∥2
= cos−1 1√

1+ϵ2 ≈ 0 for
small values of ϵ. Therefore, the term with the squared condition number in the right-hand
side of (1.3) becomes negligible. Consequently, the bound on the output perturbation ∥ε∥2

∥x∥2

is solely determined by cond(A)∥E∥2
∥A∥2

= 1, which aligns with the exact value of ∥ε∥2
∥x∥2

.
Now, let us change the right-hand side to b = [1, 0, 1]T . For this case, we have

x = A+b =
1

2
1
2

 , x + ε = (A + E)+b =
1

2 − 1
4ϵ

1
2 + 1

4ϵ

 ,

and ∥ε∥2
∥x∥2

= 1
2ϵ

. The relative perturbation in the solution is approximately [cond(A)]2 ∥E∥2
∥A∥2

.
In this case, θ = cos−1 1√

2 = π
4 , and tan θ = 1, indicating that the condition-squared term

in the perturbation bound is not suppressed. As a result, the solution is highly sensitive to
perturbations.

2 Projectors*
In Figure 2 we observed that the vector y = Ax ∈ range(A) closest to b in the 2-norm is the

orthogonal projection of b onto range(A). This observation leads to an algebraic characterization
of least squares solutions via the notion of projectors2.

Definition 2.1. A projector is a square matrix P that satisfies

P 2 = P.

range(P)

v

Pv

P
v −

v

Figure 3: A non-orthogonal projector

This definition includes both orthogonal and nonorthogonal projectors. In Figure 3, the
vector v ∈ R3 is projected (nonorthogonal) to two-dimensional subspace range(P). In this
figure, Pv is the shadow projected by vector v if one shines a light from the north-west direction
onto the subspace range(P). It is clear that if v ∈ range(P) then Pv = v (i.e. v lies exactly
on its own shadow). In fact, if v ∈ range(P) then there exists a vector x such that v = Px

and Pv = P 2x = Px = v. We also observe from the figure that if Pv ̸= v then the direction
in which the light shines is Pv − v. Applying P on the light direction we obtain

P (Pv − v) = P 2v − Pv = Pv − Pv = 0
2The reader can skip this section, as the following sections are independent of its content.

8

which means Pv − v ∈ null(P). The direction of the light depends on v but it is always
described by a vector in null(P).

If P is a projector then (I − P)2 = I − 2P + P 2 = I − P which means that (I − P) is also
a projector. It is called the complementary projector to P . The matrix I − P projects onto
range(I − P) or equivalently onto null(P) because:

Lemma 2.2. If P is a projector then range(I − P) = null(P) and null(I − P) = range(P).

Proof. If v ∈ null(P) then Pv = 0 so (I − P)v = v which means v ∈ range(I − P).
Conversely, for any v, we have (I − P)v = v − Pv ∈ null(P). By writing P = I − (I − P) we
derive the complementary fact null(I − P) = range(P). ■

Lemma 2.3. If P is a projector then range(P) ∩ null(P) = {0}.

Proof. Any vector v in both sets null(I − P) and null(P) satisfies v − Pv = 0 and Pv = 0
which gives v = 0. So, null(I − P) ∩ null(P) = {0}. Then the result follows by Lemma 2.2. ■

We conclude that any projector P ∈ Rm×m separates Rm into two spaces range(P) and
null(P) in the sense that any vector v ∈ Rm can be decomposed to v = x+y where x ∈ range(P)
and y ∈ null(P). Indeed x = Pv and y = (I − P)v because v = Pv + (I − P)v. In this scenario
we may write

Rm = range(P) + null(P).
Conversely, if S1 and S2 are two subspaces of Rm such that S1 ∩ S2 = {0} and Rm = S1 + S2

then there is a projector P such that range(P) = S1 and null(P) = S2. We say that P is the
projector onto S1 along S2.

Definition 2.4. A projector P is called an orthogonal projector if it is symmetric, i.e.
P = P T .

In Figure 4 an orthogonal projection is illustrated.

range(P)

v

Pv

P
v

−
v

Figure 4: An orthogonal projection

For an orthogonal projector P the subspaces range(P) and null(P) are orthogonal because
the inner product between a vector Px ∈ range(P) and a vector (I − P)y ∈ range(I − P) =
null(P) is zero:

(Px)T (I − P)y = xT P T (I − P)y = xT P (I − P)y = xT (P − P 2)y = 0.

9

We use the notations P⊥ := (I − P) and range(P)⊥ := null(P). Any vector v ∈ Rm then can
be expressed as the sum

v = (P + (I − P))v = Pv + P⊥v

of mutually orthogonal vectors one in range(P) and the other in range(P)⊥. We also have the
Pythagorean relation (prove it!)

∥v∥2
2 = ∥Pv∥2

2 + ∥P⊥v∥2
2.

This concept can be applied to find the solution of the least square problem (1.1). If P is
an orthogonal projector to range(A) (find P such that range(P) = range(A)) then we have

∥b − Ax∥2
2 = ∥P (b − Ax) + P⊥(b − Ax)∥2

2

= ∥P (b − Ax)∥2
2 + ∥P⊥(b − Ax)∥2

2

= ∥Pb − Ax∥2
2 + ∥P⊥b)∥2

2.

(2.1)

The last equality satisfies because PA = A and P⊥A = 0. Since the second norm on the right
does not depend on x, the residual is minimized by minimizing the first norm. But the first
norm is minimized by the ideal solution x satisfying the overdetermined, but consistent system

Ax = Pb. (2.2)

If fact, such x exists because Pb ∈ range(P) = range(A). If we multiply both sides by AT we
have AT Ax = AT Pb = AT P T b = (PA)T b = AT b giving

AT Ax = AT b,

which is the normal equation we already derived. The norm ∥P⊥b)∥2 in (2.1) is the norm of
residual of the least squares solution.

How can we construct the projection P explicitly? If A is a full-rank matrix then AT A is
nonsingular and

P := A(AT A)−1AT

is an orthogonal projector to range(A). Because it is symmetric and idempotent and range(P) =
range(A) (prove!). This means that the vector y ∈ range(A) closest to b is

b̃ = Pb = A(AT A)−1AT = Ax

where x is the solution of least squares problem given by the normal equation. We can write
b as a sum

b = Pb + P⊥b = Ax + (b − Ax) = b̃ + r

of two mutual orthogonal vectors b̃ ∈ range(A) and r ∈ range(A)⊥.

Example 2.1. Consider Examples 1.1 and 1.3. For solution x = [1236, 1943, 2416]T , the
reminder is

r = b − Ax = [1, −2, 1, 4, −3, 2]T

which is orthogonal to all columns of A, i.e., AT r = 0. The orthogonal projector on to

10

range(A) is

P = A(AT A)−1AT = 1
4



2 1 1 −1 −1 0
1 2 1 1 0 −1
1 1 2 0 1 1

−1 1 0 2 1 −1
−1 0 1 1 2 1
0 −1 1 −1 1 2


and the orthogonal projector on to range(A)⊥ is

P⊥ = I − P = 1
4



2 −1 −1 1 1 0
−1 2 −1 −1 0 1
−1 −1 2 0 −1 −1
1 −1 0 2 −1 1
1 0 −1 −1 2 −1
0 1 −1 1 −1 2


,

so that b = Pb + P⊥b = b̃ + r.

An alternative way to define P is to let Q ∈ Rm×n be a matrix whose columns form an
orthonormal basis (i.e., QT Q = I) for range(A). Then

P := QQT

is symmetric and idempotent, so it is an orthogonal projector onto range(Q) = range(A).
Then from (2.2) we have Ax = QQT b. Multiplying both sides by QT gives the square system
QT Ax = QT b. We will see later how to compute the matrix Q in such a way that this system
is upper triangular and therefore easy to solve.

3 Orthogonality and QR factorization
From several points of view, it is advantageous to use orthogonal vectors as basis vectors

in a vector space. As an application, we will obtain an stable algorithm for solving the least
squares problem when a specific orthogonal basis is obtained for the subspace range(A).

We remind that two nonzero vectors x and y are called orthogonal if xT y = 0.

Workout 3.1. If vectors qj, j = 1, 2, . . . , m are mutually orthogonal, i.e. qT
j qk = 0 for j ̸= k,

then they are linearly independent.

If the set of orthogonal vectors qj ∈ Rm, j = 1, 2, . . . , m, be normalized by ∥qj∥2 = 1 then
they are called orthonormal, and form an orthonormal basis for Rm.

Definition 3.2. A square matrix whose columns are orthonormal is called an orthogonal
matrix.

11

It is clear that an orthogonal matrix Q satisfies QT Q = I, it is full rank, and its inverse is
equal to Q−1 = QT . The rows of an orthogonal matrix are orthogonal, i.e., QQT = I. It is not
difficult to show that the product of two orthogonal matrices is orthogonal.

One of the most important properties of orthogonal matrices is that they preserve the length
(Euclidian norm) of a vector:

∥Qx∥2
2 = (Qx)T Qx = xT QT Qx = xT x = ∥x∥2

2.

This means that Q rotates x but does not change its length. In numerical point of view, this
norm-preserving property means that orthogonal matrices do not amplify errors.

Workout 3.3. Show that orthogonal matrices preserve the 2-norm and the Frobenius norm
of matrices.

Here we introduce two classes of elementary orthogonal matrices that will be used in the
sequel to transfer the columns of an arbitrary matrix A into an set of orthonormal bases.

3.1 Householder transformations
In this section, we consider Householder transformations as a class of orthogonal matrices,

which are particularly useful for performing reflections and orthogonal projections in matrix
computations. The we will use them to compute the QR factorization of a matrix.

Definition 3.4. A matrix of the form

H = I − 2
uT u

uuT (3.1)

where u is a non-zero vector in Rn is called a Householder matrix or a Householder trans-
formationa. The vector u determining the Householder matrix H is called the Householder
vector.

aAfter the celebrated numerical analyst Alston Scott Householder (5 May 1904 – 4 July 1993)

U

u

xu(u
T
x)

−
2u(u

T
x)

w = x − 2uuT x = Hx

Figure 5: Geometric interpretation of Householder transformation

12

See Figure 5 for a geometric interpretation of a Householder transformation. In the figure
the vector u is assumed to be a normal vector (uT u = 1) of plane U . The vector w = Hx is
the reflection of x with respect to plane U . The plane acts as a mirror; the reason why the
Householder transformation is also known as elementary reflector.

The following properties can be simply proved for a Householder transformation.

Theorem 3.5. Let H = I − 2uuT /uT u be a Householder matrix with vector u ∈ Rn. Then
1. H is symmetric and orthogonal.

2. H2 = I

3. Hu = −u

4. Hv = v if uT v = 0

5. If x, y ∈ Rn are such that x ̸= y and ∥x∥2 = ∥y∥2, and u is chosen parallel to x − y

then Hx = y.

Proof. We only prove item (5) because other items are easy to prove. Let u = c(x − y) for
a constant c ̸= 0, and write x = 1

2(x + y) + 1
2(x − y). Then

Hx = 1
2H(x + y) + 1

2H(x − y).

By using property (3) we have H(x − y) = −(x − y). On the other hand (x + y) is orthogonal
to x−y because (x+y)T (x−y) = xT x−xT y +yT x−yT y = ∥x∥2 −∥y∥2 = 0. Thus by property
(4) we have H(x + y) = x + y. All these together give Hx = y. ■

Remark 3.1. Properties (3) and (4) show that H has n − 1 eigenvalues 1 and a simple
eigenvalue −1 (corresponding to eigenvector u).

Theorem 3.6. Given a nonzero vector x ̸= e·1 := [1, 0, . . . , 0]T , the Householder matrix H

define by u = x ± ∥x∥2e·1 is such that Hx = ∓∥x∥2e·1. (Take care of signs ± and ∓).

Proof. This is a simple consequence of item (5) of Theorem 3.5 by letting y = ∓∥x∥2e·1. ■

Here is an illustration (α = ∓∥x∥2):

x =



x1

x2

x3
...

xn


=⇒ Hx =



α

0
0
...
0



Given the vector x, we find a reflection matrix H (the mirror) such that Hx = αe·1 (reflect
x on x1-axis). See Figure 6 below.

13

x

Hx = αe·1 =


α

0
0



u

Figure 6: The mirror H reflects x on x1-axis. The normal vector u is chosen parallel to x − αe·1.

Theorem 3.6 works with both negative and positive signs. However, to avoid cancelation
errors in computing the first component of u, one can get rid of subtraction at all by choosing
sign(x1) in place of ±. We always form the matrix H via vector

u = x + sign(x1)∥x∥2e·1, with sign(0) = +.

Here we discuss how the computational costs of matrix-vector and matrix-matrix multiplica-
tions can be reduced when the matrix is a Householder reflection. The standard matrix-vector
multiplication Hx requires 2n2 flops for a n×n matrix H and a n-vector x. The matrix-matrix
multiplication HA for n × m matrix A costs for 2mn2 flops. However, if H is a Householder
matrix it is not required forming H explicitly in favour of working with u directly. In this case,
letting β = 2/uT u one can write

Hx = (I − βuuT)x = x − βu(uT x) = x − βγu, γ = uT x,

HA = (I − βuuT)A = A − βu(uT A) = A − βuwT , w = AT u,

AH = A(I − βuuT) = A − β(Au)uT = A − βwuT , w = Au.

Workout 3.7. For a Householder matrix H ∈ Rn×n verify that the flop-counts for matrix-
vector product Hx is about 6n, and matrix-matrix product HA for A ∈ Rn×m (or AH for
A ∈ Rm×n) is about 4mn. Compare with explicit multiplications.

The following Python code computes a Householder vector u for a given vector x.

def HouseVec(x):
HouseVec(x) computes the Householder vector u such that
(I-2uu’/u’u)x = |x|_2e_1
n = len(x); u = np.zeros(n)
u[1:] = x[1:]
s = np.sign(x[1])
if s == 0: s = 1

14

u[0] = x[0] + s*np.linalg.norm(x,2)
return u

Multiplication by a Householder transformation is implemented in the following code:

def HouseProd(u,A):
HouseProd(u,A) computes the product of Householder matrix
(I-2uu’/u’u) by matrix A
b = 2/np.dot(u,u); w = np.matmul(np.transpose(A),u)
HA = A - b*np.outer(u,w)
return HA

Example 3.1. The following script transforms the first column of matrix

A =


2 3 5
1 2 −1
2 5 3
1 −1 0


to a multiple of e·1. We write

A = np.array([[2,3,5],[1,2,-1],[2,5,3],[1,-1,0]])
u = HouseVec(A[:,0])
A = HouseProd(u,A)
print ("Transferred A = \n", np.round(A,4))

and get the following output (rounded to 4 decimals places):

Transferred A =
[[-3.1623 -5.3759 -4.7434]
[0. 0.3775 -2.8874]
[0. 1.755 -0.7749]
[0. -2.6225 -1.8874]]

3.2 Plane rotations
Householder transformations are efficient for dense matrices because of a few flops they need.

In this section we introduce the plane rotations which are flexible and can be used efficiently
for sparse matrices because they produce zeros entry by entry.

15

The 2 × 2 skew symmetric matrix

J =
 c s

−s c

 , c2 + s2 = 1 (3.2)

is an orthogonal matrix. If c = cos θ then Jx is a clockwise rotation of x by angle θ. So
the matrix J is a rotation matrix in the (1, 2)-plane. Sometimes J is called Givens rotation
after Wallace Givens, who used them for eigenvalue computations around 1960. However, they
had been used long before that by Jacobi for the same reason. Let x = (x1, x2)T ̸= 0 and
c = x1/∥x∥2 and s = x2/∥x∥2 then

Jx = 1
∥x∥2

 x1 x2

−x2 x1

 x1

x2

 =
∥x∥2

0

 .

In this case, the rotation matrix J rotates x and puts it on x1-axis, i.e. zeros its second
component. By embedding a 2 × 2 rotation in a larger identity matrix, one can manipulate
vectors and matrices of arbitrary dimensions.

Example 3.2. Let x = (x1, x2, x3, x4, x5)T be given such that α =
√

x2
3 + x2

5 ̸= 0. Let
c = x3/α and s = x5/α. Then we have

1 0 0 0 0
0 1 0 0 0
0 0 c 0 s

0 0 0 1 0
0 0 −s 0 c





x1

x2

x3

x4

x5


=



x1

x2

α

x4

0


.

In fact this matrix is a rotation matrix in (3, 5)-plane which changes x5 to 0, x3 to α and
leaves other components unchanged.

Using this idea we can construct a sequence of plane rotations to transfer an arbitrary vector
x ∈ Rm to a multiple of unit vector e·1 = [1, 0, . . . , 0]T ∈ Rm. Let the rotation matrix in the
(j, k)-plane when applying on vector x with c = xj/α and s = xk/α for α =

√
x2

j + x2
k be

denoted by J(j, k). Then it is easy to show that

J(1, 2)J(1, 3) · · · J(1, m)︸ ︷︷ ︸
G

x = ∥x∥2e·1

We note that any rotation matrix J(j, k) with j < k can be used instead of J(1, k) matrices.

Remark 3.2. Possible overflow and underflow in computing c = x1/
√

x2
1 + x2

2 and s =
x2/

√
x2

1 + x2
2 can be avoided by an appropriate scaling. If |x1| ≥ |x2| we put

t = x2/x1, c = 1/
√

1 + t2, s = c · t,

and if |x1| < |x2|,
t = x1/x2, s = 1/

√
1 + t2, c = s · t.

In either case, we can avoid squaring any magnitude larger than 1.

If an elementary plane rotation J(j, k), with c = ajℓ/
√

a2
jℓ + a2

kℓ and s = akℓ/
√

a2
jℓ + a2

kℓ is

16

applied on a matrix A with entries ajℓ then the (k, ℓ) entry of A becomes zero if k > j. It
is important to note that only two rows j and k of the matrix are changed. This should be
taken into account in programming. Instead of explicitly embedding the 2 × 2 rotation matrix
into a matrix of larger dimension, which would require unnecessary computations, we can save
operations and storage by implementing the rotation more efficiently. Here are two Python
functions that illustrate how to implement the rotation while minimizing computational costs.
In the GivensProd function we only operate on two rows of matrix A.

def GivensPar(x,y):
GivensPar(x,y) computes Givens parameters to make the second
component of [x,y] zero
if abs(x) > abs(y):

t = y/x; c = 1/np.sqrt(1+t**2); s = c*t
else:

t = x/y; s = 1/np.sqrt(1+t**2); c = s*t
return c,s

def GivensProd(c,s,j,k,A):
GivensProd(c,s,j,k,A) applies a (j,k)-plane rotation to matrix A
A[[j,k],:] = np.matmul([[c,s],[-s,c]],A[[j,k],:])
return A

Example 3.3. The following script transforms the first column of matrix

A =


2 3 5
1 2 −1
2 5 3
1 −1 0


to a multiple of e·1. Consider the matrix A in Example 3.1. We use Givens rotations to
transfer A into a new matrix that all the components of its first column except the first are
annihilated.

A = np.array([[2,3,5],[1,2,-1],[2,5,3],[1,-1,0]])
print("Original A = \n", A)
for k in range(3,0,-1):

c,s = GivensPar(A[0,0],A[k,0])
A = GivensProd(c, s, 0, k, A)

print ("Transferred A = \n", np.round(A,4))

The output with rounding to four decimal places:

17

Original A =
[[2. 3. 5.]
[1. 2. -1.]
[2. 5. 3.]
[1. -1. 0.]]

Transferred A =
[[3.1623 5.3759 4.7434]
[0. 0.3162 -2.6352]
[0. 2.2361 -0.7454]
[0. -2.2361 -2.2361]]

Comparing with the output of the Householder transformation (Example 3.1), we observe
that GA is not necessarily identical with HA. However, in both cases A is transferred to a
matrix with zeros under its a11 entry.

For a single call the cost of function GivensPar is 6 flops, and for a matrix A ∈ Rm×n the
total number of flops in GivensProd is 6n (multiplying a 2 × 2 matrix by a 2 × n matrix.)
To zero all off-diagonal entries of the first column of a matrix A ∈ Rm×n, both functions
GivensPar and GivensProd should be called in a m − 1 folds loop. The total cost is thus
(m − 1)(6n + 6) ≈ 6mn flops.

3.3 QR factorization
Matrix decompositions are essential, giving rise to fast and efficient algorithms in matrix

computations. Students are typically familiar with LU decompositions (or Gaussian elimina-
tion), which factorize a matrix A into a lower triangular matrix L multiplied by an upper
triangular matrix U , or its other variant LLT for positive definite matrices. Here, we introduce
another useful factorization with numerous applications in efficient linear algebra algorithms.

Theorem 3.8. Every matrix A ∈ Rm×n with m ⩾ n (overdetermined) can be factorized as

A = QR

where Q is a m × m orthogonal matrix and R is a m × n upper triangular matrix.


× × ×
× × ×
× × ×
× × ×
× × ×


=



× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×





× × ×
0 × ×
0 0 ×
0 0 0
0 0 0


A Q R

Here is an illustration for a case with m = 5 and n = 3.

18

In the next section we give a “constructive” proof for this theorem using Householder re-
flections. By constructive we mean that the proof also suggests an algorithm to compute the
Q and R factors.

As we observe, the last m − n rows of R are zeros so the last m − n columns of Q have no
contribution to the product (but are still important!).



× × ×
× × ×
× × ×
× × ×
× × ×


=



× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×





× × ×
0 × ×
0 0 ×
0 0 0
0 0 0



A = [Q1 Q2]
R1

0


This suggests the reduced QR factorization

A = Q1R1

which is often sufficient for many applications where the Q2 portion is not needed.

3.4 QR factorization using Householder transformations
Now we show how the idea of introducing zeros in a vector using a Householder matrix can

be used for computing a full QR factorization

A = QR

of a matrix A ∈ Rm×n, m ⩾ n, where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper
triangular (entries below the main diagonal are all zero). This process was first introduced by
Householder in 1958. The idea is to reduce A to an upper triangular matrix R by successively
premultiplying A with a series of orthogonal Householder matrices. The products of House-
holder matrices then constitute the orthogonal matrix Q. The process is illustrated for m = 5
and n = 3:
Step 1:

H1A = H1



× × ×
× × ×
× × ×
× × ×
× × ×


=



+ + +
0 + +
0 + +
0 + +
0 + +


=: A(1)

19

Step 2:

H2A
(1) = H2



+ + +
0 + +
0 + +
0 + +
0 + +


=



+ + +
0 ∗ ∗
0 0 ∗
0 0 ∗
0 0 ∗


=: A(2)

Step 3:

H3A
(2) = H3



+ + +
0 ∗ ∗
0 0 ∗
0 0 ∗
0 0 ∗


=



+ + +
0 ∗ ∗
0 0 ⋆

0 0 0
0 0 0


=: A(3) =: R

We have R = A(3) = H3A
(2) = H3H2A

(1) = H3H2H1A. If we define QT = H3H2H1 then
R = QT A or A = QR where Q = H1H2H3. Remember that Hk are symmetric and orthogonal.

The general case A ∈ Rm×n can be treated similarly. Let A = (aij). In the first step, the
Householder matrix H1 ∈ Rm×m is build upon the first column of A, i.e.,

x = a·1 =


a11

a2,1
...

am,1

 ∈ Rm, u1 = a·1 − sign(a11)e·1, H1 = I − 2
uT

1 u1
u1u

T
1 .

Then H1A annihilates the components below a11. Other entries of A are changed as well. The
new matrix is denoted by

H1A =: A(1)

with entries a
(1)
ij .

In the second step, a Householder matrix H̃2 ∈ R(m−1)×(m−1) is formed based on the entries
from 2 to m of the second column of A(1), i.e.,

x = a
(1)
2:m,2 =


a

(1)
22

a
(1)
3,2
...

a
(1)
m,2

 ∈ Rm−1, u2 = x − sign(x1)e·1, H̃2 = I − 2
uT

2 u2
u2u

T
2 ∈ R(m−1)×(m−1)

Then the Householder matrix H2 is defined by

H2 =
1 0
0 H̃2

 ∈ Rm×m.

In the new matrix
H2A

(1) =: A(2)

the entries below a
(2)
22 become zero. First row and first column of A(2) are identical with that

of A(1) due to the special structure of H2 in its first row and column. Specially, the zeros
introduced in the pervious step (in the first column) are not destroyed in the current step.

20

Similarly, in step k a Householder matrix H̃k ∈ R(m−k+1)×(m−k+1) is formed based on the
entries from k to m of the k-th column of A(k−1), i.e.,

x =


a

(k−1)
k,k

a
(k−1)
k+1,k

...
a

(k−1)
m,k

 ∈ Rm−k+1, uk = x − sign(x1)e·1, H̃k = I − 2
uT

k uk

ukuT
k ∈ R(m−k+1)×(m−k+1).

Then the Householder matrix Hk is defined by

Hk =
Ik−1 0

0 H̃k

 ∈ Rm×m,

where Ik−1 is the identity matrix of size k − 1. In the new matrix

HkA(k−1) =: A(k)

the entries below a
(k)
kk are all zero. The first block of Hk (the identity block) ensures that the

first k − 1 rows and columns of A(k−1) remains unchanged in A(k). This means that the zeros
introduced in all previous steps are not destroyed. For an economic implementation, the matrix-
matrix multiplication should only be done on a submatrix of A(k−1) of size (m − k) × (n − k).

This process is continued until step n. In the last step we make zeros below the diagonal in
the last column of A(n−1) by multiplying the Householder matrix Hn:

HnA(n−1) =: A(n).

The resulting matrix A(n) is an upper triangular matrix of size m × n, let us denote it by R.
We thus have

R = A(n) = HnA(n−1) = · · · = HnHn−1 · · · H2H1︸ ︷︷ ︸
QT

A = QT A

where QT is an orthogonal matrix because it is the product of n orthogonal Householder
matrices. We simply have

A = QR

where Q = (Hn · · · H2H1)T = H1H2 · · · Hn.

Remark 3.3 (space complexity). To minimize the storage, R is stored over A in the upper
triangular part. Householder matrices are not required to be stored at all. Instead the
components 2 through end of each vector uk are stored in the respective positions of A

(instead of zeros), and the first components of all uk vectors are stored in an auxiliary one-
dimensional array. The matrix Q, if it is needed explicitly, can be formed in a postprocessing
calculation using the stored uk vectors in a cheap way. See Workout 3.9. We note that, in
a majority of practical applications, it is sufficient to have Q in this factored form, and in
many applications, Q is not needed at all.

Remark 3.4. In step k of the algorithm the entries of the submatrix of A containing row k

through m and columns k through n, denoted by A(k : m, k : n), are updated and stored

21

over the corresponding entries of A via

A(k : m, k : n) = (I − 2
uT

k uk

ukuT
k)A(k : m, k : n)

= A(k : m, k : n) − βukuT
k A(k : m, k : n).

(3.3)

In a Python code for QR factorization in step k the subroutine HouseProd can be called
with input arguments uk and A(k : m, k : n).

Workout 3.9. Show that it requires about 2n2(m − n/3) flops to compute R in the QR
factorization of A ∈ Rm×n, m ⩾ n using Householder transformations. This cost does not
include the explicit construction of Q. Show that it is required about 4

3m3 flops to compute
Q explicitly.

The procedure is the same for m < n but is finished after m − 1 steps. In this case the
upper triangular matrix R is of the form [R1 R2] where R1 is a m × m upper triangular and
R2 is a full matrix of size m × (n − m). Here is an illustration for m = 3 and n = 5:


× × × × ×
× × × × ×
× × × × ×

 =


× × ×
× × ×
× × ×




× × × × ×
0 × × × ×
0 0 × × ×


A Q R

The following Python function computes the QR factorization of a m × n matrix A, either
m ⩾ n or m < n. The code handles cases where only R, R and uk vectors and both Q and
R are demanded. In the second case Householder vectors uk are stored in the lower diagonal
part of the output matrix and in additional array u1.

def qrfac(A, mode = ’Q&R’):
qrfac(A, mode) computes the QR factorization of a (m x n) matrix A
mode: ’R’, ’R&u’ and ’Q&R’. The default mode is ’Q&R’
m,n = np.shape(A)
s = min(m-1,n)
if mode == ’R’:

for k in range(s):
u = HouseVec(A[k:,k])
A[k:,k:] = HouseProd(u,A[k:,k:])

return np.triu(A)
elif mode == ’R&u’:

u1 = np.zeros(s)
for k in range(s):

22

u = HouseVec(A[k:,k])
A[k:,k:] = HouseProd(u,A[k:,k:])
A[(k+1):,k] = u[1:]
u1[k] = u[0];

return A, u1
elif mode == ’Q&R’:

A,u = qrfac(A,’R&u’)
Q = np.eye(m)
for k in range(s):

Q[k:,:] = HouseProd(np.append(u[k],A[(k+1):,k]),Q[k:,:])
return np.transpose(Q), np.triu(A)

else:
print("Input mode types ’R’, ’R&u’ or ’Q&R’ ")

3.5 QR factorization using Givens rotations
The QR factorization of a matrix A ∈ Rm×n can also be simply obtained using Givens

rotations in s = min{m − 1, n} steps as below:
- Step 1: form an orthogonal matrix G1 = J(1, m)J(1, m − 1) · · · J(1, 2) such that A(1) =

G1A has zeros below its (1, 1) entry in the first column.

- Step 2: form an orthogonal matrix G2 = J(2, m)J(2, m − 1) · · · J(2, 3) such that A(2) =
G2A

(1) has zeros below its (2, 2) entry in the second column.
...

- Step k: form an orthogonal matrix Gk = J(k, m)J(k, m − 1) · · · J(k, k + 1) such that
A(k) = GkA(k−1) has zeros below its (k, k) entry in the k-th column.

The final matrix A(s) := R is upper triangular and the matrix Q = GT
1 GT

2 · · · GT
s is orthogonal

and
A = QR.

To optimize the storage used, the matrix R is stored over A, and Q is formed implicitly out of
Givens parameters (for example using Python function GivensProd).

Lab Exercise 3.10. Implement a Python function for QR factorization using Givens rota-
tions. Ask the user for different modes. Call your function for some matrices and print the
outputs.

Remark 3.5. The QR factorization with Givens rotations requires 3n2(m−n/3) flops. This
does not include the computation of Q. Compared with the Householder method, this

23

algorithm is about 1.5 times more expensive. However when the matrix A is sparse or has
a special structure with lots of zeros in its lower triangle, the Givens approach is cheaper.
For example in several applications (for example in eigenvalue computation) one needs to
find the QR factorization of an upper Hessenberg matrix. An upper Hessenberg matrix
is similar to an upper triangular matrix with additional nonzero elements on the diagonal
right below its main diagonal. Since an upper Hessenberg matrix A ∈ Rn×n has at most
(n − 1) nonzero subdiagonal entries, the QR factorization of A can be obtained by only
(n − 1) Givens rotations. See the following illustration for n = 4:

× × × ×
× × × ×
0 × × ×
0 0 × ×


J(1,2)−−−→


× × × ×
0 × × ×
0 × × ×
0 0 × ×


J(2,3)−−−→


× × × ×
0 × × ×
0 0 × ×
0 0 × ×


J(3,4)−−−→


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×



Remark 3.6. It was shown by Wilkinson in 1965 that the computed Q̂ and R̂ with Givens
rotations satisfy

R̂ = Q̂T (A + E)
where there exists a constant c independent of m and n such that

∥E∥F ⩽ c∥A∥F .

This shows that the algorithm is backward stable.

3.6 Other algorithms
The Gram-Schmidt algorithms (classical and modified versions) are alternative algorithms

for computing the thin QR factorization of A. See [Trefethen-Bau:1997, Heath:2018].

3.7 QR factorization for solving the least squares problem
Solving the linear least squares problems using the normal equations has two significant

drawbacks: (1) Forming AT A can lead to loss of information, (2) The condition number AT A

is the square of that of A:
cond2(AT A) = [cond2(A)]2.

We illustrate these points in a couple of examples.
Example 3.4. Let

A =


1 1
ϵ 0
0 ϵ


where ϵ > 0 is a small real number. Clearly A has full rank and

AT A =
1 + ϵ2 1

1 1 + ϵ2


24

In the double precision floating point arithmetic if we let ϵ to be smaller that 10−8 then
fl(1 + ϵ2) = 1 and the computed matrix

fl(AT A) =
1 1
1 1


is indeed singular.

Example 3.5. In the matrix A of Example 3.4 assume ϵ = 10−4. Then we can show that
cond2(A) =

√
2 × 104 while cond2(AT A) = 2 × 108.

In view of the potential numerical difficulties with the normal equations approach, we need
an alternative that does not require formation of the normal system. In this section we will
explain the use of QR factorization for this purpose while in the sequel an alternative approach
through SVD will be discussed.

Consider again the least squares problem

min
x∈Rn

∥Ax − b∥2

with overdetermined matrix A ∈ Rm×n. The QR factorization transforms this linear least
squares problem into a triangular least squares problem having the same solution. First assume
that A has full rank, i.e., rank(A) = n. Let A = QR be the QR factorization of A and partition

Q = [Q1 Q2] where Q1 consists of first n columns of Q, and R =
R1

0

 where R1 ∈ Rn×n is an

upper triangular matrix. In the reduced form A = Q1R1. Since A has full rank all diagonal
entries of R1 are nonzero, so it is nonsingular. We can write

∥Ax − b∥2
2 = ∥QRx − b∥2

2 = ∥Rx − QT b∥2
2 =

∥∥∥∥∥∥
R1

0

 x −

QT
1 b

QT
2 b

∥∥∥∥∥∥
2

2

= ∥R1x − QT
1 b∥2

2 + ∥QT
2 b∥2

2.

The minimum is obtained if the first norm on the right-hand side is vanished, i.e.,

R1x = QT
1 b.

Since R1 is upper triangular and nonsingular, a simple backward substitution with O(n2) flops
gives the least square solution x. The reminder then is

r = ∥Ax − b∥2 = ∥QT
2 b∥2.

If the reminder is not important to us, a reduced QR factorization is enough for obtaining the
least squares solution.

Example 3.6. Consider again Example 1.1. The least squares solution to height measure-
ments can be computed using the QR factorization as below.

25

import numpy as np
A = np.array([[1.,0,0],[0,1.,0],[0,0,1.],[-1.,1.,0],[-1.,0,1.],[0,-1.,1.]])
b = np.array([1237,1941,2417,711,1177,475])
Q,R = qrfac(A)
print(’Q =’, np.round(Q,4), ’\n R =’, np.round(R,4))
x = BackSub(R[0:3,:],Q[:,0:3].T@b)
print(’x =’,np.round(x,4))

Note that we also called the backward substitution algorithm for solving upper triangular
systems using the Python function BackSub. The code for this function is left as an exercise
for the reader. The outputs are

Q = [[-0.5774 -0.2041 -0.3536 0.5113 0.4878 -0.0235]
[0. -0.6124 -0.3536 -0.4878 0.0235 0.5113]
[0. 0. -0.7071 -0.0235 -0.5113 -0.4878]
[0.5774 -0.4082 -0. 0.6664 -0.1786 0.1551]
[0.5774 0.2041 -0.3536 -0.1551 0.6664 -0.1786]
[0. 0.6124 -0.3536 0.1786 -0.1551 0.6664]]

R =[[-1.7321 0.5774 0.5774]
[0. -1.633 0.8165]
[0. 0. -1.4142]
[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

x = [1236. 1943. 2416.]

When A is rank-deficient, i.e., rank(A) < n, the solution of the least squares problem in not
unique; the problem has infinite number of solutions. In this case, the QR factorization of A

still exists, but the upper triangular factor R is singular. This situation usually arises from a
poorly designed experiment, insufficient data, or an inadequate model. If one insists on forging
ahead as is, a variation of QR factorization with column pivoting (next section) can be used
to find all the solutions. See section 4.4 for an alternative approach via SVD. Dealing with
rank deficiency also enables us to handle underdetermined problems, where m < n, since the
columns of A are necessarily linearly dependent in that case.

3.8 QR factorization with column pivoting
In computing the QR factorization, in each step one can interchange the column having

the maximum Euclidean norm in the submatrix with the pivot column. This kind of column

26

pivoting makes column interchanges so that the zero pivots are moved to the lower right hand
corner of R. The resulting factorization then is suitable for solving rank-deficient least squares
problems. Let’s describe the algorithm step by step.

In step 1, we compute the 2-norm of all columns of A, and interchange the column having
maximum norm with the first column by multiplying A with a permutation matrix P1 from
right. Then we apply the first step of basic QR factorization on AP1 to transfer its first column
to the form [α1, 0, . . . , 0]T . By either Householder or Givens transformations we have

Q1AP1 =


α1 ã11 · · · ã1n

0 ã22 · · · ã2n

...
0 ãm2 · · · ãmn

 := A(1) (3.4)

In step 2, we compute the 2-norm of all columns of the submatrix obtained by ignoring
the first row and column of A(1) and interchange the column having maximum norm with the
second column by multiplying A(1) with a permutation matrix P2 from right. (Note: when the
columns are interchanged the full columns should be swapped, not just the portions that lie in
the submatrix). Then we apply the second step of the basic QR factorization on A(1)P2:

Q2A
(1)P2 =



α1 ã11 ã12 · · · ã1n

0 α2 â23 · · · â2n

0 0 â33 · · · â3n

...
0 0 âm2 · · · âmn


:= A(2)

We continue in a similar way to higher steps. If the matrix has full rank n, the algorithm
terminates after n steps where in the final step we have

R = A(n) = QnA(n−1)Pn = QnQn−1A
(n−2)Pn−1Pn = · · · = QnQn−1 · · · Q1AP1 · · · Pn−1Pn =: QT AP

or AP = QR where Q = QT
1 · · · QT

n and P = P1 · · · Pn. Here PA is indeed a matrix obtained
from A by permuting some of its columns. R is upper triangular and nonsingular.

However, if A is rank-deficient there will come a step at which we are forced to take αk = 0.
In this step all of the entries of the remaining submatrix are zero. Suppose this occurs after r

steps have been completed and

QrQr−1 · · · Q1AP1 · · · Pr−1Pr =



α1 × · · · × × · · · ×
0 α2 · · · × × · · · ×
...
0 0 · · · αr × · · · ×
0 0 · · · 0 0 · · · 0
...
0 0 · · · 0 0 · · · 0


=:

R11 R12

0 0

 = R

where R11 ∈ Rr×r is upper triangular and nonsingular. Its main diagonal entries α1, α2, . . . , αr

27

are all nonzero. Again we have AP = QR where Q = QT
1 · · · QT

r and P = P1 · · · Pr. Since
rank(R) = r we have rank(A) = r. This result is summarized in the following theorem.

Theorem 3.11. Given a matrix A ∈ Rm×n with m ⩾ n and rank(A) = r ⩽ n there exist a
permutation matrix P ∈ Rn×n, an orthogonal matrix Q ∈ Rm×m, and an upper triangular

matrix R ∈ Rm×n of the form R =
R11 R12

0 0

 with R11 ∈ Rr×r and nonsingular such that

AP = QR.

Now, we address the question of how this factorization can be used to solve the least squares
problem. First, we note that the permutation matrix P is orthogonal as it is obtained by
swapping the columns of the identity matrix. It is clear that P −1 = P T if is applied from left
on a vector x will interchange the corresponding rows in x. Assume that rank(A) = r < n and
AP = QR is the QR factorization of A with column pivoting. Partition Q = [Q1 Q2] where Q1

consists of first r columns of Q. Using the change of variables y = P T x and letting y = [ỹ, ŷ]
for ỹ ∈ Rr, we can write

∥Ax − b∥2
2 = ∥APP T x − b∥2

2 = ∥QRy − b∥2
2 = ∥Ry − QT b∥2

2

=
∥∥∥∥∥∥
R11 R12

0 0

 ỹ

ŷ

 −

QT
1 b

QT
2 b

∥∥∥∥∥∥
2

2

= ∥R11ỹ + R12ŷ − QT
1 b∥2

2 + ∥QT
2 b∥2

2.

There are many choices of y = [ỹ, ŷ] for which the first term in the right hand side is zero.
The second term is independent of y (and thus x) and determines the reminder of the least
squares solutions. Recall that R11 is nonsingular. For any choice of ŷ ∈ Rn−r there exists a
unique ỹ ∈ Rr such that

R11ỹ = QT
1 b − R12ŷ.

Since R11 is upper triangular, ỹ can be calculated using a backward substitution. Finally,

x = Py

for y = [ỹ, ŷ] is a solution to the least squares problem. Since ŷ is arbitrary, we obtain infinite
number of least squares solutions x.

Remark 3.7. In practice we often do not know the rank of A in advance. After r steps
of the QR factorization with column pivoting, A will have been transformed to the formR11 R12

0 R22

 where R11 is nonsingular. If rank(A) = r, then in principle R22 = 0 and the

algorithm terminates. However, in the presence of roundoff errors R22 is not exactly zero.
In a practical computation we might assign a numerical rank r to A if the norm of the
largest column of R11 is less than a prescribed tolerance. The tolerance should be a small
value depending on and the accuracy of the entries and the scale of the original matrix. It
is usually set to be δ = 10−t∥A∥∞ where the entries of A are correct to t decimal digits.
This approach generally works well, but unfortunately it is not 100% reliable, because there

28

exists some nearly rank-deficient triangular matrix with relatively large on-diagonal entries.
Search for the well-known Kahan’s matrix as an example. We will address a more reliable
approach to detect the rank deficiency using SVD in a forthcoming section.

Remark 3.8. Another issue that is worth to be addressed is that if the norms of the columns
are computed in the straightforward manner at each step then the total cost is about
mn2 − n3/3 flops. This cost can be reduced substantially for steps 2, 3, . . . , r by using
information from previous steps. For example let κ1, κ2, . . . , κn denote the squares of the
norms of columns of AP1 in the first step (thus κ1 the largest value). Computing all κj values
counts 2mn flops. For the second step of factorization recall (3.4). Since Q1 is orthogonal,
the Euclidian norm of columns of A(1) are identical with that of AP1. So the squares of
norms of the submatrix can be calculated as

κ
(1)
j = κj − ã2

1j, j = 2, 3, . . . , n

using 2(m − 1) flops instead of the 2(m − 1)(n − 1) flops that is required using the straight-
forward calculation.
One can continue to other steps similarly, but before starting the new step k, the corre-
sponding column swapping should be applied on κ(k−1) as well. The total cost then is

2mn + 2
r∑

k=2
(m − k) = 2mn + 2m(r − 1) − r(r + 1) + 2 ≈ 2m(n + r) − r2.

For case r = n the total cost is about 4mn − n2 which shows a remarkable reduction in the
cost of the straightforward algorithm.

Workout 3.12. Show that after the QR factorization with column pivoting, the main diag-
onal entries of R11 satisfy |α1| ⩾ |α2| ⩾ · · · ⩾ |αr|.

Lab Exercise 3.13. Develop a Python function for QR factorization with column pivoting.
Considers all the aspects described above. Then call your function to factorize some specific
matrices, and verify your output by checking the equality PA = QR. Finally use your
function for solving the least squares problem Ax ∼= b for a given matrix A and right-hand
side vector b. The coefficient matrix is assumed to be of either full rank or rank-deficient.
Assume that the matrix rank is unknown, so compute it numerically by considering the
on-diagonals of the R factor.

4 Singular Value Decomposition (SVD)
Let us continue with one of the most important and practical matrix decompositions in nu-

merical linear algebra. Our geometric presentation here is motivated by [Trefethen-Bau:1997].

29

4.1 Geometric interpretation
The SVD of a matrix A can be described by the following geometric fact:

The image of the unit sphere S = {x ∈ Rn : ∥x∥2 = 1} in Rn under any matrix
A ∈ Rm×n is the hyperellipsoid E = {Ax : ∥x∥2 = 1} in Rm.

Hyperellipsoid is just the m-dimensional generalization of an ellipse, i.e., the surface obtained by
stretching the unit sphere in Rm by some factors σ1, . . . , σm (possibly zero) in some orthonormal
directions u1, . . . , um ∈ Rm. The vectors {σkuk} are the principal semiaxes of the hyperellipse,
with lengths σ1, . . . , σm. If A has rank r, exactly r of the lengths uk will turn out to be nonzero,
and in particular, if m ⩾ n, at most n of them will be nonzero.

v1v2

σ1u1

σ2u2

S AS

Figure 7: SVD of a 2 × 2 matrix A

Let S be the unit sphere in Rn and A ∈ Rm×n with m ⩾ n. For simplicity assume that A

has full rank n. The image AS is a hyperellipse in Rm. We define n singular values of A as
the length of n principal semiaxes of AS, i.e., σ1, σ2, . . . , σn. We assume that singular values
are numbered in degreasing order,

σ1 ⩾ σ2 ⩾ · · · ⩾ σn ⩾ 0.

Then we define the left singular vectors of A as the direction of principal semiaxes of AS.
These are orthonormal vectors u1, u2, . . . , un corresponding to singular values σ1, . . . , σn. This
means that the vector σkuk is the k-th largest semiaxis of AS.

The right singular vectors of A are the orthonormal vectors v1, v2, . . . , vn that are the
preimages of the principal semiaxes of AS, numbered so that

Avk = σkuk, k = 1, 2, . . . , n. (4.1)

Equations (4.1) in a compact form can be written as AV = U1Σ1 where V = [v1 v2 · · · vn] ∈
Rn×n, U1 = [u1 u2 · · · un] ∈ Rm×n and Σ1 = diag(σ1, . . . , σn) ∈ Rn×n. Since V is an orthogonal
matrix, we may write

A = U1Σ1V
T (4.2)

which is called the reduced SVD of A. Here is an illustration for case m = 5 and n = 3:

30



× × ×
× × ×
× × ×
× × ×
× × ×


=



× × ×
× × ×
× × ×
× × ×
× × ×




σ1 0 0
0 σ2 0
0 0 σ3




× × ×
× × ×
× × ×



A U1 Σ1 V T

The term reduced and tilde symbols on Σ and U are used to distinguish the factorization (4.2)
from the more standard full SVD. Since the column of U1 are n orthonormal vectors in Rm and
m ⩾ n then (unless when n = m) they do not form a basis for Rm. We can adjoin an additional
m − n columns to U1 to extend it to an orthonormal matrix U ∈ Rm×m. For the product to
remain unaltered the last m − n columns of U should multiply by zero. So we extend Σ1 by
m − n rows of zeros to get the m × n matrix Σ. Now we can write the full SVD as

A = UΣV T (4.3)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal matrices and Σ ∈ Rm×n is a diagonal matrix
that caries the nonnegative singular values σ1, . . . , σn on its diagonal. The illustration for
m = 5 and n = 3 is shown below.



× × ×
× × ×
× × ×
× × ×
× × ×


=



× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×





σ1 0 0
0 σ2 0
0 0 σ3

0 0 0
0 0 0




× × ×
× × ×
× × ×



A U Σ V T

If A is rank deficient, rank(A) = r < n say, then the factorization (4.3) is still valid. The only
difference is that now σr+1 = · · · = σn = 0 and m − r columns of U are ‘silent’. This means
that r singular values and r left singular vectors of A are determined by the geometry of the
hyperellipse. The last r columns of V have no effect in factorization as well.

Let us bring the SVD in a formal definition and prove it mathematically. We prove the
existence and uniqueness (under some conditions) of SVD for any complex matrix A.

Theorem 4.1. Let m and n be two arbitrary positive integers. Every matrix A ∈ Cm×n has
a full SVD of the form

A = UΣV ∗

where U ∈ Cm×m and V ∈ Cn×n are unitary matrices and Σ ∈ Rm×n is a real diagonal matrix
that carries the singular values σ1 ⩾ σ2 ⩾ · · · ⩾ σn ⩾ 0 on its diagonal. Furthermore, the
singular values are uniquely determined and if A is square the left and right singular vectors
are uniquely determined up to complex signs.

31

Proof. [Trefethen-Bau:1997] For proof of existence, let σ1 := ∥A∥2. There exists vectors
v1 ∈ Cn with ∥v1∥2 = 1 such that ∥Av1∥2 = σ1. Let u1 := Av1 ∈ Cm. Consider any extension
of v1 to an orthonormal basis {v1, v2, . . . , vn} for Cn and any extension of u1 to an orthonormal
basis {u1, u2, . . . , um} for Cm. Suppose that V1 and U1 denote the unitary matrices with columns
vj and uj. We can write

U∗
1 AV1 =

u∗
1

Ũ∗
1

 A
[
v1 Ṽ1

] σ1 u∗
1AṼ1

0 Ũ∗
1 AṼ1

 =:
σ1 w∗

0 B

 =: S,

where 0 is column vector of dimension m − 1, w ∈ Cn−1 and B ∈ C(m−1)×(n−1). Now we show
w is indeed zero. If fact we have∥∥∥∥∥∥

σ1 w∗

0 B

 σ1

w

∥∥∥∥∥∥
2

= σ2
1 + w∗w ⩾ σ2

1 + w∗w = (σ2
1 + w∗w)1/2

∥∥∥∥∥∥
σ1

w

∥∥∥∥∥∥
2

which shows that ∥S∥2 ⩾ (σ2
1 + w∗w)1/2. Since S and A are unitarily equivalent we know that

∥S∥2 = ∥A∥2 = σ1. This shows that w = 0, and

U∗
1 AV1 =

σ1 0
0 B

 .

The proof is now completed by induction. The proof for case m = n = 1 is obvious. Let
B = U2Σ2V

∗
2 is the full SVD of B. We can write

U∗
1 AV1 =

σ1 0
0 U2Σ2V

∗
2

 =
1 0
0 U2

 σ1 0
0 Σ2

 1 0
0 V ∗

2


which gives the full SVD of A via

A = U1

1 0
0 U2


︸ ︷︷ ︸

U

σ1 0
0 Σ2


︸ ︷︷ ︸

Σ

1 0
0 V ∗

2

 V ∗
1︸ ︷︷ ︸

V ∗

,

which completes the proof of existence. On the other hand we have

A∗AV = V ΣT Σ, or A∗Avk = σ2
kvk, k = 1, 2, . . . , n

which shows σ2
k are eigenvalues of Hermitian matrix A∗A. This proves the uniqueness of singular

values. ■

For the remainder of this lecture we will assume, without loss of generality, that m ⩾ n,
because if m < n we consider the SVD of AT , and if the SVD of AT is UΣV T , then the SVD
of A is V ΣT UT . Besides, we will assume A is a real matrix although all results can be simply
proved for the a complex SVD.

4.2 Properties of SVD
Several matrix properties including rank, norms and condition number can be extracted form

SVD. In additions, SVD provides orthonormal bases for range(A) and null(A) and orthogonal
projections onto range(A) and null(A).

32

Theorem 4.2. Let σ1 ⩾ σ2 ⩾ · · · ⩾ σn ⩾ 0 be the singular values of A ∈ Rm×n with m ⩾ n.
1. ∥A∥2 = σ1,

2. ∥A∥F =
√

σ2
1 + · · · + σ2

n,

3. ∥A−1∥2 = 1
σn

when m = n and A is nonsingular,

4. cond2(A) = σ1
σn

if A is nonsingular,

5. rank(A) = number of nonzeros singular values.

Proof. . The proof is left as an exercise. Use the facts that orthogonal matrices preserve
norm 2 and norm Frobenius as well as the rank of matrices. See Workout 4.3.

Workout 4.3. Prove Theorem 4.2.

The condition number of a square and nonsingular matrix A is defined by cond2(A) =
∥A∥2∥A−1∥2. We observed that it can be obtained by dividing the largest singular values by
the smallest one. One can generalize this notion to rectangular matrices by defining

cond2(A) := σ1

σn

, A ∈ Rm×n

provided that A has full rank (σn ̸= 0). The condition number becomes large for nearly
rank-deficient matrices, i.e., matrices with very small σn. When A is rank-deficient, i.e., when
σn = 0, the condition number can be defined to be infinity. However, in practical application
(for example in least squares settings) the true definition of condition number for a rank-
deficient matrix A ∈ Rm×n, m ⩾ n is

cond2(A) := σ1

σr

, (4.4)

where rank(A) = r. (i.e., σr+1 = · · · = σn = 0). This generalizes the definition of condition
number for rank-deficient matrices.

Remark 4.1. In presence of nosy data and roundoff errors it is more practical to talk about
numerical rank rather than just the rank of a matrix. In this cases we should set a
criterion to accept a computed singular value to be ‘zero’. For example we may consider the
singular values of order eps (machine epsilon) to be zero. However, the norm of the matrix
and the errors in data (entries) should also be taken in to account. Here is a practical
criterion [Datta:2010, Golub-VanLoan:2010]:

A computed singular value is accepted to be zero if it is less than or equal to
δ = 10−t∥A∥∞ where the entries of A are correct to t decimal digits.

Using this criterion, A has numerical rank r if the computed singular values σ̂1, . . . , σ̂n

satisfy
σ̂1 ⩾ σ̂2 ⩾ · · · ⩾ σ̂r > δ ⩾ σ̂r+1 ⩾ · · · ⩾ σ̂n.

This means that to determine a numerical rank of a matrix one needs to count the large
singular values only.

33

As pointed out, SVD provides orthogonal bases for range(A) and null(A) as well as projec-
tions to these subspaces. The following theorem reveals this.

Theorem 4.4. Let A = UΣV T be the SVD of A ∈ Rm×n with m ⩾ n, and let rank(A) = r.
Partition

U = [U1 U2], V = [V1 V2]
where U1 and V1 consist of first r columns of U and V , respectively. Then

1. The columns of U1 form a basis for range(A).

2. The columns of V2 form a basis for null(A).

3. U1U
T
1 is a projection onto range(A).

4. U2U
T
2 is a projection onto null(AT).

5. V1V
T

1 is a projection onto range(AT).

6. V2V
T

2 is a projection onto null(A).

Proof. The proofs are straightforward; however, we refer to [Datta:2010] or similar re-
sources. You may skip items 3–6 if you have decided to skip section 2. ■

4.3 Computation of SVD
SVD has a tight connection to the well-known eigendecomposition of symmetric matrices.

As we know, if B ∈ Rn×n is a symmetric matrix then all its eigenvalues λk are real and the
corresponding eigenvectors vk are orthonormal. From Bvk = λkvk for k = 1, . . . , n, we can
write

B = V DV T

where V = [v1, v2, . . . , vn] is orthogonal and D = diag{λ1, λ2, . . . , λn} is diagonal. This decom-
position is called eigendecomposition, and has limited applications in practice as it is only
available for symmetric matrices3.

The connection to SVD is obtained by computing AT A and AAT as below:

AT A = (UΣV T)T (UΣV T) = V ΣT UT U︸ ︷︷ ︸
I

ΣV T = V ΣT Σ︸ ︷︷ ︸
D

V T = V DV T

where D is a n × n diagonal matrix

D = ΣT Σ =


σ2

1 0
. . .

0 σ2
n

 .

Since V is orthogonal, V DV T is the eigendecomposition of symmetrix matrix AT A. This means
that σ2

1, . . . , σ2
n are eigenvalues and columns of V are corresponding eigenvectors of AT A.

3If A is not symmetric but has a set of independent eigenvectors then it can be decomposed to A = V DV −1

for nonsingular matrix V . In this case A is called diagonalizable.

34

The same computation for AAT shows that

AAT = UΣΣT UT = UDUT

where D is a m × m diagonal matrix

D = ΣΣT =



σ2
1 0

. . .
σ2

n

0
. . .

0 0


The columns of U are eigenvectors of AAT corresponding to the same eigenvalues σ2

1, . . . , σ2
n

plus m − n zero eigenvalues σ2
n+1 = · · · = σ2

m = 0.
We conclude that singular values of A are square roots of eigenvalues of AT A. Columns of

V are eigenvectors of AT A, and columns of U are eigenvectors of AAT .

Example 4.1. To compute the SVD of

A =


3 2
2 3
2 −2


we form

AT A =
17 8

8 17

 , λ1 = 25, λ2 = 9

and compute its eigenvalues λ1 = 25 and λ2 = 9. These give σ1 =
√

λ1 =
√

25 = 5 and
σ2 =

√
λ2 =

√
9 = 3. We can also show that eigenvectors of AT A are

v1 = 1√
2

1
1

 , v2 = 1√
2

 1
−1


which result in

V = 1√
2

1 1
1 −1

 .

On the other side, columns of U are eigenvectors of

AAT =


13 12 2
12 13 −2
23 −2 8

 .

Without additional computations we know that eigenvalues of this matrix are λ1 = 25,
λ2 = 9 and λ3 = 0 (why?). However, the eigenvectors of AAT are different from those of
AT A and can be computed as

u1 = 1√
2


1
1
0

 , u2 = 1√
18


1

−1
4

 , u3 = 1
3


2

−2
1



35

which show that

U =


1√
2

1√
18

2
3

1√
2 − 1√

18 −2
3

0 4√
18 −1

3

 .

However, in practice, a different, faster and computationally more stable algorithm is used
to compute the SVD factors. The commonly used algorithm is the Golub-Kahan-Reinsch
algorithm which consists of two phases. In the first phase the matrix A is reduced to a
bidiagonal matrix B using Householder transformations. This step is usually known as the
Golub-Kahan bidiagonal procedure. Then in the second phase the matrix B is further reduced
to diagonal matrix Σ using an iterative method that successively constructs a sequence of
bidiagonal matrices Bk such that each Bk has possibly smaller off-diagonal entries than the
previous one. The second procedure is known as the Golub-Reinsch iterative procedure. It thus
makes sense to call the combined two-stage procedure the Golub-Kahan-Reinsch algorithm.
We refer the reader to chapter 10 of [Datta:2010] for details. This algorithm is proved to be
computationally stable.

In Python the algorithm is implemented in numpy.linalg (and also in scipy.linalg)
module which provides both reduced and full SVD for either real or complex matrices. The
default command numpy.linalg.svd(A) is equivalent with

numpy.linalg.svd(A, full_matrices=True, compute_uv=True, hermitian=False)

If full_matrices=False, the output will be the reduced SVD. Additionally, in the case of
compute_uv=False, the unitary matrices U and V are not computed and the output is the
vector of singular values only. Finally, by hermitian=True, A is assumed to be Hermitian
(symmetric if real-valued), enabling a more efficient method for finding singular values. Here
is an example.

from numpy.linalg import svd
from numpy import array
A = array([[1, 3, 2],[4,0,-1],[0.5, 2, 1],[1, 1, 1],[2, 1, -2]])
U,S,V = svd(A)
print(’Full SVD:’,’\n U =\n’,np.round(U,4),’\n V =\n’,np.round(V,4),

’\n sigma =\n’,np.round(S,4))
U,S,V = svd(A,full_matrices=False)
print(’\n Reduced SVD:’,’\n U =\n’,np.round(U,4),’\n V =\n’,np.round(V,4),

’\n sigma =\n’,np.round(S,4))

The output of the above script is:

36

Full SVD:
U =
[[-0.4575 -0.6636 -0.0238 -0.4791 0.3468]
[-0.6711 0.4798 0.5011 -0.1833 -0.186]
[-0.2784 -0.4014 -0.2015 0.2431 -0.8134]
[-0.2626 -0.2225 0.2953 0.8113 0.3689]
[-0.4403 0.3446 -0.7877 0.1398 0.2176]]
V =
[[-0.8593 -0.5112 0.0186]
[0.3474 -0.6099 -0.7123]
[0.3755 -0.6056 0.7016]]
sigma =
[5.149 4.3804 1.5969]

Reduced SVD:
U =
[[-0.4575 -0.6636 -0.0238]
[-0.6711 0.4798 0.5011]
[-0.2784 -0.4014 -0.2015]
[-0.2626 -0.2225 0.2953]
[-0.4403 0.3446 -0.7877]]
V =
[[-0.8593 -0.5112 0.0186]
[0.3474 -0.6099 -0.7123]
[0.3755 -0.6056 0.7016]]
sigma =
[5.149 4.3804 1.5969]

We note that for the reduced SVD the command U,S,V = svd(A,0) can be used instead.

4.4 Solving the least squares problem using SVD
The SVD provides a particularly flexible method for solving linear least squares problems

of any shape or rank. Consider again the least squares problem

min
x∈Rn

∥Ax − b∥2

with overdetermined matrix A ∈ Rm×n. First, we assume that A is full-rank, i.e., rank(A) = n.
Let A = UΣV T be the SVD of A and partition U = [U1 U2] where U1 consists of first n columns

37

of U , and Σ =
Σ1

0

 where Σ1 ∈ Rn×n is a square diagonal matrix with σk on its diagonal.

Since A is full-rank, all singular values are positive and Σ is nonsingular. Furthermore, we use
the change of variables y = V T x. Then, we can write

∥Ax − b∥2
2 = ∥UΣV T x − b∥2

2 = ∥ΣV T x − UT b∥2
2 =

∥∥∥∥∥∥
Σ1

0

 y −

UT
1 b

UT
2 b

∥∥∥∥∥∥
2

2

= ∥Σ1y − UT
1 b∥2

2 + ∥UT
2 b∥2

2.

Since V is nonsingular, the minimization over x is equivalent to minimization over y. The
minimum is obtained if the first norm on the right-hand side is vanished, i.e. y = Σ−1

1 UT
1 b.

This gives the least squares solution

x = V Σ−1
1 UT

1 b =
n∑

j=1

uT
j b

σj

vj, (4.5)

and the reminder is r = ∥Ax − b∥2 = ∥UT
2 b∥2.

Now, let A be a rank-deficient matrix, rank(A) = r < n, say. Partition U = [U1 U2] now
with U1 consists of first r columns of U , and

Σ =



σ1
. . . 0

σr

0
0 . . .

0

0 0



=
Σ̃1 0

0 0



where Σ̃1 ∈ Rr×r is the upper-left square matrix with positive singular values σ1, . . . , σr on its
diagonal. Also, assume that

y = V T x =:
ỹ

ŷ


where ỹ ∈ Rr. Similar to the first case, we have

∥Ax − b∥2
2 = ∥UΣV T x − b∥2

2 = ∥ΣV T x − UT b∥2
2 =

∥∥∥∥∥∥
Σ̃1 0

0 0

 ỹ

ŷ

 −

UT
1 b

UT
2 b

∥∥∥∥∥∥
2

2

= ∥Σ̃1ỹ − UT
1 b∥2

2 + ∥UT
2 b∥2

2.

In this case the least square solution is not unique. Solutions are obtained by putting ỹ =
Σ̃−1

1 UT
1 b and letting ŷ arbitrary, and then

x = V y =
r∑

j=1

uT
j b

σj

vj +
n∑

j=r+1
yjvj. (4.6)

A least squares solution x with the minimum norm 2 among others is called the norm-minimal

38

solution. Since ∥x∥2
2 = ∥y∥2

2 = ∥ỹ∥2
2 + ∥ŷ∥2

2, the norm-minimal solution of the rank-deficient
least squares problem is obtained by setting ŷ = 0, i.e. by dropping the second summation in
(4.6).

Lab Exercise 4.5. Write a Python function for solving the least squares problem for either
full-rank or rank-deficient case using SVD. Assume that the rank of the coefficient matrix
is unknown in advance, so compute it numerically.

4.5 Pseudoinverse
Assuming A ∈ Rm×n has rank r with r ⩽ n, the SVD of A is represented as

A = [U1 U2]
Σ̃1 0

0 0

 [V1 V2]T = U1Σ̃1V
T

1 (4.7)

where U1 and V1 consist of the first r columns of U and V , respectively, and Σ̃1 ∈ Rr×r is a
diagonal matrix with positive singular values σ1, . . . , σr on its diagonal.

When m = n (i.e., A is square) and r = n (i.e., A is full-rank), we have the standard
representation A = UΣV T with all matrices square and Σ nonsingular. In this case, the
inverse of A is computed as

A−1 = (UΣV T)−1 = V −T Σ−1U−1 = V Σ−1UT .

This suggests an algorithm to compute the inverse of square and nonsingular matrices. How-
ever, this algorithm is more costly than the usual algorithm based on Gaussian elimination,
although it is more stable for ill-conditioned matrices.

When A is rectangular and even rank-deficient, we can generalize this approach to compute
the pseudoinverse of A. In this case, we use the factorization (4.7) and define

A+ := V1Σ̃−1UT
1

which is indeed the Moore–Penrose inverse of matrix A. As a result, we can see from (4.5)
that the least squares solution of a full-rank system Ax ∼= b is given by

x = A+b.

This is the counterpart of the exact solution x = A−1b for square and nonsingular linear system
Ax = b. Additionally, from (4.5), we observe that for the rank-deficient problem, x = A+b is
the norm-minimal solution.

Example 4.2. The SVD factors of a matrix A are given by

U =



1√
2

−1√
2 0 0 0

0 0 0 1 0
0 0 −1 0 0
1√
2

1√
2 0 0 0

0 0 0 0 1


, Σ =



2
√

3 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, V =



√
6

3 0 0 −1√
3

0 0 1 0
1√
6

−1√
2 0 1√

3
1√
6

1√
2 0 1√

3

 .

39

The pseudoinverse of A is computed as

A+ = V1Σ−1
1 UT

1 =



√
6

3 0
0 0
1√
6

−1√
2

1√
6

1√
2


 1

2
√

3 0
0 1

2

  1√
2 0 0 1√

2 0
−1√

2 0 0 1√
2 0

 =



1
6 0 0 1

6 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0

 .

In addition, if we aim to solve the least square problem min ∥Ax−b∥2 with b = [1, 1, 1, 1, 1]T

for the norm-minimal solution, we write

x = A+b =



1
6 0 0 1

6 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0





1
1
1
1
1


=



1
3

0
1
1

 .

4.6 Low-rank approximation
Low-rank approximation is a fundamental concept in linear algebra and numerical analysis

that plays a crucial role in various applications. In this approach, we seek to represent a given
matrix with a lower-rank approximation that captures its essential structure while reducing its
size and complexity. SVD enables us to achieve this kind of approximation.

We start with the following theorem whihc addresses the question of how far is a rank r

matrix from a matrix of rank k < r. This theorem is generally known as the Eckart-Yaung
theorem.

Theorem 4.6. Let A = UΣV T be the SVD of A, and let k ⩽ r = rank(A). Define
Ak = UΣkV T where Σk = diag{σ1, . . . , σk, 0, . . . , 0}, where σ1 ⩾ σ2 ⩾ · · · ⩾ σk > 0. Then
the followings hold true:

1. Ak has rank k,

2. The distance between A and Ak is ∥A − Ak∥2 = σk+1.

3. Out of all rank k matrices, Ak is the closet to A, that is

min
rank(B)=k

∥A − B∥2 = ∥A − Ak∥2.

Proof. The proof of 1 is obvious because rank(Ak) = rank(UΣkV T) = rank(Σk) = k. For
the second item we have

∥A − Ak∥2 = ∥U(Σ − Σk)V T ∥2 = ∥Σ − Σk∥2 = σk+1.

To prove item 3, we assume that B is another m×n matrix of rank k. So the null space of B has
dimension n − k. Consider the space S = span{v1, . . . vk+1} where vj are right singular vectors
of A. The intersection of null(B) and S must be nonempty because both spaces are subspaces
of Rn and the sum of their dimensions is greater than n. Let z be a normal vector (∥z∥2 = 1)

40

lying in this intersection. Since z ∈ S there exist scalers cj such that z = c1v1 + · · · + ck+1vk+1.
Since {vj} are orthonormal we have |c1|2+· · ·+|ck+1|2 = 1. On the other side, since z ∈ null(B)
we have Bz = 0. So

(A − B)z = Az = c1Av1 + · · · + ck+1Avk+1 = c1σ1u1 + · · · + ck+1σk+1uk+1

and since {uj} are orthonormal we have

∥(A − B)z∥2
2 = |c1σ1|2 + · · · + |ck+1σk+1|2 ⩾ σ2

k+1(|c1|2 + · · · + |ck+1|2) = σ2
k+1.

This shows that

∥A − B∥2
2 = max

∥y∥2=1
∥(A − B)y∥2

2 ⩾ ∥(A − B)z∥2
2 ⩾ σ2

k+1 = ∥A − Ak∥2
2

which completes the proof. ■

Another representation of SVD is

A = UΣV T = σ1E1 + σ2E2 + · · · + σnEn, Ek = ukvT
k .

Each Ek is a rank 1 matrix which shows that SVD writes A as a sum of rank 1 matrices.
Since σ1 ≥ σ2 ≥ · · · ≥ σn, matrix A is expressed as a list of its “ingredients”, ordered by
“importance”. Each elementary matrix Ek can be stored using only m + n storage locations.
Moreover, the matrix-vector product Ekx can be formed using only 2n+m flops. As was shown
in Theorem 4.6,

Ak = UΣkV T = σ1E1 + σ2E2 + · · · + σkEk

is k-rank approximation of A with 2-norm error σk+1. Such an approximation is useful in data
dimensionally reduction, image processing, information retrieval, cryptography, and numerous
other applications.

4.7 Some applications of SVD
We have already studied the use of SVD for computing some norms, condition number,

orthogonal bases for some subspaces related to a matrix, and an application for solving the
linear least squares problem. In this section more concrete examples are given from different
applications.

Image compression
An image can be represented by an m × n matrix A whose (i, j)-th entry corresponds to the

brightness of the pixel (i, j). The storage of this matrix requires mn locations. See Figure 8,
The idea of image compression is to compress the image represented by a very large matrix

to the one which corresponds to a lower-order approximation of A. SVD provides a simple way
if one stores

σ1u1v
T
1 + · · · + σkukvT

k =: Ak

instead in (m + n + 1)k locations (the first k columns of U and V together with the first k

singular values). This results a considerable savings when k is small. On the other side k

41

Figure 8: Representation of an image with a matrix (form pippin.gimp.org/image_processing).

should be large enough to keep the quality of the image still acceptable to the user4.
In Figure 9 different low-rank approximations of Lena’s image obtained from the following

Python script are shown.

import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

A = Image.open(’Lena.jpg’).convert(’L’) # Grayscale read picture
sz = np.shape(A)
U, S, V = np.linalg.svd(A) # Get svd of A
k = [sz[1], 100, 50, 20]
plt.figure(figsize = (7, 7))
for i in range(4):

Ak = U[:, :k[i]] @ np.diag(S[:k[i]]) @ V[:k[i],:]
if(i == 0):

plt.subplot(2, 2, i+1), plt.imshow(Ak, cmap =’gray’), plt.axis(’off’),
plt.title("Original Image with k = " + str(k[i]))

else:
plt.subplot(2, 2, i+1), plt.imshow(Ak, cmap =’gray’), plt.axis(’off’),
plt.title("k = " + str(k[i]))

plt.savefig("Lena1.jpg")

Image restoration
The aim in image restoration is to restor the original image from a blurry image contaminated

by noises. It is known that noises correspond to the small singular values. Thus a simple idea
is to compute the SVD of the noisy image and eliminate its last n − k small singular values

4For image compression, more sophisticated methods like JPG that take human perception into account
generally outperform compression using SVD.

42

Figure 9: Original Lena’s image and compressed images with different values of k.

(smaller than a threshold) and consider the low-rank approximation

Ak = UkΣkV T
k

as a noise-free image. It is left as an exercise giving an example with a Python script.
Note that, the literature contains a large number of more sophisticated denosing algorithms;

some of them are based on SVD.

Principal component analysis (PCA)
In PCA the objective is to reduce the dimensionality of a dataset in order to use the trans-

ferred data in applications that might not work well with high-dimensional data. The reduction
is done by projecting each data point onto only the first few directions (principal components)
to obtain lower dimensional data while preserving as much of the data’s variation as possible.
The first principal component is a direction that maximizes the variance of the projected data.
This direction captures most information of the data. The second principal component is then
calculated with the condition that it is uncorrelated with (i.e., perpendicular to) the first prin-
cipal component and that it accounts for the next highest variance. We may proceed through
other components, similarly. See Figure 10.

Let us outline the fundamental principles of PCA within a mathematical framework5. As-
5For a history, a review and some recent developments of PCA see the following sources:

Ian T. Jolliffe, Jorge Cadima, Principal component analysis: a review and recent developments, Phil. Trans.
R. Soc. A 374: 20150202, (2016).

43

Figure 10: Cluster of points in R2 with principal components (PCs).

sume that we are given a dataset with observations on d variables (dimensions), for each of n

entities or individuals. These data values define n vectors x·1, . . . , x·n each in Rd or, equiva-
lently, a d × n data matrix

X = [x·1, x·2, . . . , x·n] ∈ Rd×n.

We assume that X is row-centred, i.e., the mean value of each row is zero. Otherwise, subtract
each row by its mean. We are looking for a new orthonormal basis {v·1, v·2, . . . , v·d}, v·j ∈ Rn,
for the column space of XT (row space of X) which determines the directions of maximum
variances in order of significance (a decreasing order). Any element of the new basis is a linear
combination of columns of XT . Such linear combinations can be written as

σjv·j =
d∑

ℓ=1
uℓjxℓ· = XT u·j, j = 1, 2, . . . , d, (4.8)

where u·j = [u1j, . . . , udj]T are assumed to be of the unit norm, i.e. ∥u·j∥2 = 1. The normaliza-
tion constants σj are multiplied from left to make this assumption meaningful. The variance
of any such linear combination is given by

var(XT u) = 1
n − 1(XT u)T (XT u) = uT Cu,

where C = 1
n−1XXT ∈ Rd×d is the sample covariance matrix associated with the dataset.

Hence, identifying the linear combination with maximum variance is equivalent to obtaining a d-
dimensional vector u with uT u = 1 which maximizes the quadratic form uT Cu. By introducing
a Lagrange multiplier λ, the problem is equivalent to maximizing

uT Cu − λ(uT u − 1).

Differentiating with respect to u, and equating to the null vector, produces the equation

Cu = λu.

This means that u is an eigenvector and λ its corresponding eigenvalue of the covariance matrix

Ian T. Jolliffe, Principal component analysis, 2nd ed. New York, NY, Springer-Verlag, (2002).

44

C. Since C is symmetric and semi-positive definite, all eigenvalues are real and nonnegative and
eigenvectors form an orthonormal basis for Rd. The eigenvalue λ corresponding to eigenvector
u of C is indeed the variance of the linear combination defined by u, i.e. XT u, because

var(XT u) = uT Cu = uT (λu) = λuT u = λ.

Let us denote the pair of eigenvalues and eigenvectors of C by (λj, u·j) for j = 1, 2, . . . , d and
sort eigenvalues is such way that λ1 ⩾ λ2 ⩾ · · · ⩾ λd ⩾ 0. The maximum variance is attained
at the dominant pair (λ1, u·1). Recalling (4.8), this shows that the maximum variance of the
data happens across the direction u·1 with variance

λ1 = var(XT u·1) = var(σ1v·1) = σ2
1

n − 1vT
·1v·1 = σ2

1
n − 1 .

This means that u·1 is the first principle component of data X and σ2
1

n−1 is the highest variance
in the data along the direction u1.

A Lagrange multipliers approach, with the added restrictions of orthogonality of different
vectors u·j can be used to show that the full set {u·1, . . . , u·d} are the solutions to the problem
of obtaining up to d new linear combinations XT u·j which successively maximize the variance,
subject to uncorrelatedness with previous linear combinations. Uncorrelatedness results from
the fact that the covariance between two such linear combinations is zero;

cov(XT u·j, XT u·k) = uT
·jCu·k = λkuT

·ju·k = 0, j ̸= k.

As the above formulation reveals, PCA is essentially connected to the SVD. From (4.8) we
have

X = UΣV T (4.9)
where U = [u·1 u·2 . . . u·d] ∈ Rd×d and V = [v·1 v·2 . . . v·d] ∈ Rd×n have orthonormal columns and
Σ = diag(σ1, σ2, . . . , σd). Consequently, the reduced SVD (4.9) gives all principal components
as columns of the factor U . The variances in each direction are calculated as the squares of
the singular values divided by (n − 1).

Figure 11: A dataset in R2 (left) and its 1-rank approximation using SVD.

Up to here we have found all the principal components in order of significance. The next

45

step is to choose whether to keep all these components or discard those of lesser significance
and form with the remaining ones a new data in a lower dimensional subspace. Assume that
we decide to keep only k < d principal components. Our new data matrix will be

Xk = UkΣkV T
k =

k∑
j=1

σju·jv
T
·j

which is a k-rank approximation of the original data matrix X, and is called the feather matrix.
In fact, the new dataset is located on a k-dimensional subspace of Rd spanned by orthonormal
vectors {u·1, . . . , u·k}. This is a dimensionality reduction algorithm based on SVD. See
Figures 11 and 12 for illustrations in 2 and 3 dimensions, respectively .

Figure 12: A dataset in R3 (up) and its 1-rank approximation (down-left) and its 2-rank approximation
(down-right) using SVD.

Keywords and key sentences extraction
Development of automatic procedures for text summarization is important because people

are overwhelmed by the tremendous amount of online information and documents.
The goal of a text summarization algorithm is to extract content from a text document and

present the most important content to the user in a condensed form.
We follow [Elden:2019] and briefly discuss an algorithm based on SVD for automatically

46

extracting key words and key sentences from a text. Assume that we are given a text document,
for example an article or a chapter of a book. Assume that the text contains m words and
n sentences6. Normally m is much larger than n. We form a m × n term-sentence matrix A

where its entry aij is defined as the frequency of term (word) i in sentence j. Let us give the
term i the nonnegative score ui and the sentence j the nonnegative score vj. The assignment
of scores is made based on the following mutual reinforcement principle:

A term should have a high score if it appears in many sentences with high scores.
A sentence should have a high score if it contains many words with high scores.

Using this criterion the score of term i is proportional to the sum of the scores of the sentences,
weighted by frequencies, where it appears,

σui =
n∑

j=1
aijvj, i = 1, 2, . . . , m,

where σ > 0 is the proportional constant. Similarly, the score of sentence j is proportional to
the sum of scores of its words weighted by their frequencies in the sentence,

σvj =
m∑

i=1
aijui, j = 1, 2, . . . , n.

In matrix forms we have
Av = σu, AT u = σv

for u = [u1, . . . , um]T (the score vector of words) and v = [v1, . . . , vn]T (the score vector of
sentences). Collecting both equations we have

AAT u = σ2u, AT Av = σ2v

which show that u is an eigenvector of AAT and v is an eigenvector of AT A both corresponding
to eigenvalue σ2. This means that u is left singular vector and v is a right singular value of
A corresponding to the same singular value σ. If we choose the largest singular value, then
we are guaranteed that the components of u and v are nonnegative because the matrix A has
nonnegative entries. Consequently, a simple algorithm based on SVD consists of the following
steps:

• Step 1: Apply a stemming and a stoping word algorithm on the text,

• Step 2: Construct the term-sentence matrix A,

• Step 3: Compute the SVD of A and report the leading vectors u and v (first columns
of U and V , respectively) as word and sentence scores.

The full SVD is not necessary for this algorithm as the first singular vectors are only required.
Moreover, the term-sentence matrix is sparse, so a SVD function for sparse matrices is numer-

6Usually a couple of preprocessing steps should perform before summarization which are known as stemming
and stop words removing. In the stemming step the same word stem with different endings is represented by one
token only. For example words {computation, computations, compute, computable, computing, computational}
are represented by stem “comput”. Stop words such as {a, an, and, or, if, then, any, as, about, able, . . . } occur
frequently in all texts and do not distinguish between different sentences. They should be removed. We assume
that special symbols, e.g., mathematics symbols are also removed.

47

ically more efficient.

Classification of handwritten digits
Classification of handwritten digits is a standard problem in pattern recognition. A typical

application is the automatic reading of zip codes on envelopes. Here we follow the presentation
of [Elden:2019] and give a classification technique using SVD.

The problem is as follows: Given a set of manually classified digits as a training set, classify
a set of unknown digits as the test set.

In Figure 13 a sample of handwritten digits 0, 1, . . . , 9 is illustrated. The images are down-
loaded from7. Each image is a 28 × 28 grayscale image but we stack the columns of the image
above each other so that each image is represented by a vector of size 784.

Figure 13: A sample of handwritten digits 0, 1, . . . , 9.

The training set of each kind of digits 0, 1, . . . , 9 can be considered as a matrix A of size
m × n with m = 784 and n = ‘the number of training digits of one kind’. Usually, n ⩾ m

although the case n < m is also possible. So, we have a total of 10 training matrices, each
corresponding to one of the digits 0, 1, . . . , 9. Assume that A is one of them. The columns of
A span a linear subspace of R784. However, this subspace cannot be expected to have a large
dimension, because columns of A represent the same digit with different handwritings. One
can use SVD A = UΣV T to obtain an orthogonal basis for the column space of A (or range(A))
via the columns of factor U . Then any test image of that kind can be well represented in terms
of the orthogonal basis {u·1, u·2, . . . , u·m}. Let us describe it in more detail. We have

A = UΣV T =
m∑

j=1
σju·jv

T
·j ,

thus the ℓ-th column of A (the ℓ-th training digit) can be represented as

a·ℓ =
m∑

j=1
(σjvjℓ)u·j

which means that the coordinates of image a·ℓ in terms of orthogonal basis {u·1, u·2, . . . , u·m}
are σjvjℓ =: xj, i.e.

a·ℓ =
m∑

j=1
xju·j = Ux.

7https://www.nist.gov/itl/products-and-services/emnist-dataset

48

This means, in another point of view, that solving the least squares problem

min
x

∥Ux − a·ℓ∥2

results in an optimal vector x = [σ1v1ℓ, . . . , σmvmℓ]T with residual 0. As we pointed out, most
columns of A are nearly linearly dependent as they represent different handwritten for the same
digit. If we translate it to columns of U , this means that a few leading columns of U should well
capture the subspace. For this reason the orthogonal vectors u·1, u·2, . . . , are called singular
images. For example, in Figure 14 the singular values and the first three singular images for
the training set 3’s (containing the first 200 images of the training set) are illustrated.

0 100 200
k

0

5000

10000

15000

20000

25000

30000

σ
k

Singular image u1 Singular image u2 Singular image u3

Figure 14: Rapid decay of singular values, and the first three singular images.

We observe that the first singular image looks like a 3, and the following singular images
represent the dominating variations of the training set around the first singular image. Con-
sequently, we can use a k-rank approximation of A where k ≪ m. In this case each a·ℓ can
be well represented by orthogonal basis {u·1, u·2, . . . , u·k} in a least squares sense with a small
residual.

Now, let d ∈ Rm, m = 784, be a digit outside the training set (which is called a test
digit). It is reasonable to assume that d can be well represented in terms of singular images
{u·1, u·2, . . . , u·k} of its own type with a relatively small residual. We must compute how well d

can be represented in the 10 different bases, each corresponding to one of the digits 0, 1, . . . , 9.
This can be done by computing the residual vector in the least squares problems of the type

min
x

∥Ukx − d∥2

where d represents a test digit and Uk is a m × k matrix consisting of the first k columns of
U . Since the columns of Uk are orthonormal, the solution of this problem is x = UT

k d and the
residual is

∥(I − UT
k Uk)d∥2. (4.10)

Altogether, a SVD-based classification algorithm of handwritten digits consists of two steps:
• Step 1 (training): For the training set of known digits, compute the SVD of each set

of digits of one kind (Compute ten SVDs for digits 0, 1, . . . , 9).

• Step 2 (classification): For a given test digit d, compute its relative residual in all ten
bases using equation (4.10). If a residual in a class is smaller than all the others, classify
d in that class.

49

To test the algorithm, we download the training set consisting of 240000 images (24000 images
per any digit), and the test set consisting of 40000 images (4000 images per digit) from the
above-mentioned website. The document also contains two label files which are manual classi-
fications of training and test sets. The training labels will be used to learn and the test labels
to verify the algorithm.

For each digit we consider using only the initial 200 images out of the total 24000 training
images (ten matrices each of size 784 × 200). However, we test the algorithm on all 40000
test images and compare our classifications with the exact test labels. The percentages of
the success of this SVD-based algorithm for each digit with different values k = 3, 6, . . . , 10
(number of basis functions) are plotted in Figure 15. It is left to readers to discuss their insights
based on the observations from the figure.

2 4 6 8 10
k (columns of U)

80.0
82.5
85.0
87.5
90.0
92.5
95.0
97.5

Pe
rc

ee
nt

ag
e

of
 su

cc
es

s

0
1
2
3
4
5
6
7
8
9

Figure 15: Percentages of success (y-axis) in terms of number of basis functions (x-axis) for different
digits 0, 1, . . . , 9.

Lab Exercise 4.7. Implement your own Python code for the above classification algorithm.
Write your code Test your algorithm for different number of basis functions. Note that
in the statement above, the equations you need are formulated for a single test vector d

(one “flattened” test image). However, if you use that approach in your code, it will take
a very long time to run. In contrast, matrix-matrix multiplications are much more efficient
on modern computers. To take full advantage of that, simply replace vector d in Equation
(4.10) with the entire test matrix.

50

Additional workouts

Workout 4.8 (Uniqueness of reduced QR factorization). Assume that A ∈ Rm×n has a full
rank. Prove that A possesses a unique reduced QR factorization A = Q1R1 with the
diagonal entries of R1 positive.

Workout 4.9. Assume that A ∈ Rm×n has rank r < min{n, m}. Show that for every
ϵ > 0 (no matter how much small), there exists a full-rank matrix Aϵ ∈ Rm×n such that
∥A − Aϵ∥2 ⩽ ϵ.

Workout 4.10. Let A ∈ Rn×n be an arbitrary matrix. Find the closet orthogonal matrix
Q ∈ Rn×n to A in Frobenius norm, i.e. solve the following problem:

min
QT Q=I

∥A − Q∥F .

Hint: use SVD.

Workout 4.11 ([Trefethen-Bau:1997]). Let P ∈ Rn×n be a nonzero projector. Show that
∥P∥2 ⩾ 1 with equality if and only if P is an orthogonal projector.

Workout 4.12 ([Trefethen-Bau:1997]). Suppose that a square matrix A has SVD A =
UΣV T . Find the eigendecomposition of the symmetric matrix

B =
0 AT

A 0

 .

Workout 4.13 ([Trefethen-Bau:1997]). Suppose that A is a m × n matrix with m > n of
the form

A =
B

C


where B is a nonsingular matrix of size n×n and C is an arbitrary matrix of size (m−n)×n.
Prove that ∥A+∥2 ⩽ ∥B−1∥2.

Workout 4.14 ([Datta:2010]). Let A be an m × n matrix of full rank r = min{m, n}. If
B is another m × n matrix such that ∥B − A∥2 < σr then show B has also full rank.

Workout 4.15 ([Datta:2010]). Show that the relative distance of a nonsingular matrix A

to the nearest singular matrix B is
∥A − B∥2

∥A∥2
= 1

cond2(A) .

51

References
[1] B. N. Datta, Numerical Lienar Algebra and Applications, 2nd edition, SIAM, Philadelphia,

PA, 2010.

[2] L. Eldén, Matrix Methods in Data Mining and Pattern Recognition, 2nd edition, SIAM,
Philadelphia, PA, 2019.

[3] M. T. Heath, Scientific Computing, an Introductory Survey, revised 2nd edition, SIAM,
Philadelphia, PA, 2018.

[4] L. N. Trefethen, D. Bau III, Numerical Linear Algebra, SIAM, 1997.

52

