
Lecture Notes

Stochastic Simulation and Monte Carlo Method

Davoud Mirzaei
Uppsala University

November 1, 2024 (2nd Edition)

Contents
1 Deterministic vs. Stochastic 1

1.1 Deterministic models and methods . 1
1.2 Stochastic models and methods . 3
1.3 Which one? . 4

2 Monte Carlo method – I 4
2.1 Let’s play a game . 5
2.2 A general structure . 6

3 Random variable generation 7
3.1 Inverse transform method . 7
3.2 Acceptance-Rejection method . 12

4 Monte Carlo method – II 17
4.1 Convergence of Monte Carlo integration 20
4.2 Importance sampling . 24

5 Stochastic processes 27
5.1 Markov processes . 28
5.2 Random walk on the integers . 34
5.3 Gaussian processes . 35

6 Stochastic process generation 36
6.1 Generating Markov chains . 36
6.2 Random walk on the integers . 37
6.3 Generating Gaussian processes . 40

1

7 Stochastic Simulation Algorithm (SSA) 46
7.1 Simulation of a simple epidemic model . 46
7.2 Python implementation . 50
7.3 Application to biochemical kinetics . 53
7.4 Lotka-Volterra models . 54

8 Markov chain Monte Carlo (MCMC) 55
8.1 Metropolis-Hastings algorithm . 55
8.2 MCMC Bayesian parameter estimation . 60

9 Exercises 67

A Appendix 74
A.1 Random experiments . 74
A.2 Conditional probability and independence 75
A.3 Random variables and distributions . 76
A.4 Expectation and variance . 78
A.5 Joint distribution . 80
A.6 Functions of random variables . 82
A.7 Joint normal random variables . 83
A.8 Generating normal random variables . 84
A.9 Generating from multivariate distributions 86
A.10 Limit theorems . 86

These lecture notes are intended to cover some topics in stochastic simulation for scientific
computing courses offered by the IT department at Uppsala University, as taught by the
author. Basic concepts in probability theory are provided in the Appendix A, which you
may review before starting the upcoming sections or refer to as needed throughout the text.
Some parts of our presentation here follow [DeGroot-Schervish:2007], [Ross:2002] and
[Rubinnstein-Kroese:2017].

1 Deterministic vs. Stochastic
In the field of scientific computing, modeling and simulation are fundamental tools used to

understand natural phenomena. Two main approaches are commonly employed for modeling
and simulation: deterministic and stochastic. While both approaches aim to predict the
behavior of systems, they differ in how they handle uncertainty and randomness.

1.1 Deterministic models and methods
A deterministic model is one in which the behavior of the system is entirely predictable and

reproducible. Given a specific set of initial conditions and parameters, the outcome will always
be the same, i.e. the future behavior can be predicted with complete certainty. Such models
are often governed by mathematical equations (such as differential equations or algebraic re-
lations) that describe precise relationships between different quantities. For example, consider
Newton’s laws of motion, which describe how objects move in response to forces. These laws
are deterministic because, given the initial conditions (such as the position, velocity, and force
acting on an object) the future motion of the object can be calculated exactly. All mathe-
matical models expressed as ordinary and partial differential equations (ODEs and PDEs) are
examples of deterministic models.

Deterministic methods are employed to solve deterministic models1. Methods such as Eu-
ler’s method for solving ODEs, the trapezoidal rule for integration, and the Newton-Raphson
method for solving non-linear equations are basic examples of deterministic methods. When
it comes to more complicated models such as PDEs, the finite difference method (FDM), the
finite element method (FEM), and the finite volume method (FVM) are examples of commonly
used deterministic methods for solving such deterministic models.

As a simple example, consider the decay of a radioactive material. This process can be
described by a first-order differential equation, which relates the rate of decay to the amount
of radioactive material present at a given time. The governing equation has the form

dy

dt
= −λy(t)

where y(t) represents the amount of radioactive material at time t, and λ is the decay constant.

1It is sometimes possible to use a stochastic method to solve a deterministic model. For example, a Monte
Carlo method can be used to approximate the volume of an object, which is equivalent to solving a multi-
dimensional integral.

1

The initial amount of material is given by y(0) = y0. This model is deterministic because, given
the initial amount of radioactive material y0 and the decay constant λ, the future amount of
material can be calculated precisely at any time. Indeed, the solution to this equation is

y(t) = y0e
−λt.

This solution describes the exponential decay of the material over time. No matter how many
times we perform this calculation, we will always obtain the same result for a given set of input
parameters and initial conditions.

However, solving differential equations analytically is not always possible or practical. In
such cases, numerical methods are used to approximate the solutions. One common solver is the
Runge-Kutta method. An adaptive version of this method has been implemented in Python
library scipy.integrate.solve_ivp. Here, we call this library and compute a numerical
solution to the radioactive decay equation for λ = 0.5 and y0 = 103.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
lam, y0, FinalTime = 0.5, 1000, 10 # rate, initial value, final time
def ODEfun(t,y):

yprime = -lam*y
return yprime

teval = np.linspace(0, FinalTime, 500)
sol = solve_ivp(ODEfun, [0,FinalTime], y0, t_eval = teval)
plt.figure(figsize = (6, 4))
plt.plot(sol.t,sol.y[0],linestyle = ’solid’, color=’blue’)
plt.xlabel(’t (seconds)’);
plt.ylabel(’Amount of radioactive material, $y(t)$’)
plt.title(’Deterministic solution, radioactive decay: $y_0=1000,\lambda=0.5$’)

The plot is given on the left-hand side of Figure 1.

0 2 4 6 8 10
t (seconds)

0

200

400

600

800

1000

Am
ou

nt
 o

f r
ad

io
ac

tiv
e

m
at

er
ia

l,
y(
t)

Deterministic solution, radioactive decay: y0 = 1000, λ= 0.5

0 2 4 6 8 10
Time (seconds)

0

200

400

600

800

1000

N
m
be
r o

f p
ar
tic
le
s

Stochastic sol tion, radioactive decay, y0=1000, λ=0.5

Figure 1: Numerical solution using the deterministic ODE-solver RK45 from Python library
scipy.integrate.solve_ivp (left), and using the stochastic solver SSA (right)

2

As we observe, similar to the analytical solution, the numerical scheme yields a deterministic
outcome for the given input values. Randomness does not play a role here, and all results are
fixed. For instance, the amount of material at time t = 4 is a precise value, y4 = 135.3353
(rounded to four decimal places).

1.2 Stochastic models and methods
Deterministic models are not always an accurate reflection of reality. For instance, in the

above example the exact time at which an individual atom will decay is random. Similarly,
in population dynamics, deterministic models cannot account for the random events such as
environmental changes or disease outbreaks. Stochastic models incorporate randomness and
uncertainty to have a better reflection of the behavior of real-world systems. In a stochastic
model, the same set of initial conditions can lead to different outcomes. Instead of predicting
a single and precise result, these models describe a range of possible outcomes, each associated
with a certain probability. These models are particularly useful in areas such as biology, finance,
and quantum mechanics where small-scale fluctuations or random events play a significant role
in determining the overall behavior of the system.

Let us revisit the example of radioactive decay. In the deterministic model, we used a
differential equation to predict the amount of radioactive material at a given time. However,
this model assumes that the decay process occurs continuously and deterministically, which is
not the case in reality. In fact, radioactive decay is a random process, and the time at which
each atom decays is uncertain. In a stochastic model, we describe the system as a series of
random events. Specifically, we model the decay process as a reaction:

y
λ−→ z

where y represents the number of radioactive molecules, z represents the decay products, and
λ is the propensity of decay. The difference between this model and the deterministic model is
that we no longer assume a continuous, predictable decay process. Instead, we model the decay
as a random event that occurs with a certain probability, and the waiting time for the next
decay is also a random variable. This is one of the key features of stochastic models that they
contain random variables and probability distributions to describe the likelihood of different
outcomes.

To simulate this stochastic model, we can use a method known as Gillespie’s Algorithm, or
the Stochastic Simulation Algorithm (SSA). See section 7 for details. Each time we run the
simulation, we will obtain a different result which reflects the randomness of the decay process.

See the right panel in Figure 1 for five simulation outcomes, with the respective values of y

at t = 4 being 122, 228, 134, 135, and 139 for each simulation. In this example, if we run the
simulation many times and compute the average behavior of the system, we will find that the
result closely approximates the deterministic solution. However, this is not always the case.
When we model a phenomenon using both a stochastic model and a deterministic model (as

3

we did with radioactive decay), the mean of stochastic solutions does not always approximate
the deterministic solution. In some cases, while the deterministic solution converges to an
equilibrium state, random noise and fluctuations may force all stochastic solutions to deviate
from the equilibrium.

1.3 Which one?
The choice between a deterministic and a stochastic model depends on the nature of the

system being studied and the goals of the simulation. Deterministic models are ideal for
systems that behave predictably, where small-scale fluctuations have little impact on the overall
behavior of the system. These models are computationally efficient and provide precise and
repeatable results. They are well-suited for systems where accuracy is important. However,
deterministic models can be limited in their ability to describe some real-world systems that
are subject to randomness and uncertainty. In such cases, stochastic models provide a more
realistic description of the system behavior. By incorporating randomness, stochastic models
can capture the variability and uncertainty.

One important consideration when choosing between a deterministic and a stochastic model
is the size of the system. In large systems (e.g. a model with many particles), random fluctua-
tions tend to average out, and the overall behavior of the system can be described accurately by
a deterministic model. However, in small systems (e.g. a model with a few number of species),
random events can have a significant impact on the system behavior, and make a stochastic
model more appropriate.

Another consideration is the computational cost of the simulation. Deterministic mod-
els are typically more computationally efficient than stochastic models, as they require fewer
simulations to obtain a precise result. Stochastic models, on the other hand, require many sim-
ulations to accurately estimate the probability distribution of different outcomes which makes
them more computationally intensive.

2 Monte Carlo method – I
We begin by introducing the Monte Carlo (MC) algorithm as a stochastic method. This

method was invented by John von Neumann and Stanislaw Ulam during World War II to
improve decision making under uncertain conditions. The name Monte Carlo is motivated by
the randomness similar to games in the Monte Carlo casino.

In this section, we try to present the basic concepts behind the MC method. Since MC and
other stochastic methods rely on random points, the next section is devoted to some techniques
for generating random variables. Following that, we will revisit and further consider the MC
algorithm in section 4.

4

2.1 Let’s play a game
We play the Snakes-and-Ladders game using a 6-sided dice. The game board is shown in

Figure 2. The game rules are:
• Start from space 1, roll the dice and move forward the number of spaces shown on the

dice.

• If you land at the base of a ladder move up to the top of the ladder.

• If you land at the head of a snake slide down to the bottom of the snake.

• To finish the game you need to roll the exact number to get you to the last space 100.
For example, if you are at space 99 then you should toss the dice until getting 1 to finish.

Figure 2: A Snakes-and-Ladders game board (image from www.vectorstock.com).

Let X represent the number of dice rolls required to reach the finish space. Our goal is to
determine the expected number of rolls required to finish, or in the mathematics language, to
compute the expectation of X, denoted as E(X).

To answer this, we can ideally find a mathematical expression for the probability density
function (pdf) of the random variable X and then compute E(X) using the formula for expec-
tation provided in Definition A.4 in the Appendix. However, finding a closed-form expression
for the pdf of X is either impossible or extremely difficult. Instead, we will go for a simple
numerical solution.

Assume that one individual plays the game and finishes it after, say, x1 = 51 rolls. This
single observation (realization) is insufficient to conclude that the game will always end after
51 rolls. However, if N individuals play the game, we can collect N observations x1, x2, . . . , xN

of X. The approximate expected number of rolls can then be estimated by calculating the
average (mean) of these N observations:

E(X) ≈ 1
N

(x1 + x2 + · · ·+ xN).

This is a Monte Carlo solution: perform the experiment many times and compute the average

5

of the results. As the number of observations N increases, our estimation of the expected
number becomes more accurate.

In practice, rather than playing the game manually, we can write a program to simulate it. To
simulate the rolling of the dice, we generate random numbers from discrete uniform distribution
DU{1, 2, . . . , 6}, where each outcome has a probability of 1/6. Refer to the Appendix for
definitions and notations of well-known probability distributions. Additionally, the code must
account for the effect of snakes and ladders, which can move the player forward or backward
on the board.

A simulation performed with N = 10, 000 observations shows that the expected number of
rolls, E(X), is approximately 44. This means that in average people finish this game after ap-
proximately 44 rolls. Other possible questions we can answer via the above MC implementation
are:

• What is the probability of finishing the game by exactly 30 rolls? To answer this, we
look at the MC observations, count the number of 30s, and divide it by the total number
of observations:

P(X = 30) ≈ #30s

N
≈ 0.02

• What is the probability of finishing the game by at most 30 rolls?

P(X ⩽ 30) ≈ #30s + #29s + · · ·+ #1s

N
≈ 0.34

This approach allows us to approximate the probability based on the frequency of occurrences
in the Monte Carlo simulation.

2.2 A general structure
There is no single, universally accepted definition of the Monte Carlo method. Its formula-

tion varies based on the underlying mathematical model and the specific type of solution being
sought. However, a rather general structure is outlined in Algorithm 1 below.

Algorithm 1 A general structure of Monte Carlo
Require: Number of observations N

for k form 1 to N do
Perform one stochastic simulation
Set result[k] = result of the simulation

end for
FinalResult = mean(result) or other statistical calculations

The stochastic simulation can differ depending on the problem. It could be an observation
of a random variable or an observation of a stochastic process. In the next section, we will see
how to generate random variables from various probability distributions. Then in section 5 we
study the random processes.

6

3 Random variable generation
As we pointed out, a typical stochastic simulation requires a set of random numbers, random

variables, or a series of stochastic processes. In this and the next sections we deal with the
computer generation of such entities.

We start with generating a uniform random point. Today’s random numbers are generated
by simple computer algorithms instead of physical devices such as coin flipping, dice rolling,
roulette spinning, and card shuffling, or even modern physical generation methods such as
those based on the universal background radiation or the noise of a PC chip. Random number
generation algorithms are usually fast, require little storage space, and can readily reproduce a
given sequence of random numbers. Although such sequences are generated by a deterministic
algorithm, they fulfill main statistical properties of true random sequences. For this reason
the generated numbers are sometimes called pseudorandom numbers. Here, we do not pursue
the details of algorithms for generating uniform random numbers and just use the following
Python function which uses the uniform function form the numpy.random library.

U = np.random.uniform(a, b, size = N)

This generates N uniform random points in interval [a, b]. Another possible command is

U = np.random.rand(N)
U = a + (b-a)*U

which first generates N uniform random points in standard interval [0, 1] and then transfers
them into interval [a, b] using the linear map x 7→ a + (b− a)x.

Now, we review some general methods for generating one-dimensional random variables from
a prescribed distribution.

3.1 Inverse transform method
Let X be a random variable with pdf f and cdf F . If F is continuous and increasing then

F −1 has the usual definition
F −1(y) := {x : F (x) = y}.

To cover all cases including discrete and nondecreasing cdf functions, the inverse function F −1

can be defined as
F −1(y) = inf{x : F (x) ⩾ y}, 0 ⩽ y ⩽ 1. (3.1)

See Figure 3 for an illustration.

7

0

0.2

0.4

0.6

0.8

1

Figure 3: The inverse of a non-decreasing function

Now we have the following useful result.

Theorem 3.1. If U ∼ U(0, 1) then X = F −1(U) ∼ f

Proof. Since F is invertible and P(U ⩽ u) = u, we have

P(X ⩽ x) = P(F −1(U) ⩽ x) = P(U ⩽ F (x)) = F (x),

which completes the proof. ■

Theorem 3.1 proposes a simple algorithm to generate a random variable X with cdf F (or
pdf f): Generate U ∼ U(0, 1) and set X = F −1(U). An illustration is given in Figure 4, where
the uniform variable U on the y-axis is transferred to f -distributed variable X on the x-axis
via the cdf F .

Figure 4: The inverse transform method

Example 3.1. To generate a random point from pdf

f(x) =

2x, x ∈ [0, 1]

0, otherwise,

first we obtain its corresponding cfd

F (x) =


0, x ∈ (−∞, 0),

x2, x ∈ [0, 1]

1, otherwise,

then we generate a uniform variable U and finally we set X = F −1(U) =
√

U .

8

Sampling from exponential distribution
If X ∼ Exp(λ), then its pdf f is given by f(x) = λe−λx and its cdf F by

F (x) =
∫ x

0
λe−λydy = 1− e−λx, x ⩾ 0.

The inverse of F is F −1(x) = − 1
λ

ln(1− x). Thus, to sample from the exponential distribution,
we assume U ∼ U(0, 1) and set

X = −1
λ

ln(U) ∼ Exp(λ). (3.2)

Keep in mind that U ∼ U(0, 1) implies 1− U ∼ U(0, 1).
Here we write a Python function to generate N random variable with exponential distribu-

tion.

def RandExp(lam,N):
lam: distribution parameter, N: number of requested samples
U = np.random.rand(N) # generate N uniform numbers in [0,1)
X = -1/lam*np.log(1-U) # use inverse transform to generate X
return X

The following code snippet plots the histogram of N = 500 generated points with parameter
λ = 0.5.

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize = (5,3))
lam, N = 0.5, 500
X = RandExp(lam,N)
plt.hist(X, bins = 30, histtype = ’bar’, color = ’red’, density = ’true’)
x = np.linspace(0,15,200)
f = lam*np.exp(-lam*x)
plt.plot(x,f,linestyle = ’-’, color = ’blue’)
plt.title(’Histogram of X and the pdf $f(x)$’)
plt.xlabel(’X’)
plt.ylabel(’Frequency %’)

In Figure 5 the histograms for λ = 0.5 with N = 500 and N = 5000 are shown. For
comparison the pdf of the exponential distribution is also plotted in the figures.

9

0 2 4 6 8 10 12 14
X

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc
y

%
Histogram of X and the pdf f(x)

0 2 4 6 8 10 12 14 16
X

0.0

0.1

0.2

0.3

0.4

0.5

Fr
eq

ue
nc
y

%

Histogram of X and the pdf f(x)

Figure 5: Histograms of generated random variables with exponential distribution Exp(0.5) using the
inverse transform method. N = 500 (left), N = 5000 (right)

Sampling from normal distribution
In the Appendix A.8 we have shown how a change of variables can help to generate random

points from the normal distribution using the inverse transform method. However, in our codes
in the sequel, we use some built-in functions in Python. We either use

U = np.random.normal(mu, sigma2, N)

which generates N normal random points with mean mu and variance sigma2, or use

U = np.random.randn(N)
U = mu + sigma*U

which first generates N standard normal points (from N (0, 1)) and then transfers them into
a new set of points with distribution N (µ, σ2) using the fact that if Z ∼ N (0, 1) then X =
µ + σZ ∼ N (µ, σ2).

Sampling from discrete distributions
So far, we have only sampled from continuous distributions. However, the inverse transform

method can easily be applied to sample from discrete distributions as well. Let X be a discrete
distribution with

P(X = xk) = pk, k = 1, 2, . . . , m
m∑

k=1
pk = 1.

Without lose of generality, let x1 < x2 < · · · < xm. The cdf of X is given by

F (x) =
∑

k:xk⩽x

pk.

The plot of F looks like a step-wise function and is shown in Figure 6.

10

x

F (x)

x1 x2 x3 X = x4 x5

1

p1

{ p2{
p3
{

}
p4U

p5
{

Figure 6: Inverse transform method for a discrete random variable.

To sample from such discrete random variable, according to definition of F −1 in (3.1), first
we generate a uniform distribution U ∼ U(0, 1) and then we find the smallest positive integer
k such that U ⩽ F (xk). Finally X = xk is reported. Equivalently

X =



x1, 0 < U ⩽ p1

x2, p1 < U ⩽ p1 + p2

x3, p1 + p2 < U ⩽ p1 + p2 + p3
...

...

A Python function is given below. The inputs are the sorted vector x containing the states
xk, the corresponding probability vector p, and N the number of samples requested. The output
is the vector X containing N random points distributed with DD{[x1, . . . , xm], [p1, . . . , pm]}.

def RandDisct(x, p, N):
x: sorted states, p: probabilities, N: number of requested samples
cdf = np.cumsum(np.array(p)) # compute the cumulative vector
U = np.random.rand(N) # generate N uniform numbers in [0,1)
idx = np.searchsorted(cdf, U) # search U values in cdf intervals
X = np.array(x)[idx]
return X

Example 3.2. Using the code snippet below, we roll a dice 10 times and report the result.

x = [1,2,3,4,5,6]
p = [1/6,1/6,1/6,1/6,1/6,1/6]
X = RandDisct(x, p, 10)
print(’dice rolls = ’, X)

The result of a run is

11

dice rolls = [5 2 4 4 4 5 6 2 1 3]

To sample from the Bernoulli distribution Ber(a) for a ∈ [0, 1] we can call the RandDisc
function with x = [0,1] and p = [1-a,a]. We can also use the following independent function
to sample a vector of Bernoulli variables with probability p ∈ [0, 1]. This function generates a
uniform variable U ∼ U(0, 1), then sets X = 1 if U ⩽ p, and X = 0 otherwise.

def RandBer(p, N):
p: the probability, N: number of requested samples
X = np.zeros(N) # set X = [0,0,...,0] initially
U = np.random.rand(N) # generate N uniform numbers in [0,1)
idx = np.where(U <= p) # find indices for which U is less than p
X[idx] = 1 # change the corresponding values in X to 1
return X

Remark 3.1. The RandDisct function can be used to generate samples from other discrete
distributions. For example, if X ∼ Bin(p, n) with pdf

f(x) =
(

n

x

)
px(1− p)n−x, x = 0, 1, . . . , n,

then it is enough to call X = RandDisct(x,p,N) for x = [0, 1, . . . , n] and p =
[f(0), f(2), . . . , f(n)].
There exist other approaches to generate binomial samples. For example one can generate
n iid random variables X1, . . . , Xn from Ber(p) and set X = X1 + · · ·+ Xn.

Remark 3.2. The numpy.random module provides a variety of built-in functions for gener-
ating random samples from commonly used distributions. For discrete distributions, you
can use the function numpy.random.choice instead of the RandDisct function.

3.2 Acceptance-Rejection method
Usually, the inverse of the cdf F is not available explicitly, and a numerical inversion might

be costly and inefficient. This will make the application of the inverse transform method
limited. The acceptance-rejection method, introduced by Stan Ulam and John von Neumann,
is a more general method that can be used instead.

Suppose that we want to sample from a bounded pdf f which is defined on some finite interval
[a, b] and is zero outside this interval. Suppose further that we have an efficient method for
sampling from another random variable with pdf g. We follow [Rubinnstein-Kroese:2017]
and for simplicity we first assume that g(x) = 1 on [a, b] and

c = sup{f(x) : x ∈ [a, b]}.

12

The graph of f is clearly under (dominated by) the graph of cg(x) ≡ c. See the left panel in
Figure 7.

f (x)

c

f (x)

Cg(x)

Figure 7: Bounding a pdf f(x) by a function ϕ(x) = Cg(x).

Now, we can generate a random variable X ∼ f by using the following algorithm.

Algorithm 2 Acceptance-Rejection Algorithm 1
Require: Distribution f on interval [a, b], Constant c

1. Generate X ∼ U(a, b)
2. Generate Y ∼ U(0, c) independent of X
3. If Y ⩽ f(X), accept X. Otherwise return to step 1.

Ensure: Random point X from distribution f

Since X and Y are uniform, (X, Y) is uniformly distributed on rectangle [a, b] × [0, c]. In
this rectangle the points (X, Y) under the graph of f are accepted based on item 2 and the
others are rejected. Thus the accepted points are uniformly distributed in the domain under
the graph of f . This means that the distribution of accepted values of X has the pdf f . See
Figure 8.

Since X and Y are uniformly distributed, the pair (X, Y) is uniformly distributed on rect-
angle [a, b]× [0, c]. In this rectangle, points (X, Y) that lie under the graph of f are accepted
according to the criterion in step 4 of Algorithm 2, while the others are rejected. As a result,
the points that are accepted are uniformly distributed in the region under the graph of f . This
means that the distribution of the accepted values X is f . The proof will come soon. See
Figure 8 for an illustration.

13

Figure 8: The graph of pdf f (red curve), the bivariate uniformly distributed points on the rectangle
(black and blue points together), and accepted (black) and rejected (blue) points. The x-component
of accepted points are f -distributed.

Sometimes, as we observe from Figure 8, this algorithm produces many rejected points,
which slows down the process. To overcome this inefficiency, we can replace the constant c

with a general function ϕ(x) = Cg(x), where g is a pdf from which random variables can be
easily generated. The pdf g and the constant C ⩾ 1 must be chosen carefully so that the
graph of f lies under the graph of ϕ while ensuring they are as close as possible to minimize
the number of rejected points thereby improve the efficiency of the algorithm. See the right
panel of Figure 7. The distribution g is called the proposal distribution. The algorithm is given
below.

Algorithm 3 Acceptance-Rejection Algorithm 2
Require: Distribution f , Proposal distribution g, Constant C

1. Generate X ∼ g
2. Generate Y ∼ U(0, Cg(X)) independent of X
3. If Y ⩽ f(X), accept X. Otherwise return to step 1.

Ensure: Random point X from distribution f

The random variable generated from this procedure has indeed the desired pdf f . Because if
we denote the area under graph ϕ(x) = Cg(x) by A and the area under graph f(x) by B, then
the steps 1 and 2 of the above procedure imply that the random variable (X, Y) is uniformly
distributed on A. To prove this let h(x, y) be the joint pdf of (X, Y). Then we have

h(x, y) = h(y|x)g(x), (x, y) ∈ A.

Item 2 shows that h(y|x) = 1
Cg(x) for y ∈ [0, Cg(x)]. Therefore, h(x, y) = 1/C for (x, y) ∈ A

which proves that (X, Y) is uniformly distributed on A. This shows that an accepted variable
(X̃, Ỹ) is uniformly distributed on B. Since the area of B is unity, the pdf of (X̃, Ỹ) is 1. The
marginal pdf of Z = X̃ on B is ∫ f(x)

0
1 dy = f(x),

which completes the proof.

14

The efficiency of the acceptance-rejection algorithm is quantifies by

P((X, Y) is accepted) = area of B
area of A = 1

C
,

which means that for a greater efficiency g should be as close as possible to f in order to be
able to choose a constant C close to 1.

In item 2 of Algorithm 3 we have Y ∼ U(0, Cg(x)) which can be rewritten as Y = UCg(X)
where U ∼ U(0, 1). Using this, item 3 can be replaced by U ⩽ f(X)/(Cg(X)). Theses result
in a new version for the algorithm.

Algorithm 4 Acceptance-Rejection Algorithm 3
Require: Distribution f , Proposal distribution g, Constant C

1. Generate X ∼ g
2. Generate U = U(0, 1)
3. If U ⩽ f(X)/(Cg(X)), accept X. Otherwise return to step 1.

Ensure: Random point X from distribution f

A Python code is given here. The input arguments f and g are desired and proposal
distributions, C is the constant factor, and N is the number of samples we ask. The input gGen
is an independent function which draws random samples from g. Finally, arg_gGen are input
arguments required to execute gGen. The output is the vector Z containing N samples with
pdf f .

def RandAcceptReject(f, g, C, N, gGen, *arg_gGen):
Z = np.zeros(N)
for k in range(N):

reject = True
while reject:

X = gGen(*arg_gGen)
U = np.random.rand()
if U <= f(X)/(C*g(X)):

Z[k] = X
reject = False

return Z

Example 3.3. Consider again the pdf f from Example 3.1. To draw samples from this pdf
assume that g(x) = 1 and C = 2. Since f(x)/(Cg(x)) = x, we generate uniform variables
X ∼ U(0, 1) and U ∼ U(0, 1), and accept X if U ⩽ X. If not, we repeat the process until
receiving an acceptance. Using the following code we generate N = 500 and 5000 random
points from f and plot the histograms. See Figure 9.

15

import numpy as np
import matplotlib.pyplot as plt
f = lambda x: 2*x
g = lambda x: 1
def gGen(a, b, N):

U = np.random.uniform(a, b, N)
return U

arg_gGen = 0, 1, 1
C = 2
N = 500
X = RandAcceptReject(f, g, C, N, gGen, *arg_gGen)
plt.figure(figsize = (5, 3))
plt.hist(X, bins = 30, histtype = ’bar’, color = ’red’, density = ’true’)
x = np.linspace(0,1,200)
plt.plot(x,f(x),linestyle = ’-’, color = ’blue’)
plt.title(’Histogram of X and the pdf $f(x)$’)
plt.xlabel(’X’)
plt.ylabel(’Frequency %’)

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
%

Histogram of X and the pdf f(x)

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y
%

Histogram of X and the pdf f(x)

Figure 9: Histograms of generated random variables with pdf f in Example 3.1 using the
acceptance-rejection algorithm. N = 500 (left), N = 5000 (right)

The acceptance-rejection method can also be used to draw samples from the standard normal
distribution. The positive portion of the normal standard pdf (with µ = 0 and σ = 1) can be
dominated by a constant C times the pdf of the exponential distribution. We can generate a
positive random variable X from the pdf

f(x) =
√

2
π

exp
(
−x2/2

)
, x ⩾ 0

and then assign it a random sign. The sign can be sampled from the Bernoulli distribution. We
assume that g(x) = exp(−x) which is the pdf of Exp(1), and C =

√
2e/π to have f(x) ⩽ Cg(x).

16

See Figure 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2 f (x)
Cg(x)

Figure 10: Bounding the positive part of the standard normal distribution f(x) by a constant times
the exponential distribution g(x) = exp(−x).

The acceptance-rejection algorithm begins with generating a random variable X ∼ Exp(1).
The acceptance condition then is

U ⩽
f(X)

Cg(X) = exp
(
−(X − 1)2/2

)
),

or equivalently
− ln U ⩾

(X − 1)2

2 .

From (3.2) we know that − ln U ∼ Exp(1). Thus the last inequality can be rewritten as

V1 ⩾
(V2 − 1)2

2
where V1 and V2 are independent and both of Exp(1) distribution.

Finally we note that a short section on generating from multivariate distributions (in par-
ticular the multivariate normal distribution) is given in Appendix A.9.

4 Monte Carlo method – II
As we observed in section 2, Monte Carlo uses random points to estimate the mean of

(complicated) random variables/processes. For continuous random variables it is equivalent
to solving certain integrals. If X is a continuous random variable with pdf f(x), and g(X) is
some function of X, then g(X) becomes a new random variable. The expectation of g(X) is
given by (refer to (A.7) in the Appendix)

E[g(X)] =
∫ ∞

−∞
g(x)f(x) dx.

The Monte Carlo method is an stochastic tool to approximate such integrals numerically, par-
ticularly when it is hard to apply the available deterministic methods (e.g. in high-dimensional
spaces or on complex domains). The process is called Monte Carlo integration. Consider the
generic integral ∫ b

a
g(x)f(x) dx

17

where f(x) is a pdf associated with a random variable X, and g(x) is some function, often
referred to as the performance function. This integral can be interpreted as the expectation
E[g(X)] of the random variable g(X), where X is distributed according to the pdf f(x).

The expected value can be estimated by drawing random samples from distribution f(x),
evaluating g(x) at these random points, and then averaging the results. Specifically, the Monte
Carlo procedure follows these steps:

1. Generate N random samples x1, x2, . . . , xN from pdf f(x).

2. For each sample xk, compute the corresponding value g(xk).

3. Approximate the integral by computing the average of these values:
1
N

N∑
k=1

g(xk) =: gN .

As N increases, this approximation converges to the true value of the integral, thanks to the
law of large numbers. The convergence proof will come soon.

Example 4.1. Consider the following 1D integral

I =
∫ 1

0
g(x) dx.

This integral can be interpreted as the expectation of g(X), where X is a uniformly dis-
tributed random variable on the interval [0, 1]. In other words

I = E[g(X)] =
∫ 1

0
g(x) · 1 dx, X ∼ U(0, 1).

The Monte Carlo method generates N random points x1, x2, . . . , xN from distribution
U(0, 1), and computes

I ≈ 1
N

(g(x1) + g(x2) + · · ·+ g(xN))
A code snippet is given below for g = sin x.

import numpy as np
def g_fun(x):

return np.sin(x) # the integrand g(x) = sin(x)
int_exact = 1-np.cos(1) # the exact value for comparison
int_mc = np.zeros(6)
for k in range(6):

N = 10**k # number of points from 1, 10,..., 10^5
X = np.random.uniform(0, 1, N) # generate uniform random points in [0,1]
g = g_fun(X) # evaluate the integrand on X
int_mc[k] = np.mean(g) # take mean

print(’int_mc = ’,
np.round(np.abs(int_exact-int_mc),5)) # errors, rounded to 5 decimals

18

An execution gives

int_mc = [0.03652 0.08578 0.02132 0.00362 0.00203 0.00063]

A new execution will result in a new (different) error vector as the integral points are
generated randomly.

int_mc = [0.03011 0.00532 0.00749 0.01049 0.00279 0.00023]

In any case, the accuracy improves as the number of random samples N increases. However,
the convergence speed is slow.
In general to estimate the integral of a function g on finite interval [a, b] the Monte Carlo
integration is applied as below:∫ b

a
g(x)dx = (b− a)

∫ b

a
g(x) 1

b− a
dx ≈ (b− a)︸ ︷︷ ︸

width

1
N

N∑
k=1

g(xk)︸ ︷︷ ︸
mean hight

, xk ∈ U(a, b)

See also Figure 11 for an illustration.

a x1 x2 x3 x4 x5 b

width

g(x)

hights

Figure 11: Schematic of 1D Monte Carlo integration

Example 4.2. To estimate the value of integral

I =
∫ ∞

−∞
(x4 − x + 1)e−x2/2dx

using Monte Carlo method, we can write

I =
√

2π
∫ ∞

−∞
(x4 − x + 1)︸ ︷︷ ︸

g(x)

1√
2π

e−x2/2

︸ ︷︷ ︸
f(x)

dx

where f(x) is the pdf of the standard normal distribution on (−∞,∞). The estimate then

19

is
I ≈
√

2π × 1
N

N∑
k=1

(x4
k − xk + 1)

where xk are generated from N (0, 1).

Exercise 4.1. Estimate the integral

I =
∫ ∞

0
e−0.5x(x2 − x)dx

using the Monte Carlo integration with different numbers of N . Identify the right distribu-
tion to sample from for this estimation.

4.1 Convergence of Monte Carlo integration
Before providing an analysis for convergence of the Monte Carlo method, we first compare

its convergence rate with a deterministic method for computing a one-dimensional integral. As
a simple deterministic integration quadrature consider the mid-point (MP) rule:∫ 1

0
g(x)dx = h [g(x∗

1) + g(x∗
2) + · · ·+ g(x∗

N)] +O(h2)

= 1
N

[g(x∗
1) + g(x∗

2) + · · ·+ g(x∗
N)] +O(N−2)

where h = 1/N and N is the number of integration points in the interval [0, 1], and x∗
k =

(xk−1 +xk)/2 are mid points. Compared to the Monte Carlo method, the integration points x∗
k

in the mid-point rule are a set of equidistance points. For a sufficiently smooth function, say
g ∈ C2[a, b], the order of convergence of this method is 2 — if h is halved (equivalently if N is
doubled) then the error is quartered. The error plot for both methods are given in Figure 12.
For Monte Carlo, the results of ten simulations are depicted and the approximate average rate
is computed, which is close to 0.5.

100 101 102 103 104 105 106

N

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

er
ro
r

p= 2

p= 0.5

MP method
MC method, 10 simulations

Figure 12: Convergence orders of Monte Carlo (MC) and mid-point (MP) methods for integration.

The convergence of the mid-point rule is of order h2, or equivalently N−2. When we extend

20

this rule to a two-dimensional integral on a rectangular domain, the convergence remains at
order h2, which translates to N−1 since, in two dimensions, h is proportional to N−1/2. In
general, for a d-variate integral, the convergence of the mid-point method is of order N−2/d

in the maximum norm. This reduction in the convergence order with increasing dimensions
also occurs in other deterministic methods, such as the trapezoidal method and Simpson’s
method. However, as we will see, the convergence of the Monte Carlo method is almost surely
of order N−1/2, independent of the dimension. This indicates that while deterministic methods,
if practically applicable, are preferred for low-dimensional integrals, the Monte Carlo method
is often a better choice for high-dimensional integrals.

In order to determine how accurate the Monte Carlo solution is, we assume that X is
a random variable with pdf f and X1, X2, . . . , XN is a sample (a set of independent and
identically distributed (iid) random variables) from X. For a function g, assume that g(X), as
another random variable, has the mean µ and variance σ2, i.e.,

µ = Ef [g(X)], σ2 = Varf [g(X)].

Since, Xk are iid, all g(Xk) have the same mean µ and variance σ2. The new random variable

Y = 1
N

N∑
k=1

g(Xk), Xk ∼ f (4.1)

is an unbiased estimator for µ = E[g(X)] in the sense that

E(Y) = 1
N

N∑
k=1

E[g(Xk)] = Nµ

N
= µ.

What can we say about the variance of Y ? Using the central limit theorem (see Appendix
A.10), for sufficiently large values of N we have

Y ∼ N (µ, σ2/N) or
√

N
Y − µ

σ
∼ N (0, 1).

This shows that the variance of Y is σ2/N , proving that Y approaches µ in probability with
convergence rate O(1/

√
N). More precisely, assume that Φ denotes the standard normal cdf

and zγ denotes the γ-quantile of N (0, 1), i.e., Φ(zγ) = γ. This means that if Z ∼ N (0, 1) then

P(−z1−α/2 ⩽ Z ⩽ z1−α/2) = 1− α.

Thus, we can write

P

(
−z1−α/2 ⩽

√
N(Y − µ)

σ
⩽ z1−α/2

)
= 1− α.

or equivalently

P

(
µ− z1−α/2

σ√
N

⩽ Y ⩽ µ + z1−α/2
σ√
N

)
= 1− α.

In other words, with probability (1− α)100% the confidence interval for Y is[
µ− z1−α/2

σ√
N

, µ + z1−α/2
σ√
N

]
.

See Figure 13. For example, if α = 0.05 then z1−α/2 = z0.975
.= 1.96, which means that with

21

Figure 13: Confidence interval in the standard normal distribution

95% probability Y falls in interval[
µ− 1.96 σ√

N
, µ + 1.96 σ√

N

]
.

This probability will increase to 99% if we replace the factor 1.96 in the confidence interval by
z0.995

.= 2.576, and to 0.999% by z0.9995
.= 3.29. In general, the accuracy of the estimator Y is

determined by its standard deviation, i.e., σ/
√

N .
We again emphasis that µ and σ2 are the mean and the variance of random variable g(X).

Our aim was to estimate µ but for error estimation the value of σ is also required. Usually, σ2

is unknown, but can be estimated with the sample variance

s2
N = 1

N − 1

N∑
k=1

(g(xk)− gN)2, gN = 1
N

N∑
k=1

g(xk)

where xk are generated from pdf f . The sample variance s2
N tends to σ2 by the law of large

numbers. Consequently, for large values of N , the approximate confidence interval for Y is[
µ− z1−α/2

sN√
N

, µ + z1−α/2
sN√
N

]
.

We must be aware that the confidence interval can be trusted as far as s2
N is a proper estimate

for the variance σ2.

Example 4.3. To estimate the cdf of the standard normal distribution, i.e.,

Φ(t) =
∫ t

−∞

1√
2π

e−x2/2dx (4.2)

using the Monte Carlo method, we generate N normal variable X1, . . . , XN ∼ N (0, 1) and
set

Φ(t) = 1
N

N∑
k=1

IXk⩽t, (4.3)

with (exact) variance Φ(t)[1− Φ(t)]/N =: σ2/N , since the variables IXk⩽t are independent
Bernoulli variables with success probability Φ(t). Here, IA = 1 or 0 when A is true or false,
respectively. The confidence interval tells that with (1 − α)100% probability the error is
at most z1−α/2σ/

√
N (or approximately z1−α/2sN/

√
N). For example, for t = 0 we have

Φ(t) = 0.5 and σ2 = Φ(t)[1 − Φ(t)] = 1/4. For this special case, to achieve a precision of
three decimals with probability 95%, we set α = 0.05, giving z1−α/2

.= 1.96, and choose N

22

such that
z1−α/2σ√

N

.= 1.96
2
√

N
⩽

1
210−3.

which gives N > 3.85 ·106. Experimental results for different values of N and t are obtained
by executing the following code.

import numpy as np
from scipy.stats import norm
t, K = 0, 7
Phi, PhiBar = norm.cdf(t), np.zeros(K)
for k in range(K):

N = 10**(k+1)
X = np.random.normal(0,1,N)
PhiBar[k] = 1/N*len(X[(X < t)])

Error = abs(PhiBar-Phi)/Phi
print(’Phi(’,t,’) = ’,Phi,’\n’,’PhiBar = ’,PhiBar,’\n’,’Error = ’,Error)

Here, an output of this code for t = 0 is given. We again note that Φ(0) = 0.5. The last
estimation 0.5002081 with relative error 0.0004162 corresponds to N = 107 standard normal
samples, which confirms our error estimation above.

Phi(0) = 0.5
PhiBar = [0.7 0.46 0.516 0.4983 0.50105 0.500231 0.5002081]
Error = [0.4 0.08 0.032 0.0034 0.00210 0.000462 0.0004162]

However, if we execute the code for t = −4.5, i.e., to estimate Φ(−4.5) .= 3.39767 × 10−6,
the following results will be obtained.

Phi(-4.5) = 3.3976731247300535e-06
PhiBar = [0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 4.0e-06 3.6e-06]
Error = [1. 1. 1. 1. 1. 1.8e-01 6.0e-02]

In this experiment, we observe that for values of N up to 105, the estimated values remain
at 0, resulting in errors of 100%. This outcome indicates that none of the generated random
points fall before x = −4.5. For larger values of N , such as 106 and 107, the estimations are
nonzero but still quite poor. The issue lies in the fact that we are attempting to estimate
the probability of a very rare event. To have enough samples from f in such sub-domains
(x ≤ −4.5, the left tail of normal distribution), a huge number of samples is needed in
the whole domain. This is a drawback of the basic Monte Carlo method. However, by
applying a modification we can significantly improve the accuracy with fewer samples. This
is discussed in the next subsection.

23

4.2 Importance sampling
The importance sampling approach is based on the principle that the expectation of g(X)

with respect to density f can be written in the alternative form

Ef [g(X)] =
∫

g(x)f(x)dx =
∫

g(x)f(x)
ℓ(x) ℓ(x)dx = Eℓ

[
g(X)f(X)

ℓ(X)

]
(4.4)

where ℓ(x) is another density function, called the importance sampling function or envelope.
Equation (4.4) suggests to estimate Ef [g(X)] by drawing iid random variables X1, . . . , XN from
ℓ (not f !) and use the estimator

YIS = 1
N

N∑
k=1

g(Xk)f(Xk)
ℓ(Xk) , Xk ∼ ℓ (4.5)

instead of basic estimator (4.1). Here, the subscript ‘IS’ stands for ‘Importance Sampling’. For
this strategy to work, it must be easy to sample from ℓ and to evaluate f , even when it is
not easy to sample from f . Indeed, (4.5) does converge to Ef [g(X)] for the same reason the
basic Monte Carlo estimator converges, whatever the choice of the distribution ℓ is, as long as
supp(ℓ) ⊂ supp(g × f). This assumption on the support of ℓ is important because a smaller
support truncates the integral (4.4) and produces a biased result. The ratio of densities is
denoted by

w(x) = f(x)
ℓ(x) ,

and is called the likelihood ratio. This ratio needs only to be known up to a constant; let say
w(x) = cw̃(x). This is useful, for example, when the distribution f or ℓ is known only up to a
constant. Since Eℓ[w(X)] = 1 we can write

Ef [g(X)] = Eℓ [g(X)w(X)] = Eℓ [g(X)w(X)]
Eℓ [w(X)] ,

which motivates the weighted sample estimator
1
N

N∑
k=1

g(Xk)w(Xk)

1
N

N∑
k=1

w(Xk)
=

N∑
k=1

wkg(Xk)

N∑
k=1

wk

=: Y w
IS (4.6)

where wk = w̃(Xk). Note that the estimators YIS and Y w
IS are mathematically the same but

Y w
IS can also be used in situations where either f or ℓ is missing a normalizing constant. Both

number N and constant c are cancelled from the numerator and denominator in (4.6).

Example 4.4. Coming back to Example 4.3, consider again the estimation of Φ(t), the
cdf of the standard normal distribution. As we observed, the basic Monte Carlo method
fails to produce accurate estimation for Φ(−4.5), at least for values of N smaller than 106.
Here, we apply an importance sampling estimator. Let f be the pdf of the standard normal
distribution. We consider a distribution ℓ with a support restricted to (−∞,−4.5] to remove
the unnecessary variation of the basic Monte Carlo estimator due to simulating zero values
for x > −4.5. A good choice is to take ℓ(x) = ℓ̃(−x − 4.5) for x ∈ (−∞,−4.5], where ℓ̃ is

24

the pdf of the exponential distribution Exp(1), i.e.

ℓ(x) = exp(x + 4.5), x ⩽ −4.5

See Figure 14.

Figure 14: The primary pdf f and the importance sampling pdf ℓ.

The support of ℓ is the same as the integral domain in (4.2) for t = −4.5. If we generate
random variables X1, . . . , XN from ℓ then g(Xk) = IXk⩽−4.5 = 1 for all k = 1, . . . , N and
the estimation (4.5) becomes

ΦIS(t) = 1
N

N∑
k=1

f(Xk)
ℓ(Xk) , (4.7)

for t = −4.5. The code and the outputs are given below.

t = -4.5
import numpy as np
from scipy.stats import norm, expon # normal and exponential dist.
K = 7
Phi, PhiBar = norm.cdf(t), np.zeros(K)
for k in range(K):

N = 10**(k+1)
X = -RandExp(1,N) + t
gX = 1
fX = norm.pdf(X, loc = 0, scale = 1)
ellX = expon.pdf(-(X-t), scale = 1)
PhiBar[k] = 1/N*np.sum(gX*fX/ellX)

Error = abs(PhiBar-Phi)/Phi
print(’ Phi(’,t,’)=’,Phi,’\n’,’PhiBar=’,PhiBar,’\n’,’Error =’,Error)

Outputs:

25

Phi(-4.5)=3.398e-06
PhiBar=[2.068e-6 4.084e-6 3.332e-6 3.417e-6 3.388e-6 3.396e-6 3.397e-6]
Error =[3.912e-1 2.019e-1 1.946e-2 5.720e-3 2.958e-3 4.943e-4 1.252e-4]

We observe more accurate estimations compared with the results obtained at the end of
Example 4.3 using the basic Monte Carlo method.

To analyze the results of Examples 4.3 and 4.4 we can look at the variances of estimators
(4.1) for basic Monte Carlo and (4.5) for Monte Carlo with importance sampling. Since Xk

are assumed to be independent random variables from either f or ℓ, the variance of Y or YIS

is the sum of the variances of the individual terms divided by N . The variances of individual
variables in (4.1) and (4.5) are

Varf [g(X)] = Ef (g2(X))− (Ef [g(X)])2 =
∫

g2(x)f(x)dx−
(∫

g(x)f(x)dx
)2

,

Varℓ

[
g(X)f(X)

ℓ(X)

]
=
∫

g2(x)f 2(x)
ℓ(x) dx−

(∫
g(x)f(x)dx

)2
,

respectively. The second terms (squares of expectations) are the same for both variances.
However, depending on the importance sampling function ℓ, the first term in the second vari-
ance can be smaller than the first term in the first variance. To have this, we assume that
f 2(x)/ℓ(x) ⩽ f(x) or equivalently, f(x) ⩽ ℓ(x) for all x in the integration domain. This means
that ℓ should not have a “lighter tail” than f . See the graphs of f and ℓ in Figure 14.

Exercise 4.2. Coming back to Examples 4.3 and 4.4, show that for t = −4.5 we have

Varf (Φ) = Φ(−4.5)[1− Φ(−4.5)]/N
.= 3.3977

N
× 10−6,

Varℓ

(
ΦIS

)
=
[
exp(−4)/(2N

√
π)Φ(−4

√
2)
]
− [Φ(−4.5)]2 .= 3.8373

N
× 10−11.

What do you conclude from this comparison?

Exercise 4.3. Execute the Python code of Example 4.4 with t = 0 instead of t = −4.5.
Compare the outputs with those of Example 4.3. Report your observation and try to give
an analysis.

To find a proper importance sampling function ℓ, one may try to minimize

Varℓ

[
g(X)f(X)

ℓ(X)

]
over all possible functions ℓ. We can show that the solution of this minimization problem is

ℓ∗(x) = |g(x)|f(x)∫
|g(x)|f(x)dx

,

26

and in particular case g(x) ⩾ 0,

ℓ∗(x) = g(x)f(x)
Ef [g(X)] .

This sampling function results in a zero variance for its corresponding importance sampling
estimator. However, the optimal density ℓ∗ is not practical because deriving ℓ∗ requires knowing
Ef [g(X)], which is the quantity we are trying to estimate it! Additionally, in some cases, the
explicit form of the performance function g(x) may not be known in advance. In practice, we
try to approximate ℓ∗ using sample values g(X1), . . . , g(XN). We do not pursue this further
and refer you to more advanced texts in Monte Carlo simulation.

5 Stochastic processes
A stochastic process is a family of random variables evolving in time. For example, each

stochastic solution of the radioactive decay problem given on the right-hand side of Figure 1
is a stochastic process. When it comes to compare with the deterministic case, the solution
of a deterministic model (e.g. a differential equation) is a function while the solution of its
stochastic counterpart is a stochastic process. In practice, we can have a set of stochastic
processes as solutions, and a possibility is to use the Monte Carlo method to average them and
provide an estimate of the expected behavior of the system.

Definition 5.1. A family of random variables {Xt : t ∈ T } =: X is called a stochastic
process or random process. If T = {0, 1, 2, . . .} =: N0 the sequence X0, X1, . . . is called a
stochastic process with discrete time parameter, and if T = [0,∞) the family is called a
stochastic process with continuous time parameter. The first random variable X0 is called
the initial state of the process; and the random variable Xt for a t ∈ T is called the state of
the process at time t.

We note that the index family T determines the discrete and continuous nature of the
stochastic process. Independent of this, random variables Xt (states) may have either discrete
or continuous probability density functions.

Example 5.1. Suppose that a certain business office has five telephone lines, each one of
which might be in use at any given time. At discrete times t = 0, 1, 2, . . . minutes the
telephone lines are observed and the number of lines that are being used at each time is
noted. Let X0 denote the number of lines that are being used at the first time, let X1 denote
the number of lines that are being used at the second time, 1 minutes later; and in general

Xt = the number of lines that are being used when they are observed time t.

Then X0, X1, X2, . . . , is stochastic process with discrete time parameter. The state Xt of
the process at any discrete time t is the number of lines being used at that time. Therefore,

27

each state must be an integer between 0 and 5.

Example 5.2. A coin purse contains 5 quarters (each worth 25¢), 5 dimes (each 10¢) and 5
nickels (each 5¢). Assume that we draw coins one by one and set on a table. Let

Xt = total value of coins set on the table after t draws.

We see that {Xt, t = 0, 1, 2, . . .} is a stochastic process with discrete time variable t =
0, 1, 2, . . . with initial state X0 = 0.
Assume that in the first 6 draws, 3 nickels and 1 quarter and 2 dimes are drawn with

X1 = 25, X2 = 30, X3 = 35, X4 = 45, X5 = 50, X6 = 60.

quarter nickel nickel dime nickel dime
What is the probability of X7 = 65 given the above information? We are left with 4 quarters,
3 dimes and 2 nickels. We simply see that P(X7 = 65 | all information above) = 2/9 and
P(X7 = 80 | all information above) = 0. This means that we can predict the future of the
process (i.e. the state at time t + 1) based on available information at all previous times
t = 0, 1, . . . , t.
In a stochastic process with a discrete time parameter, the state of the process varies in a

random manner from time to time. To describe a complete probability model for a particular
process, it is necessary to specify the distribution for the initial state X0 and also to specify
for each t = 0, 1, . . . the conditional distribution of the subsequent state Xt+1 given X1, . . . , Xt.
These conditional distributions are equivalent to the collection of conditional probabilities of
the form

P(Xt+1 = xt+1|X0 = x0, X1 = x1, . . . , Xt = xt).

5.1 Markov processes
Markov processes are stochastic processes whose futures are conditionally independent of

their pasts given their present values. On the other words, a stochastic process is Markov, if
one can make predictions for the future of the process based solely on it’s present state. One
can say that a Markov process is memoryless.

Example 5.3. The stochastic process Xt in Example 5.2 is not a Markov process because
any prediction about X7 would require all information of previous states X6, . . . , X1. Now
we define a new process

Yt = (qt, dt, nt),
where qt, dt, and nt are the counts of quarters, dimes, and nickels, respectively, on the
table at time t. For example, Y0 = (0, 0, 0), Y1 = (1, 0, 0), Y2 = (1, 0, 1), . . ., Y6 = (1, 2, 3).
The process Yt is Markov because the probability distribution of Yt+1 depends only on the
current state Yt and not the earlier states.

28

A Markov process with a discrete index set, i.e. T = N0 is called a Markov chain. The
states of a Markov chain can be either discrete (countable) or continuous. For a Markov chain
X = {Xt : t ∈ N0} with a discrete state space S we have

P(Xt+1 = xt+1|X0 = x0, X1 = x1, . . . , Xt = xt) = P(Xt+1 = xt+1|Xt = xt), (5.1)

for all x0, . . . , xt+1 ∈ S and t ∈ N0. This property says that the conditional distributions of
Xt+1 given X1, . . . , Xt depend only on Xt and not on the earlier states X1, . . . , Xt−1.

If the state space S is finite then the Markov chain is called finite. Using the conditional
probability rule (A.3), we have

P(X0 = x0, X1 = x1) = P(X0 = x0)P(X1 = x1|X0 = x0). (5.2)

For Markov chains, by applying the product rule (A.4) and the Markov chain property (5.1),
we can prove the following theorem.

Theorem 5.2. For a finite Markov chain the joint pdf for the first t states is
P(X0 = x0, X1 = x1, . . . , Xt = xt) =

P(X0 = x0)P(X1 = x1|X0 = x0)P(X2 = x2|X1 = x1) · · ·P(Xt = xt|Xt−1 = xt−1).
(5.3)

The proof is straightforward and is left as an exercise. Theorem 5.2 shows that the joint
distribution of a finite Markov chain X can be characterized by the distribution of the initial
state X0, i.e., P(X0 = x0), and the one-step transition probabilities

P(Xt+1 = xt+1|Xt = xt), xt, xt+1 ∈ S.

In a finite Markov chain we assume that |S| = m. It will also be convenient to name the
m states using the integers 1, 2, . . . , m or 0, 1, 2, . . . , m− 1. Then for each t and j, Xt = j will
mean that the chain is in state j at time t. For example, if the states in Example 5.1 are the
numbers of phone lines in use at given times, we have S = {0, 1, 2, 3, 4, 5} and m = 6.

Definition 5.3. If the transition probabilities P(Xt+1 = j|Xt = i) for i, j ∈ S are indepen-
dent of the time then the chain is called time-homogeneous.

For a time-homogeneous Markov chain there exist probabilities pij, independent of t, such
that

pij = P(Xt+1 = j|Xt = i), i, j ∈ S, ∀t ∈ N0. (5.4)

We can put this probabilities into a matrix P as

P =



p00 p01 p02 · · ·
p10 p11 p12 · · ·
p20 p21 p22 · · ·
...

...
...

. . .

 ,

29

which is called the transition matrix. If |S| = m then P is an m×m matrix. We note that all
elements of P are nonnegative and each row sums up to unity. i.e.,

∞∑
j=0

pij = 1,

because in the language of multivariate distributions the transition probabilities pij are indeed
conditional density functions of Xt+1 given Xt which can also be denoted by g(j|i) = pij for all
t and i, j.

Example 5.4. Consider the daily morning weather in a city. Assume there can be three
different states: (1) sunny, (2) cloudy, or (3) rainy. Observations of the weather forecasting
office show that a sunny day is never followed by another sunny day. Rainy or cloudy
weather is equally probable after a sunny day. A rainy or cloudy day is followed by 50%
probability by another day with the same weather. If, on the other hand, the weather is
changing from cloudy or rainy weather, the following day will be sunny only in half of the
cases. Based on this observation the transition matrix is

sunny cloudy rainy
sunny

⌈
0.00 0.50 0.50

⌉
cloudy

∣∣∣0.25 0.50 0.25
∣∣∣

rainy
⌊
0.25 0.25 0.50

⌋ =: P

The transition matrix is independent of time, which means that the transition rules remain
unchanged during a period of time; for example during a month. Sometimes it is easier to
have a transition graph instead of the transition matrix. The transition graph of the above
example is shown in Figure 15.

Figure 15: Transition graph of the daily weather example.

Looking at the graph, we observe that if, for example, today is cloudy then tomorrow is
sunny with 25% probability, i.e., P(Xt+1 = sunny |Xt = cloudy) = 0.25. The process is
Markov. Why?

A vector consisting of nonnegative numbers that sum to 1 is called a probability vector. The
initial distribution of the chain is also called the initial probability vector.

30

Remark 5.1. Following statistics texts, in this section a vector in Rn is considered as a
(1×n) array (a row vector). This violates our notation in previous numerical linear algebra
lectures where by a vector we meant a column vector.

For a chain with m possible states S = {1, 2, . . . , m}, the initial probability vector is

π(0) =
[
P(X0 = 1), P(X0 = 2), . . . ,P(X0 = m)

]
,

and the distribution (probability vector) of X at time t is denoted by

π(t) =
[
P(Xt = 1), P(Xt = 2), . . . ,P(Xt = m)

]
.

At t = 1, the distribution is identified according to (5.2):

π
(1)
j = P(X1 = j) =

m∑
i=1
P(X1 = j, X0 = i)

=
m∑

i=1
P(X1 = j|X0 = i)P(X0 = i)

=
m∑

i=1
pijπ

(0)
i

for j = 1, 2, . . . , m. This can be written in a matrix-vector form as

π(1) = π(0)P.

In general, we can prove by induction that

π(t) = π(t−1)P = π(t−2)PP = · · · = π(0)P t.

Note that, if π(t) is a probability vector so is π(t+1), because 0 ⩽ pij ⩽ 1 and rows of P sum
up to 1. We can also show that the t-step transition probabilities are

P(Xt = j|X0 = i) = p
(t)
ij , i, j, = 1, 2, . . . , m

where p
(t)
ij are entries of matrix P t. The proof for the 2-step transition is as follows

P(X2 = j|X0 = i) =
m∑

k=1
P(X1 = k, X2 = j|X0 = i)

=
m∑

k=1
P(X1 = k|X0 = i)P(X2 = j|X1 = k, X0 = i)

=
m∑

k=1
P(X1 = k|X0 = i)P(X2 = j|X1 = k) (Markov chain property)

=
m∑

k=1
pikpkj = p

(2)
ij .

The general case can be proved similarly.

Example 5.5. Consider the transition matrix in Example 5.4. If the weather is cloudy in
the day 0 then π(0) = [0, 1, 0], and the probability vector π(1) is computed by

π(1) = π(0)P =
[
0 1 0

] 
0 0.50 0.50

0.25 0.5 0.25
0.25 0.25 0.5

 =
[
0.25 0.5 0.25

]
.

31

This means that in the first day the weather is sunny with probability 0.25, cloudy with
probability 0.5 and rainy with probability 0.25. For the second day we compute π(2):

π(2) = π(1)P =
[
0.25 0.5 0.25

] 
0 0.50 0.50

0.25 0.5 0.25
0.25 0.25 0.5

 .=
[
0.19 0.44 0.37

]
.

We can simply predict the weather for days after.

Stationary distribution
In Example 5.5 (daily weather) let us continue to compute distribution vectors π(t) for higher

values of t, with π(t+1) = π(t)P or equivalently π(t+1) = π(1)P t. The results with initial vector
π(0) = [0, 1, 0] are (by rounding the final numbers to 4 decimal digits)

π(1) =


0.25
0.50
0.25


T

, π(2) =


0.1875
0.4375
0.3750


T

, π(3) =


0.2031
0.4063
0.3906


T

, . . . , π(6) =


0.2000
0.4001
0.3999


T

, π(7) =


0.2000
0.4000
0.4000


T

The matrix P 7 is

P 7 .=


0.2000 0.4000 0.4000
0.2000 0.4000 0.4000
0.2000 0.4000 0.4000

 .

The same result with more or less number of iterations will obtained for other choices of
initial distribution vector π(0). The distribution of the Markov chain approaches the stationary
distribution π = [0.2, 0.4, 0.4]. In fact, all rows of P t approaches this stationary distribution:

lim
t→∞

p
(t)
ij = πj, ∀i ∈ S (5.5)

with πj > 0. This, on the other hand, means that if we set the initial distribution to

π(0) = [0.2, 0.4, 0.4],

then we can show that π(1) = π(0)P = π(0) = [0.2, 0.4, 0.4], which means that π(0) is also the
distribution after one transition. Hence, it will be the distribution after two or more transitions.

Definition 5.4. The Markov chain X0, X1, . . . with transition matrix P = (pij) is called
ergodic if the limits (5.5), i.e., πj

1. exist for all j ∈ S,

2. are positive (πj > 0) and independent of i ∈ S

3. form a probability vector π = (π1, . . . , πm), i.e.,
∑
j∈S

πj = 1.

If the limits (5.5) exist then lim
t→∞

π(t+1) = lim
t→∞

π(t)P which means πP = π.

32

Definition 5.5 (Stationary Distribution). Let P be the transition matrix for a Markov chain.
A probability vector π that satisfies

πP = π (5.6)
is called a steady-state distribution for the Markov chain.

From (5.6) we observe that for a finite Markov chain if the stationary distribution π exists
then it is the eigenvector of P T corresponds to eigenvalue 1, because

P T πT = πT . (5.7)

On the other hand, since the rows of P sum up to unity we have

PeT = eT

where e = [1, 1, . . . , 1] ∈ Rm which shows that 1 is an eigenvalue of P and thus an eigenvalue
of P T because eigenvalues of P and P T are the same. This eigenvalue should correspond to at
least one eigenvector for P T that is π from (5.7). However, the uniqueness of this eigenvector
is still not guaranteed.

Let us characterize the relations between states in the following way: For arbitrary but fixed
states i, j ∈ S we say that the state j is accessible from state i if p

(t)
ij > 0 for some t ⩾ 0, we say

that i is accessible from (or leads to) state j and write i→ j. We say that i and j communicate
if i→ j and j → i, and write i↔ j. Using the relation ‘i↔ j’, we can divide the state space
S into equivalence classes such that all the states in an equivalence class communicate with
each other but not with any state outside that class. If there is only one class (i.e., S itself),
the Markov chain is said to be irreducible. Besides irreducibility we need a second property of
the transition probabilities, namely aperiodicity. The period di of the state i ∈ S is given by

di = gcd{t ≥ 1 : p
(t)
ii > 0}

where “gcd” denotes the greatest common divisor. We define di =∞ if p
(t)
ii = 0 for all t ≥ 1. A

state i ∈ S is said to be aperiodic if di = 1. The Markov chain {Xt} and its transition matrix
P = (pij) are called aperiodic if all states of {Xt} are aperiodic. We can show that the periods
di and dj coincide if the states i, j belong to the same equivalence class of communicating
states. Thus, if the Markov chain {Xt} is irreducible then all its states have the same period.
Here we give the statements of two fundamental theorems without proofs. For more details
refer to [Rubinnstein-Kroese:2017].

Theorem 5.6. The Markov chain X0, X1, . . . is ergodic if and only if it is irreducible and
aperiodic.

Theorem 5.7. For an irreducible and aperiodic Markov chain X0, X1, . . . (ergodic Markov
chain) with transition matrix P , the stationary distribution π is uniquely determined by

33

solving the eigenvalue problem (5.6). The eigenvalue λ1 = 1 is the dominant eigenvalue and
|λk| < |λ1| = 1 for λ = 2, 3, . . . , m.

5.2 Random walk on the integers
Assume that your initial state is X0 = 0 and at each time t you walk by steplength 1 either

to the right or to the left of your current position Xt with probabilities p and q, respectively,
where p ∈ (0, 1) is a real number and q = 1 − p. The process Xt is called a simple random
walk which has the state space S = Z (set of integer numbers) and a transition graph shown
in Figure 16.

−2 −1 0 1 2· · · · · ·

p p p p p p

q q q q q q

Figure 16: Transition graph for random walk on integers

The random walk Xt can be characterized as

Xt+1 = Xt + B̃t, t = 0, 1, 2, . . . ,

where B̃t has a Bernoulli distribution with state {−1, 1} and probabilities q and p. Indeed
B̃t = 2Bt − 1 where B ∼ Ber(p), the standard Bernoulli distribution. The above relation
shows that Xt+1 depends solely on Xt, i.e. the random walk is a Markov process. It is also a
Markov chain because the index set for t is discrete. We also observe that

Xt =
t−1∑
j=0

B̃j,

which means that the distribution of Xt is binomial2. Since E(B̃j) = 2p − 1 and Var(B̃j) =
4p(1− p), we simply have

E(Xt) = t(2p− 1), Var(Xt) = 4tp(1− p).

For special case p = q = 1/2 we have E(Xt) = 0 and Var(Xt) = t.
The transition matrix of the random walk process has the form

P =



. . .
...

...
...

... . .
.

· · · 0 p 0 0 · · ·
· · · q 0 p 0 · · ·
· · · 0 q 0 p · · ·
· · · 0 0 q 0 · · ·

. .
. ...

...
...

...
. . .


.

Since X starts at 0, i.e., P(X0 = 0) = 1 and P(X0 = j) = 0 for all j ∈ Z \ {0}, we have

π(0) = [· · · , 0, 0, 1, 0, 0, · · ·].
2The sum of Bernoulli distributions is a binomial distribution.

34

Then π(1) = π(0)P has the form

π(1) = [· · · , 0, q, 0, p, 0, · · ·],

which means that after one step the chain moves to right with probability p and to left with
probability q.

5.3 Gaussian processes
Gaussian processes are generalizations of multivariate normal distributions. If you are not

familiar with multivariate (normal) distributions, see sections A.5-A.7 in the Appendix.

Definition 5.8. The stochastic process {Xt, t ∈ T } is called a Gaussian process if all its
finite dimensional distributions are normal (Gaussian). In the other words, {Xt, t ∈ T } is
a Gaussian process if for any choice of n and t1, t2, . . . , tn ∈ T we have

(Xt1 , Xt2 , . . . , Xtn) ∼ N (µ, Σ)

for some expectation vector µ and covariance matrix Σ both depend on the choice of
t1, . . . , tn.

Equivalently, {Xt, t ∈ T } is a Gaussian process if any linear combination
n∑

k=1
ckXtk

has a normal distribution. A Gaussian process is fully determined by its expectation function
µ(t) = E(Xt) for t ∈ T and covariance function Σ(s, t) = Cov(Xs, Xt) for s, t ∈ T .

An important Gaussian process is the Wiener process or the standard Brownian motion,
which can also be considered as a continuous version of the random walk on the integers.

Definition 5.9. A Gaussian process {Wt, t ∈ T } with µ(t) = 0 for all t ∈ T and Σ(s, t) = s

for all 0 ⩽ s ⩽ t is called a Wiener process.

We can prove that, a Wiener process is a Markov process with a continuous sample path
that is nowhere differentiable. Moreover, in the Wiener process the increments Wt −Ws on
intervals [s, t] are independent and normally distributed. More precisely, from the definition
and for two choices s, t ∈ T with 0 ⩽ s ⩽ t we haveWs

Wt

 ∼ N
0

0

 ,

s s

s t

 .

The Cholesky factorization of the covariance matrix is

Σ =
s s

s t

 =
√s 0
√

s
√

t− s

√s
√

s

0
√

t− s

 =: BBT

which results in Ws

Wt

 =
0
0

+
√s 0
√

s
√

t− s

Z1

Z2


35

where Z1 and Z2 are two univariate standard normal distributions3. Solving the system gives
Ws =

√
sZ1 and Wt = Ws +

√
t− sZ2. The later shows

Wt −Ws ∼ N (0, t− s), for all t ⩾ s ⩾ 0. (5.8)

This proves that in the Wiener process the increments Wt−Ws on intervals [s, t] are independent
and normally distributed.

6 Stochastic process generation
In this section, we provide a brief overview of algorithms for generating a few standard

stochastic processes. However, stochastic processes are not limited to the standard examples
presented here. For any specific stochastic model, users can use standard methods for sampling
random points and random processes to generate a specific stochastic process that is a solution
to their model. In section 7 we will see an example.

6.1 Generating Markov chains
Assume that X = {X0, X1, . . . , Xn} is the first n + 1 random variables of a finite Markov

chain with initial distribution π(0), state space S = {1, 2, . . . , m}, and transition matrix P . We
follow the simulation process given at the beginning of section A.9 for dependent variables by
the use of conditional distributions. We first generate X0 from distribution π(0). If X0 = i is
generated, we then generate X1 from the conditional distribution of X1 given X0 = i. In the
other words, we generate X1 from the i-th row of P . Let X1 = j be generated. From here on,
we use the Markov property, so we generate X2 from the conditional distribution of X2 given
X1 = j, i.e. we generate X2 from the j-th row of P . This process is continued until Xn is
generated.

In the Python function below, the input variables InitDist, TransMat and ChainLen play
the roles of π(0), P and n, respectively. The outputs are the integer vector (state vector) X of
size n, and the stationary distribution StationDist of length m. The stationary distribution
is approximated by m iterations of the power method for the dominant eigenvector of P . Note
that, the RandDisct function (the discrete random variable generator) is called to generate
random numbers from the rows of P .

def MarkovChainGen(InitDist, TransMat, ChainLen):
This function generates a Markov chain of length ’ChainLen’ from
Transition matrix ’TransMat’ with initial distribution ’InitDist’
m = len(InitDist)
states = range(m)
X = np.zeros(ChainLen)

3If W ∼ N (µ, Σ) then W = µ + BZ where Z ∼ N (0, I) and B is the Cholesky factor of Σ.

36

p = StationDist = InitDist
for j in range(ChainLen):

i = RandDisct(states,p,1)[0]
X[j] = i
p = TransMat[i,:]
StationDist = TransMat@StationDist

return X, StationDist

Example 6.1. Consider again the weather forecasting model in Example 5.4. We start with
the initial state of sunny on the day 0. We want to estimate the probability of a rainy day
on the fifth day. We can generate multiple weather sequences of length 5 (Markov chains of
length 5) and use Monte Carlo to estimate the probability of a rainy day on the fifth day.
The code is given below.

Transition matrix
P = np.array([[0.00, 0.50, 0.50], # From sunny to (sunny, cloudy, rainy)

[0.25, 0.50, 0.25], # From cloudy to (sunny, cloudy, rainy)
[0.25, 0.25, 0.50]]) # From rainy to (sunny, cloudy, rainy)

Map state names to indices for the matrix
StateMap = {"sunny": 0, "cloudy": 1, "rainy": 2}
InitDist = [1,0,0] # [sunny, cloudy, rainy]
RainyCount = 0
N = 1000
for i in range(N): # Run N simulations

X, S = MarkovChainGen([1,0,0], P, 5)
if X[-1] == StateMap["rainy"]: # Check if the fifth day ended in rainy

RainyCount += 1

PrRainy = RainyCount / N # Estimate probability
print(’Estimated probability of a rainy fifth day = ’, PrRainy)

An execution gives the answer 0.402 which shows that by about 40% probability the fifth
day is rainy.

6.2 Random walk on the integers
Random walk on the integer is Markov chain as it was described in section 5.2. Thus, the

MarkovChainGen function can be used to generated this process. However, a simpler algorithm

37

without forming the transition matrix P is based on the relation Xt+1 = Xt + B̃t.

def RandWalkGen(p, X0, t):
B = np.append(X0,2*RandBer(p,t)-1)
X = np.cumsum(B)
return X

A typical sample path for the case p = q = 1/2, X0 = 0 and t = 100 is plotted in Figure
17. The horizontal axis represents the time index t = 0, 1, 2, . . . , 100 and the vertical axis the
states j ∈ Z.

0 20 40 60 80 100
time

−5

0

5

10

15

st
at

es

Random walk on integers

Figure 17: A random walk path on the integers with p = 1/2.

Example 6.2 (gambler’s ruin). Suppose a gambler starts with a certain amount of money,
say $K, and in each round, either wins or loses a fixed amount, say $1, with probabilities
p and 1 − p, respectively. The game continues until the gambler either reaches a target
amount $T or loses all the money (being ruined). The target amount T is an absorbing
state on the right side and the amount 0 is an absorbing state on the left side.
This scenario is a random walk. The goal is to determine the probability that the gambler
reaches the target amount T before being ruined. We generate many sample paths and use
Monte Carlo to estimate this probability. The simulation should track whether the gambler
ends up with Xt = 0 or Xt = T in multiple paths. By averaging the outcomes, we estimate
the probability of ruin. The code is given below for some values of parameters.

T = 100 # target amount
K = 30 # initial money
p = 0.5 # probability of winning each round
N = 1000 # number of MC simulations
RuinCount = 0
for _ in range(N):

money = K

38

while money > 0 and money < T:
B = 2*RandBer(p,1)-1
money += B

if money == 0:
RuinCount += 1

PrRuin = RuinCount / N # Estimated probability of ruin
print(’Estimated Probability of Ruin = ’, PrRuin)

An execution shows the probability 0.703. This problem has indeed an exact solution

P(ruin) =


1−(q

p)k

1−(q
p)T if p ̸= q,

T −k
T

if p = q = 1
2 ,

which can be used to assess the accuracy of the above Monte Carlo algorithm.

A random walk on integers can model several real-world scenarios. In a financial modeling, a
random walk can be used to simulate investment portfolios, where each step represents a gain
or loss in asset value. In population dynamics, a random walk can model population survival,
where each step could represent birth or death events. In a biological model, a random walk
can describe gene mutations, where each step indicates a genetic drift towards different traits
or alleles.

The random walk can be extended to d dimensions by replacing the Bernoulli distribution
with a general discrete distribution for updates. We indeed have

Xt+1 = Xt + Dt

where Dt ∼ DD([x1, . . . , x2d], [p1, . . . , p2d]). As an example in 2 dimensions, we have x1 =
[−1, 0], x2 = [1, 0], x3 = [0, 1], and x4 = [0,−1], which means that at each time step the
process moves to left, right, up or down with probabilities p1, p2, p3 and p4 respectively.

−5 0 5 10 15 20
x

−20

−10

0

10

20

y

Random Walk in 2D: two realizations

x

−10
−5

0
5

10

y

−15

−10

−5
0

5

−15

−10

−5

0

5

Random Walk in 3D: two realizations

Figure 18: Random walk realizations in 2 and 3 dimensions.

39

Two random walk realizations for X0 = [0, 0] and pk = 1/4 are shown on the left side of
Figure 18. The same extension applies in 3 dimensions with 6 possible different directions for a
new update. A couple of realizations are shown on the right side of Figure 18 for X0 = [0, 0, 0]
and pk = 1/6. In both 2 and 3 dimensions, the code is left as an exercise to the reader.

6.3 Generating Gaussian processes
In a Gaussian process {Xt : t ∈ T }, each finite dimensional vector (Xt1 , . . . , Xtn) has a

multivariate normal distribution. This means that any multivariate normal sampler can be
used to generate realizations of a Gaussian process at prescribed times t1, . . . , tn provided
that the mean vector µ = (µ(t1), . . . , µ(tn)) and the covariance matrix Σ = (Σ(tk, tj)) for
k, j = 1, 2 . . . , n are given.

For a Wiener process (or Brownian motion) {Wt : t ∈ T }, as an special case, the algorithm
can be simplified. For this process we have µ(t) = 0 and Σ(s, t) = s for 0 ⩽ s ⩽ t. For given
times t1, . . . , tn with 0 < t1 < t2 < · · · < tn, the covariance matrix for variable (Wt1 , . . . , Wtn)
has the form

Σ =



t1 t1 t1 · · · t1

t1 t2 t2 · · · t2

t1 t2 t3 · · · t3
...

...
...

. . .
...

t1 t2 t3 · · · tn


.

The Cholesky factor for Σ is

B =



√
t1 0 0 · · · 0
√

t1
√

t2 − t1 0 · · · 0
√

t1
√

t2 − t1
√

t3 − t2 · · · 0
...

...
...

. . .
...

√
t1
√

t2 − t1
√

t3 − t2 · · ·
√

tn − tn−1


.

Then W = µ + BZ = 0 + BZ where Z is a vector of iid random variables with distributions
N (0, 1), i.e.,

W =



W1

W2
...

Wn

 = B



Z1

Z2
...

Zn

 =



W0 +
√

t1 − t0Z1

W1 +
√

t2 − t1Z2
...

Wn−1 +√tn − tn−1Zn


for t0 = 0 and W0 = 0. This means that

Wk+1 = Wk +
√

tk+1 − tk Zk+1, Zk+1 ∼ N (0, 1), W0 = 0.

The Python function is given below.

40

def BrownianMotionGen(t_vec, dim):
This functions generates a dim-dimensional Brownian motion on
time samples t_vec = [t_1, t_2, ..., t_n]
n = len(t_vec)
W = np.zeros([dim,n])
for k in range(n-1):

Z = np.random.normal(0,1,dim)
W[:,k+1] = W[:,k] + np.sqrt(t_vec[k+1]-t_vec[k])*Z

return W

However, the function works also for higher dimensions. In higher dimensions each step
of the process updates by a vector whose components are drawn from a multivariate normal
distribution. We note that in higher dimensions the term Brownian motion is commonly used
while in the 1-dimensional case both terms Wiener process and Brownian motion are used.

In Figure 19 two sample paths of the 1D, 2D and 3D Brownian motions in time interval
[0, 1] are shown at times tk = k∆t for ∆t = 10−3.

0.0 0.2 0.4 0.6 0.8 1.0
time t

−0.25

0.00

0.25

0.50

0.75

1.00

W
t

1D Brownian motion: two realizations

−1.5 −1.0 −0.5 0.0 0.5 1.0
x

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y

2D Brownian motion: two realizations

x

−1.5−1.0−0.50.0 0.5 1.0 1.5

y

−1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

−0.4
−0.2
0.0
0.2
0.4
0.6
0.8
1.0

3D Brownian motion: two realizations

Figure 19: Two realizations of the Wiener process on time interval [0, 1] in 1D (top), 2D (down-left)
and 3D (down-right).

.
Example 6.3 (Brownian particles). The motion of particles suspended in a medium, such
as liquid or gas, was first observed by the Scottish botanist Robert Brown in 1827. While
examining pollen from the plant Clarkia pulchella under a microscope, he noticed the erratic

41

movement of pollen grains in water where large number of water molecules “push” the
particles in different directions. This particle motion was later understood to be a stochastic
process, now referred to as Brownian motion, as we discussed it above.
Now, consider the movement of a single Brownian particle in the water that is confined
to a fixed cubic box, say [−1, 1]3. Our goal is to estimate the expected time required for
a Brownian particle, initially positioned at the center of the box, to hit one of the box’s
boundaries.
To solve this problem, we can use the Monte Carlo method. We simulate a large number
of 3D Brownian motion paths, say 104 realizations. For each simulated path, we record the
time taken for the particle to first reach one of the box boundaries. Then we compute the
mean of these recorded times to estimate the expected hitting time. The following code
provides an implementation for this Monte Carlo simulation approach.

import numpy as np
dt, N = 0.005, 10000
HitTime = np.empty(N)
for j in range(N):

k = 0
W = np.array([0,0,0])
while True:

W = W + np.sqrt(dt)*np.random.normal(0,1,3)
if any(abs(W) >= 1):

break
k += 1

HitTime[j] = dt*k
HitTime_mean = np.mean(HitTime)
HitTime_std = np.std(HitTime)
err = 1.96*HitTime_std/np.sqrt(N)
print(’Expected Hitting Time = ’, HitTime_mean)
print(’Error with 95% probability = ’, err)

In the code, the hitting time is computed by the product of time step ∆t and number of
steps until the boundary is hit. We choose a small time step ∆t = 0.005 and a large value
N = 104 (number of simulations). Finally we computed both the mean and the error of
estimation with 95% probability using the formula 1.96s/

√
N where s is the sample standard

deviation. The output for a run reported below.

Expected Hitting Time = 0.4856
Error with 95% probability = 0.0061

42

Another class of processes are diffusion processes which are Markov with a continuous time
parameter and continuous sample pathes, like as Wiener processes. Wiener processes form a
basis for defining and generating diffusion processes. In fact, a diffusion process is defined as
the solution of the following stochastic differential equation (SDE)

dXt = a(t, Xt)dt + b(t, Xt)dWt (6.1)

where {Wt : t ⩾ 0} is Wiener process and a(t, x) and b(t, x) are some deterministic functions,
usually refereed to as drift and diffusion coefficients, respectively. The resulting process for
spacial case a(t, x) = µ and b(t, x) = σ is obtained as

Xt = µt + σWt

and is called a Brownian motion. The more special case with µ = 0 and σ = 1 gives the Wiener
process or the standard Brownian motion Xt = Wt. The case a(t, x) = µx and b(t, x) = σx

results in the geometric Brownian motion.
For generating a diffusion process (approximately) we can use the explicit Euler–Maruyama

method4 to discretize (6.1) as

Yk+1 = Yk + a(tk, Yk)∆t + b(tk, Yk)
√

∆tZk+1, k = 0, 1, 2, . . . ,

where ∆t is a time step, tk = k∆t, and Z1, Z2, . . . are independent random variables with
N (0, 1) distributions. The process {Yk, k = 0, 1, . . .} approximates the exact process {Xt, t ⩾

0} in the sense that Yk ≈ Xk∆t. The initial variable Y0 should be generated from the distribution
of X0. The Python function is given below.

def DiffusionProcessGen(drift, diffusion, tspan, dt, X0, *args):
This function generates a diffusion process by solving the SDE
dX_t = a(t,X_t) dt + b(t,X_t)dW_t, X_0 = X0
for drift coefficient a(t,x) and diffusion coefficient b(t,x)
on interval tspan = [t_0, t_end] at equidistance times t_0, t_1, ...,t_n
using the explicit Euler–Maruyama method
t = tspan[0]
Y = {}
Y[0] = X0; j = 0;
while t <= tspan[1]:

dW = np.sqrt(dt)*np.random.randn()
Y[j+1] = Y[j] + drift(t,Y[j],*args)*dt + diffusion(t,Y[j],*args)*dW
t += dt; j += 1

Y = [Y[i] for i in range(len(Y))]
return Y

4The explicit Euler–Maruyama method is the stochastic equivalent of the explicit Euler method for solving
SDEs.

43

Example 6.4. One application of Brownian motions in combination with the Monte Carlo
method is in the pricing of financial options. Here we give an example for pricing a European
Call Option.
In finance, a European call option is a contract that gives the holder the right, but not the
obligation, to buy a stock at a fixed price (the strike price K) at a specified future date (the
expiration time T). The Black-Scholes model assumes that the stock price follows the SDE

dSt = µSt dt + σSt dWt,

where St is the stock price at time t (in year), µ is the drift term representing the average
rate of return, σ is the volatility (standard deviation of returns), and Wt is a Wiener process.
As we observe, the stock price St is indeed a geometric Brownian motion.
The payoff of the call option at the final time is

CT = max(ST −K, 0)

for the given strike price K. We know from Feynman-Kac that the value of the call option
at earlier times t < T is given by

Ct = E(e−r(T −t)CT |St)

where r is the risk-free interest rate. This expectation is taken under the appropriate risk-
neutral measure, which sets the drift µ equal to the risk-free rate r. The option price at
time t = 0 (generally representing the present year) for a given initial stock price S0 is

C0 = E(e−rT CT) = e−rTE(CT).

To apply the Monte Carlo method to estimate C0, we generate N (a large number) simula-
tion paths for St up to time t = T and for each path we calculate the payoff at expiration,
i.e. CT . Finally we compute the mean of CT and multiply it by e−rT .
As an example, we assume that the expiration time is T = 0.5 year, the current asset price
is S0 = 100, the volatility is σ = 30%, the interest rate is r = 4%, and the strike price is
K = 98. We use ∆t = 0.001 and generates N = 104 Monte Carlo simulations. We also
estimate the standard error.

r = 0.04 # risk-free interest rate
mu = r # drift coefficient (average rate of return) and interest
sigma = 0.3 # volatility
S0 = 102 # initial stock price
K = 100 # strike price
T = 0.5 # expiration time
dt = 0.001 # steplength for Euler-Maruyama method
def drift(t,x,*args): # drift

m = args[0]
return m*x

44

def diffusion(t,x,*args): # diffusion
s = args[1]
return s*x

N = 10**4 # number of MC simulations
CT = np.empty(N)
for j in range(N):

S = DiffusionProcessGen(drift, diffusion, [0,T], dt, S0, mu, sigma)
ST = S[-1]
CT[j] = max(ST-K , 0)

C0 = np.exp(-r*T)*np.mean(CT)
std = np.std(np.exp(-r*T)*CT)
err = 1.96*std/np.sqrt(N)
print("The call value is {0}’ +/- {1} with 95% probability".format(V0, err))

An execution gives the following output:

The call value is 10.0314 +/- 0.2898 with 95% probability

In the Monte Carlo loop, we generated N paths of a geometric Brownian motion with an
initial value S0 = 102. Ten trajectories are shown on the left side of Figure 20. Note that
only the final value of each path, ST , was used to compute the payoff of the option. The
histogram of random variable ST is also shown on the right-hand side of figure 20 which
shows that the distribution of ST is a log-normal distribution. This is consistent with the
theoretical property of geometric Brownian motion. Note that a random variable X is said
to have a log-normal distribution if log(X) has a normal distribution.

0.0 0.1 0.2 0.3 0.4 0.5
time t

80

100

120

140

160

S t

50 75 100 125 150 175 200 225
S

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

Figure 20: Ten realizations of the geometric Brownian motion St for t ∈ [0, 0.5] (left), the histogram
of the variable ST for T = 0.5 (right)

45

7 Stochastic Simulation Algorithm (SSA)
The Stochastic Simulation Algorithm (SSA), also known as the Gillespie algorithm, proposed

by Daniel T. Gillespie in 19775, is a powerful method employed in systems biology to predict
the behavior of complex biological systems. Other areas of application are in epidemiology and
ecology.

7.1 Simulation of a simple epidemic model
To illustrate the SSA algorithm, we consider a susceptible-infected-recovered (SIR) model.

Such models describe the spread of a virus (for example influenza, covid, etc.) within a pop-
ulation. The population is divided into three groups (states): susceptible individuals, infected
individuals, and recovered individuals. Each state is represented by the variables S, I, and
R, respectively. The relationships between these states can be depicted in a flow diagram
(transition graph), where transitions occur based on specific rates. See Figure 21.

S I R
β γ

µ µ µ

µ

Figure 21: The transition graph of a simple SIR model.

The model has some parameters: µ is the birth and death rate, β is the infection rate, and
γ is the recovery rate. The unit of S, I, and R is individual, and the unit of rates is one over
time unit, for example 1

day .
To simplify the mathematical formulation, we assume that the variables S(t), I(t), and R(t)

are continuous functions over time t, and the simulation is valid in a defined interval [0, tfinal].
Additionally, it is assumed that the rates of birth and death are equal, and all newborns are
susceptible. The model does not account for pathogen-induced mortality (death because of
the virus), and it is assumed that recovered individuals remain immune throughout the period
of the epidemic. Furthermore, the infection rate depends on the ratio of infected individuals
to the total population, expressed as β I

N
. This assumption is quite reasonable, as a higher

number of infected individuals increases interactions between the susceptible group and the
infected group which leads to an elevated infection rate over time.

Given the assumption above, we can write a system of ordinary differential equations (ODEs)
to describe the dynamics of the SIR model. We denote the total population at time t by

N(t) = S(t) + I(t) + R(t).

The differential equations governing the dynamics are as follows:

5Daniel T. Gillespie, Exact Stochastic Simulation of Coupled Chemical Reactions, The Journal of Physical
Chemistry, Vol. 81, No. 25, 1977.

46

dS

dt
= µN − µS − β

I

N
S

dI

dt
= β

I

N
S − µI − γI

dR

dt
= γI − µR

with initial conditions
S(0) = S0, I(0) = I0, R(0) = R0.

This initial value problem is a deterministic model for the given phenomenon. To solve this
system of equations, we can employ a deterministic numerical methods (an ODE solver) such as
a Runge-Kutta method. Here we call the RK45 from the scipy.integrate.solve_ivp module.

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp

mu, bet, gam = 1e-4, 0.25, 0.05 # rates
Initial = [198,2,0] # [S(0), I(0) R(0)]
FinalTime = 120 # final time of simulation

def ODEfun(t,y):
yprime = np.zeros(3);
S,I,R = y
N = np.sum(y)
yprime[0] = mu*N - bet*S*I/N-mu*S
yprime[1] = bet*S*I/N -(mu+gam)*I
yprime[2] = gam*I - mu*R
return yprime

teval = np.linspace(0, FinalTime,500)
sol = solve_ivp(ODEfun, [0,FinalTime], Initial, t_eval = teval)

plt.figure(figsize = (6, 4))
plt.plot(sol.t,sol.y[0],linestyle = ’solid’, color=’blue’, label = ’S’)
plt.plot(sol.t,sol.y[1],linestyle = ’solid’, color=’red’, label = ’I’)
plt.plot(sol.t,sol.y[2],linestyle = ’solid’, color=’green’, label = ’R’)
plt.xlabel(’time t’); plt.ylabel(’Individuals’)
plt.title(’Deterministic solution using RK45’)
plt.legend(loc=’center right’)

47

The results are given in Figure 22 which illustrates the dynamics of the susceptible, infected,
and recovered populations over time. The number of infected individuals increases from initially
two to approximately 125 and reaches its peak around the 20th day. Following this peak, the
epidemic enters a decline phase, with the number of infections decreasing rapidly until the
epidemic eventually comes to an end.

0 20 40 60 80 100 120
time t

0

25

50

75

100

125

150

175

200
In

di
vi

du
al

s

Deterministic solution using RK45

S
I
R

Figure 22: Solution of SIR model using RK45.

While the above deterministic model provides valuable insights, it overlooks the discrete na-
ture of populations and the inherent uncertainties present in the model. A stochastic approach
reformulates the model by replacing continuous variables S(t), I(t), and R(t) with discrete
values. We define a series of reactions (processes) with their associated propensity functions
which are indeed the number of individuals moving into or out of the groups:

1. ∅ −−→ S w1 = µN

2. S −−→ I w2 = β I
N

S

3. I −−→ R w3 = γI

4. S −−→ ∅ w4 = µS

5. I −−→ ∅ w5 = µI

6. R −−→ ∅ w6 = µR

The reactions include transitions from susceptible to infected individuals, from infected to
recovered individuals, and the natural birth and death processes affecting all the groups. The
propensity functions represent the tendency (or likelihood) of each reaction to occur. We now
assume a state vector

y(t) = (y1(t), . . . , yn(t))
containing the state variables. For instance, for the SIR model we have n = 3 states and m = 6
reactions, with the propensity functions corresponding to each reaction:

y = (S, I, R),

w1 = µN, w2 = β
I

N
S, w3 = γI, w4 = µS, w5 = µI, w6 = µR.

48

Also we compute the total propensity function

a(y) =
m∑

j=1
wj(y)

which represents the overall tendency of the system to evolve and undergo changes. The
positive propensity functions wj represent the relative likelihood of each reaction occurring
compared to the others. To convert these into probabilities, we define

pj := wj

a
, j = 1, . . . , m

where a is the total propensity. This allows us to form the following discrete distribution table

reaction j 1 2 . . . m

probability pj p1 p2 . . . pm

which tells us which reactions are more likely to occur and change the system states.
The basic assumption in the SSA is that, between time t and t + τ , exactly one reaction

occurs and causes a change in the system’s states by either 0, +1, or −1. Therefore, at any
given time t, the SSA includes three steps:

1. when the next reaction will occur (i.e. the value of τ)

2. which reaction will occur

3. Updating the state of the system

The waiting time τ for the next reaction is sampled from an exponential distribution with rate
parameter λ = a(y):

when ∼ Exp (a(y)) .

A higher value of a (a higher total propensity) corresponds to a shorter expected waiting time
between events.

Which reaction? The reactions with higher probabilities are more likely to occur. To
determine which reaction takes place, we sample from the discrete distribution based on the
probabilities pj defined earlier:

which ∼ DD
(
[1, 2, . . . , m], [p1, . . . , pm]

)
.

Once the reaction is determined, the final step is to update the system’s state. We use the state-
change vectors vj (also called the stoichiometry vectors), which represent how each reaction
alters the state of the system. For example, in the SIR model, the state-change vectors are as
follows:

1. ∅ −−→ S, v1 = [1, 0, 0]
2. S −−→ I, v2 = [−1, 1, 0]
3. I −−→ R, v3 = [0, −1, 1]
4. S −−→ ∅, v4 = [−1, 0, 0]
5. I −−→ ∅, v5 = [0, −1, 0]
6. R −−→ ∅, v6 = [0, 0, −1]

These vectors describe how the number of susceptible, infected, or recovered individuals

49

changes due to each specific reaction.
In the which phase if the reaction index k is sampled, then the state is updated based on

the corresponding state-change vector vk, i.e.,

y(t + τ) = y(t) + vk.

Considering all these together, the Gillespie algorithm is presented below.

Algorithm 5 Gillespie algorithm (SSA)
Require: Initial state y = y0, final time tfinal, propensity functions w1, . . . , wm and state

change vectors v1, . . . , vm

Ensure: State vector y(t) at final time t = tfinal

t← 0
while t ≤ tfinal do

Compute a(y) = w1(y) + · · ·+ wm(y) and pj(y) = wj(y)/a(y)
Generate τ ∼ Exp(a(y))
Generate k ∼ DD

(
[1, . . . , m], [p1, . . . , pm]

)
Update t← t + τ
Update y ← y + vk

end while

7.2 Python implementation
In this section, we implement the SSA using Python. At each time step, the code calls the

RandExp and RandDisct functions (Section 3) to sample the steplength and determine which
reaction occurs.

Gillespie algorithm (SSA)
def SSA(Initial, StateChangeMat, FinalTime):

Inputs:
Initial: initial conditins of size (StateNo x 1)
StateChangeMat: State-change matrix of size (ReactNo, StateNo)
FinalTime: the maximum time we want the process be run

Outputs:
AllTimes: the list of all selected time levels
AllStates: the list of all state values at corresponding time levels

[m,n] = StateChangeMat.shape
ReactNum = np.array(range(m))
AllTimes = {} # define a list for storing all time levels
AllStates = {} # define a list for storing all states at all time levels
AllStates[0] = Initial
AllTimes[0] = [0]
k = 0; t = 0; State = Initial

50

while True:
w = PropensityFunc(State, m) # propensities
a = np.sum(w)
tau = RandExp(a,1) # WHEN the next reaction happens
t = t + tau # update time
if t > FinalTime:

break
which = RandDisct(ReactNum,w/a,1) # WHICH reaction occurs
State = State + StateChangeMat[which.item(),] # Uppdate the state
k += 1
AllTimes[k] = t
AllStates[k] = State

return AllTimes, AllStates

The above SSA function works for a general stochastic model provided that the propensity
functions and state-change vectors are given. Below, we will specify these functions for the
SIR model discussed earlier.

mu, bet, gam = 1e-4, 0.25, 0.05 # rates
Initial = [198,2,0] # initial values
FinalTime = 120 # final time
def PropensityFunc(State, ReactNo):

S,I,R = State
N = S + I + R;
w = np.zeros(ReactNo)
w[0] = mu * N # birth (newborns)
w[1] = bet/N * S * I # infection
w[2] = gam * I # recovery
w[3] = mu * S # death of susceptible individuals
w[4] = mu * I # death of infected individuals
w[5] = mu * R # death of recovered individuals
return w

StateChangeMat = np.array([
[+1, 0, 0],
[-1, +1, 0],
[0, -1, +1],
[-1, 0, 0],
[0, -1, 0],
[0, 0, -1]])

51

Finally, we call the SSA function to run multiple simulations, for instance N = 10, and
subsequently plot the results.

N = 10 # number of simulations
plt.figure(figsize = (6, 4))
for k in range(N):

Time, States = SSA(Initial, StateChangeMat, FinalTime)
n = len(Time)
t = [Time[i][0] for i in range(n)]
S = [States[i][0] for i in range(n)]
I = [States[i][1] for i in range(n)]
R = [States[i][2] for i in range(n)]
plt.plot(t,S,linestyle = ’-’, color=’blue’)
plt.plot(t,I,linestyle = ’-’, color=’red’)
plt.plot(t,R,linestyle = ’-’, color=’green’)

plt.xlabel(’Time’);
plt.ylabel(’Individuals’);
plt.title(’Stochastic solutions using SSA’)
plt.legend([’S’,’I’,’R’],loc=’center right’)
plt.show()

The results are given in Figure 23 for 10 simulations of the above SSA algorithm. This
figure represents the stochastic nature of the SIR model.

0 20 40 60 80 100 120
Time

0

25

50

75

100

125

150

175

200

In
di

vi
du

al
s

Stochastic solutions using SSA

S
I
R

Figure 23: Stochastic simulation of the SIR model using the Gillespie algorithm: ten simulations

One can execute the code and obtain many simulations (stochastic processes) and finally
compute the mean of the solutions as a Monte Carlo solution. In many cases the mean is close
to the deterministic solution of the counterpart ODE model.

To speed up the SSA, Daniel Gillespie proposed another algorithm called tau-leaping6, which
replaces the variable waiting times between reactions with a fixed step size τ for each iteration.

6Daniel T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems, The
Journal of Chemical Physics. 115 (2001) 1716-1733.

52

Unlike the standard SSA, where only one reaction occurs per step, tau-leaping allows multiple
reactions to occur in a single time step, and the state changes can be larger than just 1.
For each reaction j, the state change is sampled from a Poisson distribution with parameter
λ = wjτ , where wj is the propensity of reaction j, and τ is the step length. Such Poisson
sample represents the number of events expected in an interval of length τ with propensity
wj. This algorithm requires careful handling to avoid negative populations when some states
are close to zero and state changes are large. Additionally, selecting an optimal step size τ is
a key challenge because steps that are too large can lead to inaccuracies, while steps that are
too small reduce the performance benefit of the algorithm.

Finally, we note that the Gillespie algorithm is also available in the GillesPy2 library, which
provides an object-oriented framework for building and simulating the mathematical model.
The methods include the SSA, the tau-leaping, and some numerical ODE solvers. The library
is optimized for performance, and is written in C++ and NumPy. For more details check this
link7.

7.3 Application to biochemical kinetics
In biochemical systems, a finite number of particles present in living cells and the inherent

randomness associated with molecular interactions and reaction rates lead to a need for models
that account for discrete and stochastic dynamics rather than continuous and deterministic
ones.

Consider a model comprised of n species, denoted as {S1, S2, . . . , Sn}, which interact through
m chemical reactions, represented as {r1, . . . , rm}. As before, the state of the system can
be described by the vector y(t) = (y1(t), . . . , yn(t)), with the initial condition specified as
y(0) = y0. The interactions are modeled by reactions, propensity functions, and state-change
vectors. We assume that each reaction rℓ is elemental and is either unimolecular or bimolecular.
For simplicity, let us consider a system with three species with state variable y = (y1, y2, y3).
The following table illustrates various reaction cases, where c denotes a constant rate:

Reaction State-change vector Propensity function
y1

c−→ y2 v = [−1, 1, 0] w = cy1

y1
c−→ y2 + y3 v = [−1, 1, 1] w = cy1

y1
c−→ y1 + y2 v = [0, 1, 0] w = cy1

y1
c−→ 2y1 v = [1, 0, 0] w = cy1

y1
c−→ ∅ v = [−1, 0, 0] w = cy1

y1 + y2
c−→ y3 v = [−1,−1, 1] w = cy1y2

2y1
c−→ y2 v = [−1, 1, 0] w = cy1(y1 − 1)/2

2y1
c−→ y1 v = [−1, 0, 0] w = cy1(y1 − 1)/2

∅ c−→ y1 v = [1, 0, 0] w =?

7https://gillespy2.readthedocs.io/en/latest/

53

The propensity functions reflect the concentration of the reactants and emphasize how molec-
ular interactions dictate the rates of reaction.

As an example consider the Michaelis-Menten system which is a standard model for enzyme-
catalyzed reactions. In this model, we consider a substrate S, enzyme E, the enzyme-substrate
complex C, and the product P . The model below shows the series of reactions occurring in
this system.

S + E C P + E
c1
c2

c3

Figure 24: The Michaelis-Menten reactions (image from www.nagwa.com/en/)

If we denote the state vector by y = (S, E, C, P) then the reactions can be summarized as
follows:

r1 : S + E
c1−−→ C, v1 = [−1,−1, +1, 0], w1 = c1SE = c1y1y2

r2 : S + E
c2←−− C, v2 = [+1, +1,−1, 0], w2 = c2C = c2y3

r3 : C
c3−−→ P + E, v3 = [0, +1,−1, +1], w3 = c3C = c3y3

The first reaction involves the formation of the enzyme-substrate complex. The second
reaction is the reverse process, where the complex dissociates back into the substrate and
enzyme. The third reaction describes the conversion of the complex into product and enzyme.
For given constant rates cj and initial numbers of proteins, we can simply solve this model
using the Gillespie algorithm.

7.4 Lotka-Volterra models
Other important examples are the Lotka-Volterra models which are used to describe predator-

prey interactions. Predator and prey animals, such as hawks and mice or foxes and rabbits,
interact in an ecosystem where predator eat prey. If the prey population is large, food becomes
easily available for the predator and the population grows. This leads to a decrease in the
prey population, which, in turn, leads to reduced access to food, resulting in a decrease in the
predator population. This means that more prey survives, and so on. This process continues
indefinitely.

As an example of a simple Lotka-Volterra model assume that R represents the number of
prey, e.g. rabbits, and F represents the number of predators, e.g. foxes. To analyse the
predator-prey system, we consider the following set of reactions:

54

R
α−→ 2R

R + F
β−→ 2F

F
γ−→ ∅

The first reaction incorporates prey reproduction into our model, with α denoting the repro-
duction rate of each prey. The second reaction incorporates predator reproduction per prey,
with β denoting the rate of interactions between prey and predator animals. In other words,
the predator consumes prey and reproduces at a rate of β. The third and final reaction in-
corporates predator mortality, with γ denoting the rate at which predators are removed from
the ecosystem. Now, we can apply the Gillespie algorithm to solve this simple model provided
that the initial populations F0 and R0 and the model rates are given. This task is left as an
exercise to the reader.

8 Markov chain Monte Carlo (MCMC)
In preceding sections we have typically generated iid random variables directly from the

density of interest f . In this section the Markov chain Monte Carlo (MCMC) is introduced
as a powerful tool to approximately generate samples from an arbitrary distribution8. The
main idea behind the MCMC algorithms is to simulate a Markov chain such that its station-
ary distribution approximately coincides with the desired distribution f . One of the MCMC
algorithms is the Metropolis-Hastings algorithm which is discussed in detail here. We follow
[Rubinnstein-Kroese:2017] in this section.

8.1 Metropolis-Hastings algorithm
Given a target density f , we want to generate a Markov chain {Xt : t = 0, 1, . . .} with

stationary distribution f . For simplicity, we start with a general discrete distribution. Assume
that we want to generate a random variable X which takes its values in sample space

S = {1, 2, . . . , m}

with target distribution
{π1, π2, . . . , πm}.

8The MCMC method was motivated by the pioneer work of Metropolis, et. al. in 1953:
M. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equations of state calculations
by fast computing machines, Journal of Chemical Physics, 21(1953) 1087-1092.
After that, many modifications were done on the original MCMC algorithm, notably the Hastings algorithm in
1970:
W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika,
57(1970) 92-109.
An alternative methodology then proposed by German and German in 1984 which is known as Gibbs sampler:
S. Geman and D. Geman, Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images,
IEEE Transactions on PAMI, 6(1984) 721-741.

55

In the Metropolis-Hastings algorithm a Markov chain {Xt : t = 0, 1, . . .} on S is simulated
based on a primary transient matrix Q = (qij). This matrix is used to approximate the actual
transient matrix of the chain. The algorithm contains the following steps:

(1) [Variable generation] Given Xt = i, generate a random variable Y such that P(Y = j) =
qij for all j ∈ S. On the other words, generate Y from the i-th row of Q.

(2) [Accept or reject] If Y = j then accept Y with probability αij and let Xt+1 = Y , otherwise
reject Y and let Xt+1 = Xt, where

αij = min
{

πj

πi

qji

qij

, 1
}

. (8.1)

Since Xt+1 is obtained from Xt only, the chain is Markov. Besides, the transient matrix
P = (pij) of the chain is

pij =


qijαij, i ̸= j

1−
∑
k ̸=i

qikαik, i = j
, (8.2)

because, for i ̸= j we can write

pij = P(Xt+1 = j |Xt = i)

= P(Y = j, Y is accepted |Xt = i)

= P(Y = j |Xt = i)× P(Y is accepted |Y = j, Xt = i)

= qij × αij.

In the third equality we have used the identity P(A ∩ B|C) = P(A|C)P(B|A ∩ C). The case
i = j in (8.2) follows from the fact that each row of P sums up to unity. Using (8.2) and the
definition of αij in (8.1) we have

πipij = πjpji, i, j ∈ S (8.3)

which is the detailed balance equation for the Markov chain. The proof is as follows. First we
have

πipij = πiqijαij = πiqij
πj

πi

qji

qij

= πjqji

provided that πj

πi

qji

qij
⩽ 1. On the other hand

πjpji = πjqjiαji = πjqji

because αji = 1 from the fact that πi

πj

qij

qji
⩾ 1.

Taking summation on j from both sides of equation (8.3) gives πi = ∑
j πjpji for i ∈ S,

or π = πP , which means that the chain has stationary probability π = [π1, . . . , πm]. This
stationary distribution is also a limiting distribution if the Markov chain is irreducible and
aperiodic.

An important advantage of the above Metropolis-Hastings algorithm is that the target dis-
tribution π needs to be only known up to a normalization constant C, because in the definition
of αij (the only place {πj} is used) any constant C will be cancelled in quotient πj

πi
.

The above algorithm can be generalized to generate samples from an arbitrary multi-

56

dimensional density f(x) instead of {πj}. From here on x, y, X and Y with or without
subscripts are d-dimensional variables. In this generalization, the non-negative transient ker-
nel q(x, y) will be used instead of the transient matrix Q. Since the transient kernel is a
conditional pdf, we can also write q(y|x) instead of q(x, y). This kernel is usually called the
proposal function, and plays a role similar to proposal distribution g in the acceptance-rejection
method of section 3.2.

The Metropolis-Hastings algorithm starts with an initial state X0 and a target pdf f(x),
a proposal function q(x, y) and the number of required samples N as inputs and generates a
Markov chain X1, X2, . . . , XN approximately distributed according to f(x). The algorithm is
given below.

Algorithm 6 Metropolic-Hastings Algorithm
Require: Target distribution f , Proposal distribution q, Initial state X0, Number of samples

N
for t = 1, 2, . . . , N do

1. Given Xt, generate Y ∼ q(Xt, y)

2. Set α = min
{

f(Y)
f(Xt)

q(Y, Xt)
q(Xt, Y) , 1

}
3. Generate U ∼ U(0, 1)
4. If U ⩽ α accept Y and set Xt+1 = Y , otherwise reject Y and set Xt+1 = Xt.

end for
Ensure: The sequence X1, X2, . . . , XN

Starting by X0, we continue this process until XN is generated. The sequence X1, . . . , XN is
a set of dependent random variables and Xt for large t is approximately distributed according
to f(x).

The original Metropolis algorithm uses a proposal function q with symmetrical property
q(x, y) = q(y, x), while the modified version by Hastings allows the nonsymmetric kernels as
well. With a symmetric q, the probability α reduces to

α = min
{

f(Y)
f(Xt)

, 1
}

. (8.4)

This does not mean that q is ruled out because Y is still generated from q.
The simplest proposal function is to take

q(x, y) = g(y)

for some pdf g(y). Using this proposal function, in step (1) of the Metropolis-Hastings al-
gorithm, Y is generated from g(y) independent of the current variable Xt. The acceptance
probability α then is

α = min
{

f(Y)
f(Xt)

g(Xt)
g(Y) , 1

}

which depends on Xt. Thus the chain still produces dependent samples.
In a random walk sampler the current state Y for a given state x is given by Y = x + Z

where Z is generated from a radially symmetric distribution such as N (0, Σ). For this case Y

57

is indeed generated from Y ∼ N (x, Σ), i.e.,

q(x, y) = (2π)−d/2 exp
(
−1

2(x− y)T Σ(x− y)
)

.

Since the proposal function is symmetric the acceptance probability is reduced to (8.4). A
Phyton code for MCMC with multidimensional normal random walk sampler is given here.
Inputs are the desired probability density function pdf we aim to sample from, the initial state
X0, the covariance matrix of the proposal function q and the number of samples we ask for.
The output is a Markov chain X. The RandMultiNormal function is given in Section A.9.

def McMcRandWalkGen(pdf, X0, SigmaWalk, N):
dim = np.size(X0)
X = np.zeros([dim,N])
X[:,0] = X0
for t in range(N-1):

Z = RandMultiNormal(np.zeros(dim),SigmaWalk,1).T
Y = X[:,t] + Z
Xt = np.array([X[:,t]])
alpha = min(pdf(Y)/pdf(Xt),1)
U = np.random.rand()
if U <= alpha:

X[:,t+1] = Y
else:

X[:,t+1] = X[:,t]
return X

Example 8.1 (Rubinnstein-Kroese:2017). Consider a random vector X = [X1, X2] with the
following bivariate pdf

f(x, y) = c exp
(
−(x2y2 + x2 + y2 − 8x− 8y)/2

)
(8.5)

where c
.= 1/20216.335877 is the normalization constant.

Figure 25: Surface plot of bivariate density function f(x, y).

58

The surface graph of this density is shown in Figure 25. We want to generate samples
{Xt = (Xt1, Xt2) : t = 1, 2, . . . , N} from f(x, y) using the Metropolis-Hastings algorithm
with the random walk sampler as a transition kernel. We assume that Σ = diag[σ2, σ2]
where the moderate value σ = 2 is chosen in our experiment. We run the following script to
produce N = 104 samples from f . The contour plot of f and the samples are displayed in
Figure 26. We discarded an initial “burn-in” period (say the first 1000 samples) to ensure
the chain has reached a stable distribution. We observe that the correct region is sampled.

def f(xy): # Define the distribution
x,y = xy[0]; c = 1/20216.335877
return c*np.exp(-(x**2*y**2+x**2+y**2-8*x-8*y)/2)

Sigma = 2*np.eye(2)
N = 10**4 # number of MH samples
X0 = [0,0] # initial guess
X = McMcRandWalkGen(f, X0, Sigma, N) # Call the MCMC function
plot the results
xeval = np.linspace(-1, 7, 1000)
[x,y] = np.meshgrid(xeval,xeval)
feval = f([[x,y]])
plt.figure(figsize = (5, 5))
plt.contour(x,y,feval)
plt.figure(figsize = (5, 5))
plt.plot(X[0,1000:], X[1,1000:], color = ’red’,

marker = ’o’, markersize = 2, linestyle = ’’)

−1 0 1 2 3 4 5 6 7
X1

−1

0

1

2

3

4

5

6

7

X 2

−1 0 1 2 3 4 5 6
X1

−1

0

1

2

3

4

5

6

7

X 2

Figure 26: The contour plot of bivariate distribution f (left) and the samples using the Metropolis-
Hastings algorithm (right). The first 1000 samples are discarded.

59

The histogram of variable X1 is also shown in Figure 27. It is close to the true marginal
pdf. We use a numerical integration to compute the exact marginal distribution via formula

fX1(x) =
∫ ∞

−∞
f(x, y)dy.

−1 0 1 2 3 4 5 6 7
X1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

f X
1(x

)

Figure 27: The histogram of the marginal variable X1, and the true corresponding marginal pdf
(the blue curve).

Now, assume that we want to estimate Ef (X1) using the Monte Carlo method. It is enough
to compute the mean of marginal samples {Xt1}.

MeanVals = np.zeros(4)
for k in range(4):

N = 10**(k+3)
X0 = [0,0]
X = McMcRandWalkGen(f, X0, SigmaWalk, N)
MeanVals[k] = np.mean(X[0,1000:])

print("MCMC estimates = ", np.round(MeanVals,4))

The output of a run is

MCMC estimates = [1.6999 1.8169 1.8985 1.8584]

which actually four estimations for Ef (X1) with N = 103, 104, 105 and 106. The exact value
is Ef (X1) .= 1.85997.

8.2 MCMC Bayesian parameter estimation
One application of the Metropolis-Hastings algorithm arises in Bayesian inference for param-

eter estimation. In Bayesian inference, we aim to estimate parameters θ = (θ(1), θ(2), . . . , θ(d))
of a model by calculating the posterior distribution p(θ|data), which reflects our updated be-
liefs about the parameters after observing the data. The posterior distribution is typically

60

computed as
p(θ|data) = p(data|θ) · p(θ)

where p(data|θ) is the likelihood of observing the data given the parameters, and p(θ) is the
prior distribution, which encodes our initial beliefs about θ before seeing the data.

However, calculating p(θ|data) explicitly can be difficult, especially if the likelihood is com-
plex or the dimensionality of θ is high. This is where the Metropolis-Hastings algorithm be-
comes useful. We assume that the proposal distribution q is given and f(θ) = p(data|θ) · p(θ).
We start with an initial guess θ0 = (θ(1)

0 , . . . , θ
(d)
0) for the parameters and we use Algorithm 6

to generate a chain of parameter samples. After a sufficient number of iterations the generated
samples {θ1, θ2, . . . , θN} approximate the target posterior distribution p(θ|data). We can now
use the Metropolis-Hastings samples to estimate the posterior mean, variance, and confidence
intervals for each parameter.

Example 8.2 (Estimating Patient Recovery Rate). Suppose we observe the recovery times of
10 patients after treatment, given in days as

data = {5, 8, 12, 7, 9, 10, 3, 6, 8, 11}.

Our goal is to estimate the posterior distribution of the recovery rate parameter θ, which
represents the average rate at which patients recover. We assume that recovery times follow
an exponential distribution

p(x|θ) = θe−θx.

The aim is to estimate the parameter θ by approximating its (posterior) distribution, i.e.,
generating samples from its distribution that is unknown to us. But we assume that θ has
a prior distribution. In this example we will use the Gamma distribution as a prior for θ,
i.e.,

p(θ) = βα

Γ(α)θα−1e−βθ

where α = 2 and β = 1, which encodes our prior belief that θ is likely around 2 because the
mean of the Gamma distribution is α/β.
For the given independent recovery times xj (our data), the likelihood of observing the data
given θ is

p(data|θ) =
10∏

j=1
θe−θxj .

Note that, in the likelihood θ is the parameter of the distribution while in the prior θ is the
variable of the distribution.
We start with an initial guess θ0 = 1 and use the random walk sampler (normal distribution
N (θt, σ2)) with a small variance σ2 = 0.25 at each time step t to generate the new parameter
θt+1 using the Metropolis-Hastings algorithm. The code is given below. Note that to
define the distribution f(θ) = p(data|θ) · p(θ) we use the logarithm of likelihood and prior

61

distributions to compute log(f(θ)) and finally return f(θ) = exp(log(f(θ))).

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gamma, expon # Gamma and Exponential distributions

Given data
data = [5,8,12,7,9,10,3,6,8,11]
Define MCMC distribution = likelihood * priors
def mcmc_pdf(theta):

log_likelihood = np.sum(expon.logpdf(data, scale = 1/theta))
alpha = 2; beta = 1;
log_prior = gamma.logpdf(theta, alpha, scale = 1/beta)
return np.exp(log_likelihood+log_prior)

Sigma = 0.5 # std value for random walk sampler (transient kernel)
theta0 = .5 # initial guess
N = 10**4 # length of MCMC chain
BurnIn = 1000 # burn-in period for MH

Theta = McMcRandWalkGen(mcmc_pdf, theta0, Sigma, N) # Call MCMC algorithm
Theta = Theta[:,BurnIn:] # Discard an initial burn-in period
MeanTheta = np.mean(Theta)

err = 1.96*np.std(Theta)/np.sqrt(np.size(Theta))
print("Posterior mean of parameter is ${0} +/- {1} with 95% of probability"

.format(np.round(MeanTheta,4), np.round(err,4)))

plt.hist(Theta[0,:], bins=30, density=True, alpha=0.6, color=’red’)
plt.axvline(MeanTheta, color=’b’, linestyle=’dashed’, linewidth=1.5,

label=f"Mean recovery rate: {MeanTheta:.4f}")
plt.title("Distribution of recovery rate parameter")
plt.xlabel("Recovery rate")
plt.ylabel("Density")
plt.legend()
plt.show()

The histogram of θ samples is plotted and together with its estimated mean value are shown
in Figure 28.

62

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Recovery rate

0

2

4

6

8

10

De
ns

ity

Distribution of recovery rate parameter
Mean recovery rate: 0.1489

Figure 28: Posterior distribution of parameter θ sampled by the Metropolis-Hastings algorithm,
and its estimated mean value.

We also calculated the standard deviation of θ values and a confidence interval with 95%
probability to get an estimate for the error of the recovery rate. The output is

Posterior mean of parameter is $0.1489 +/- 0.0009 with 95% of probability

Example 8.3 (Estimating the probability of a large portfolio loss). A financial analyst wants
to estimate the likelihood that an investment portfolio valued at $1, 000, 000 will lose more
than $100, 000 over a 6-month period. This probability, often referred to as the Value at
Risk (VaR) at a certain confidence level, is crucial for managing risk and setting capital
reserves.
We assume the portfolio value St follows a geometric Brownian motion

dSt = µSt dt + σSt dWt

which is commonly used to model stock prices, as discussed in Example 6.4. Here µ is the
drift rate (expected return rate of the portfolio), σ is the volatility of returns, and Wt is
a Wiener process. We learnt in Section 6.3 how to generate a sample path St using the
Euler-Maruyama method.
The goal here is to estimate the posterior distributions of parameters θ = (µ, σ) given
historical data on portfolio returns. From these, then we can simulate future values of St

and estimate the probability of a loss greater than $100, 000 over the next six months.
The analyst has monthly return rate data for the portfolio in the past five years, which we
denote by

data = {r1, r2, . . . , r60}

where each rj is the observed monthly return rate. Assuming that monthly returns are
normally distributed, we define the likelihood of observing a monthly return rj given µ and

63

σ as
p(rj|µ, σ) = 1√

2πσ2
exp

(
−(rj − µ)2

2σ2

)
.

For the entire dataset, the likelihood is

p(data|µ, σ) =
60∏

j=1
p(rj|µ, σ).

It is remained to specify prior distributions for µ and σ. For µ, a normal distribution
centered at the historical average return, say µ̃, with standard deviation σ̃ is used, i.e.,

p1(µ) ∼ N (µ̃, σ̃2).

For σ, an Inverse-Gamma distribution

p2(σ2) ∼ InvGam(α, β)

is used. The Inverse-Gamma distribution is commonly used for variance and precision
parameters in Bayesian statistics, and has the distribution

f(x) = βα

Γ(α)(1/x)α+1 exp(−β/x), x > 0, α, β > 0.

This distribution has parameters α and β that can be chosen based on prior knowledge of
the portfolio’s volatility. Note that for α > 1 the mean of the Inverse-Gamma distribution
is β/(α− 1). The joint prior distribution is defined as

p(µ, σ2) = p1(µ) · p2(σ2).

To apply the Metropolis-Hastings algorithm we start with initial guesses for µ and σ, say
θ0 = (µ0, σ0), and use a random walk sampler with covariance matrix

Σ =
τ 2

µ 0
0 τ 2

σ


to propose a new parameter vector θt+1 = (µt+1, σt+1) at each step t = 0, 1, . . . of the
algorithm. Here τµ and τσ are small tuning parameters to control the step size of the
sampler. We run the Metropolis-Hastings algorithm for many iterations (e.g., NMH = 104),
and discard the first few thousand samples for burn-in.
Finally, to estimate the VaR, we do the following steps:

1. (Simulate future portfolio values): Using the posterior samples of µ and σ, simulate
the portfolio value after 6 months under the geometric Brownian motion model. For
each sampled (µ, σ) pair, generate NMC paths using function DiffusionProcessGen
for drift coefficient a(t, St) = µSt and diffusion coefficient b(t, St) = σSt, and calculate
the final portfolio values ST for T = 0.5 a year (6 months). Finally, take a mean to
have one estimate for the portfolio value for each pair (µ, σ).

2. (Calculate loss probability): Compute the proportion of paths where the portfolio
value is below $900, 000 (a $100, 000 loss from the starting value). This proportion
estimates the probability of a large loss in the period.

The Python code is given below where we use the input values as followings: The initial

64

portfolio value is S0 = 1, 000, 000, the loss threshold is 900, 000 (a $100, 000 loss), the time
frame is 6 months, the historical mean return is µ̃ = 0.05 (5% per month), the historical
volatility is σ̃ = 0.1, parameters for Inverse-Gamma distribution are α = 2 and β = 0.0004,
the proposal variances for µ and σ are τµ = 0.001 and τσ = 0.001, the initial guess is
θ0 = (µ0, σ0) = (µ̃, σ̃), the number of MCMC iterations is NMH = 104, and the number of
Monte Carlo paths per posterior sample is NMC = 103. The data values rj are given in the
code.

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import invgamma, norm # import Inv-Gamma and normal dists.

Parameters
S0 = 1000000 # Initial portfolio value
LossThreshold = 900000 # Loss threshold (100,000 loss)
FinalTime = 0.5 # Time horizon in years (6 months)
N_MH = 10000 # Number of Metropolis-Hastings iterations
N_MC = 1000 # Monte Carlo paths for each posterior sample
BurnIn = 2000 # Burn-in period for MH

Prior parameters
mu_prior = 0.05 # Historical mean return
sigma_prior = 0.1 # Historical volatility
alpha_prior, beta_prior = 2, 0.0004

Metropolis-Hastings proposal variances
tau_mu = 0.001
tau_sigma = 0.001

Given data for sixty months
data = np.array(

[0.07, 0.13, 0.10, 0.17, 0.11, 0.03, 0.15, 0.09, 0.12, 0.12,
-0.06, 0.07, 0.09, -0.01, 0.08, 0.08, 0.07, 0.19, 0.09, 0.12,
0.03, 0.16, -0.02, 0.2 , 0.14, 0.05, 0.08, 0.06, 0.10, -0.07,

-0.01, -0.07, -0.05, 0.21, -0.05, 0.02, -0.02, 0.15, 0.08, 0.02,
-0.03, 0.01, 0.08, 0.13, 0.16, -0.03, -0.13, 0.14, 0.11, 0.12,
-0.01, -0.07, 0.16, 0.27, -0.06, 0.01, 0.01, 0.01, 0.01, 0.16])

65

Define MCMC distribution = likelihood * priors
def mcmc_pdf(theta):

mu, sigma = theta[0]
log_likelihood = np.sum(norm.logpdf(data, loc=mu, scale=sigma))
log_prior_mu = norm.logpdf(mu, loc=mu_prior, scale=sigma_prior)
log_prior_sigma = invgamma.logpdf(sigma**2, a=alpha_prior, scale=beta_prior)
return np.exp(log_likelihood + log_prior_mu + log_prior_sigma)

Call the Matropolis-Hastings algorithm
theta0 = [mu_prior, sigma_prior] # initial guess theta0 = [mu0,sigma0]
SigmaWalk = np.diag([tau_mu,tau_sigma]) # covariance of the sampler
Theta = McMcRandWalkGen(mcmc_pdf, theta0, SigmaWalk, N_MH)

Theta = Theta[:,BurnIn:] # Discard burn-in samples

Monte Carlo simulation for each posterior sample (mu, sigma)
def drift(t,x,*args): # drift

mu = args[0]
return mu*x

def diffusion(t,x,*args): # diffusion
sigma = args[1]
return sigma*x

TimeStep = 0.01 # Time step in Euler-Maruyama method
LossPr = [] # Loss probability vector
ST = np.empty(N_MC) # Stock value vector at final time
for mu, sigma in zip(Theta[0,:], Theta[1,:]): # loop over all samples

for j in range(N_MC): # Monte Calro loop
ST[j] = DiffusionProcessGen(drift, diffusion, [0,FinalTime],

TimeStep, S0, mu, sigma)[-1]
LossPr.append(np.mean(ST < LossThreshold))

Calculate the mean loss probability
MeanLossPr = np.mean(LossPr)

Results
print(f"Estimated Probability of a $100,000 Loss: {MeanLossPr:.4f}")

Plotting the results

66

plt.figure(figsize=(6, 4))
plt.hist(LossPr, bins=30, density=True, alpha=0.6, color=’red’)
plt.axvline(MeanLossPr, color=’b’, linestyle=’dashed’, linewidth=1.5,

label=f"Mean Loss Probability: {MeanLossPr:.4f}")
plt.title(’Distribution of Loss Probabilities from MC Simulations’)
plt.xlabel(’Loss Probability’)
plt.ylabel(’Density’)
plt.legend()
plt.show()

We computed the mean probability of loss from all simulations and visualize the distribution
of the estimated loss probabilities by drawing the histogram of the loss probability values.
See Figure 29. The estimated probability of a $100, 000 loss is about 1%.

0.00 0.02 0.04 0.06 0.08
Loss Probability

0

10

20

30

40

50

60

70

De
ns

ity

Distribution of Loss Probabilities from MC Simulations
Mean Loss Probability: 0.0108

Figure 29: The distribution of the estimated loss probabilities and its estimated mean.

The main advantage of MCMC is that it can be used to generate random samples from
any target distribution, regardless of its dimensionality and complexity. Main disadvantages
are (1) The resulting samples are often highly correlated, (2) Sometimes N should be large so
that the Markov chain settles down to its steady state, (3) the estimates obtained by MCMC
often have greater variances than those obtained from iid samplings. During the past years,
modified versions and more efficient MCMC algorithms have been developed to overcome such
disadvantages. See for example [Robert-Casella:2004].

9 Exercises
This section includes a number of exercises designed to deepen your understanding of the lec-

ture material. Some of the exercises are adapted from the references listed in the bibliography.

67

Exercise 9.1. The Weibull distribution is named after Swedish mathematician Waloddi
Weibull, who described it in detail in 1939. The pdf (probability density function) of this
distribution is defined by two parameters λ (scale parameter) and α (shape parameter), and
is given by

f(x) = α

λ

(
x

λ

)α−1
e−(x/λ)α

, x ≥ 0.

Demonstrate how the Inverse Transform Method (ITM) can be used to generate random
numbers from a Weibull distribution. Write down all the steps. Then design a Monte Carlo
algorithm for estimating the value of integral

I =
∫ ∞

0

√
1 + x2f(x) dx

where f(x) is a Weibull pdf with parameters α = 2.5 and λ = 1. Be sure to not only return
the estimation of I but also an estimate of the error.

Exercise 9.2. Consider the integral

I =
∫ π

0
(x +

√
x) sin x dx.

Let us consider I as an expectation value of a random variable g(X) where X has a sine-
distribution with pdf

f(x) =


1
2 sin(x), 0 ≤ x ≤ π

0, otherwise
.

We write X ∼ sin. Given uniformly distributed random numbers U ∼ U(0, 1), write with
details that how you convert these into sine distributed random numbers. Then write I as
an expectation value using such a random variable X ∼ sin and write a pseudocode that
estimates the integral using a Monte Carlo method with a given number of N samples. Be
sure to not only return estimation of I but also an estimate of the error.

Exercise 9.3. Let X1, . . . , Xn be iid random variables with cdf F . Assume that

X(1) := min{X1, . . . , Xn}, X(n) := max{X1, . . . , Xn}.

First prove that the cdf of X(n) is Fn(x) = [F (x)]n and the cdf of X(1) is F1(x) = 1 − [1 −
F (x)]n. Then show that

X(n) = F −1(U1/n), X(1) = F −1(1− U1/n)

where U ∼ U(0, 1). Random variables X(1) and X(n) are called ordered statistics. Show how
inverse transform method can be used to sample from ordered statistics.

68

Exercise 9.4. How the inverse transform method can be applied to generate from Beta
distributions Beta(α, 1) and Beta(1, β). Derive the formulation and implement the Python
code.

Exercise 9.5. Explain how we can generate a random variable X from the semicircular pdf

f(x) = 2
πR2

√
R2 − x2, x ∈ [−R, R]

using the acceptance-rejection algorithm. Then use the RandAcceptReject function for
illustration.

Exercise 9.6. Write a Python code for drawing normal samples using the acceptance-
rejection method with exponential distribution as a proposal distribution. Refer to dis-
cussions at the end of subsection 3.2. Plot histograms for different number of samples.

Exercise 9.7. Develop an algorithm for sampling from Bin(p, n) for large values of n using
the fact that the distribution of a binomial variable X ∼ Bin(p, n) is close to that of
Y ∼ N (np− 1/2, np(1− np)) for a large n.

Exercise 9.8. The rational number π is the volume of the unit ball in R2. We can compute
the area of the first quadrant sector and multiply it by 4:

π = 4
∫ 1

0

√
1− x2dx.

Use Monte Carlo to estimate π by approximating the above integral with different number
of samples. Compare the errors with the Monte Carlo error bound. Plot the errors in log-log
scale for 10 executions.

Exercise 9.9. For the normal-Cauchy Bayes estimator

δ(t) =
∫ ∞

−∞

x

1 + x2 e−(x−t)2/2dx
/∫ ∞

−∞

1
1 + x2 e−(x−t)2/2dx

use the Monte Carlo integration based on normal simulations to estimate δ(t) for t = 0, 2, 4.
Monitor the convergence with the standard error of the estimate. Determine the minimum
value N to obtain three digits of accuracy with 0.95% probability.

Exercise 9.10. Write down the proof of Theorem 5.2.

69

Exercise 9.11. Suppose that the morning weather of a city in a time period can be only
sunny or cloudy, and the weather conditions on successive mornings form a Markov chain
with transition matrix

sunny cloudy
sunny

⌈
0.7 0.3

⌉
cloudy

⌊
0.6 0.4

⌋ .

1. If it is cloudy on a given day, what is the probability that it will also be cloudy the
next day?

2. If it is sunny on a given day, what is the probability that it will be sunny on the next
two days?

3. If it is cloudy on a given day, what is the probability that it will be sunny on at least
one of the next three days?

4. If it is sunny on a certain Wednesday, what is the probability that it will be sunny on
the following Saturday?

5. If it is cloudy on a certain Wednesday, what is the probability that it will be sunny
on the following Saturday?

6. If it is sunny on a certain Wednesday, what is the probability that it will be sunny on
both the following Saturday and Sunday?

7. If it is cloudy on a certain Wednesday, what is the probability that it will be sunny
on both the following Saturday and Sunday?

8. Suppose that the probability that it will be sunny on a certain Wednesday is 0.2 and
the probability that it will be cloudy is 0.8. Determine the probability that it will be
cloudy on the next day, Thursday.

9. With assumptions of item 8, determine the probability that it will be cloudy on Friday.

Exercise 9.12. Suppose that a Markov chain has state space S with four states {1, 2, 3, 4}
and transition matrix

1 2 3 4
1

⌈
0.25 0.25 0.00 0.50

⌉
2

∣∣∣0.00 1.00 0.00 0.00
∣∣∣

3
∣∣∣0.50 0.00 0.50 0.00

∣∣∣
4

⌊
0.25 0.25 0.25 0.25

⌋
If the chain is in state 3 at a given time t, what is the probability that it will be in state 2
at time t + 2? If the chain is in state 1 at a given time t, what is the probability that it will
be in state 3 at time t + 3?

70

Exercise 9.13. We want to use a finite Markov chain to model the probability of customers
making purchases based on their past behavior. Assume that customers can be in one of
the following four states:

1. Browsing: The customer is browsing the website without purchasing.

2. Added to Cart: The customer has added items to their cart but has not checked out.

3. Checkout: The customer is in the checkout process but has not completed the purchase.

4. Purchased: The customer has completed a purchase.
We have observed customer behavior and estimated the following transition probabilities
for moving from one state to another.

- Customers in the Browsing state stay there with 60% probability, move to Added to
Cart with 30% probability, and go directly to Checkout with 10% probability.

- Customers who have added items to their cart have a 20% chance of going back to
Browsing, a 50% chance of staying in Added to Cart, a 20% chance of moving to
Checkout, and a 10% chance of making a Purchase.

- Customers in Checkout have a 60% chance of staying in Checkout, a 30% chance of
making a Purchase, and a 10% chance of returning to Added to Cart.

- Once in the Purchased state, customers stay there permanently (100% probability),
as the process ends with a purchase.

The goal is to estimate the probability that a customer will complete a purchase within
6 steps, starting from the Browsing state. Write down the transition matrix and use the
MarkovChainGen function in a Monte Carlo loop to estimate the the purchase probability
in 6 steps. Write a Python code and report the result.

Exercise 9.14. You are running a startup company. Let Vt denote the valuation of your
company at time t, t = 0, 1, . . . (say, in months). If Vt, then the company goes bankrupt and
stops operating; if Vt = vmax, then the company is acquired by a larger company, you receive
a payout vmax, and the company stops operating. In each time period that the company
operates, you invest additional fixed amount cinvest in the company, and you also incur an
operating cost coperate. If 0 < Vt < vmax then

Vt+1 =

Vt + δ, with probability p

Vt − δ, with probability 1− p

Here δ > 0 is a given parameter. The initial valuation V0 is an integer multiple of δ, as is
vmax, so all Vt are also integer multiples of δ. With this model, you will eventually either go

71

bankrupt or be acquired. Consider this model with the following parameter instances:

δ = 2M sek, V0 = 10M sek, vmax = 100M sek,

coperate = 10K sek, cinvest = 200K sek, p = 0.6

First, identify the type of random process and explain why. Then design a Monte-Carlo
algorithm (write a pseudo-code) to estimate:

a) the probability that the startup goes bankrupt,

b) the expected time until the startup goes bankrupt or is acquired,

c) the expected profit, if the startup is acquired,

d) the expected loss, if the startup goes bankrupt.
Finally, implement your algorithm in a Python environment (with N = 5000 Monte Carlo
simulations) and report all the above estimations.
Note that, profit is the payout, when the company is acquired, minus the initial value of
company, minus the total operating cost, minus the total of any investments made. Loss is
the initial value of company plus the total operating cost plus the total of any investments
made, when the company goes bankrupt.

Exercise 9.15. Apply the Gillespie algorithm to solve the predator-prey model

R
α−→ 2R

R + F
β−→ 2F

F
γ−→ ∅

with rates α = 1, β = 0.005, and γ = 0.6 and initial value (F0, R0) = [50, 100] up to final
time tfinal = 30. There exists also the deterministic model

dF

dt
= βFR− γF

dR

dt
= αR− βFR

with R(0) = R0 and F (0) = F0 associated to this simple ecology. Use the ODE solver
solve_ivp from the scipy.integrate library to solve this ODE with the same input data
and compare the results of stochastic and deterministic models.

Exercise 9.16. Consider the Michaelis-Menten model

S + E C P + E
c1
c2

c3

which is the standard model for enzyme catalysts. Here, c1 (forward rate), c2 (reverse rate),
and c3 (catalytic rate) denote the constant rates of the reactions. Our intention is to solve

72

this model using the Gillespie’s algorithm (SSA).
Write down propensity functions and state-change vectors for this model. Assume that
for a certain enzyme the reactions rates are c1 = 0.002 mol−1sec−1, c2 = 0.1 sec−1 and
c3 = 0.75 sec−1 where sec stands for the unit of time and mol is the unit for number of
proteins. Furthermore, assume that at time t = 0.1, sec the number of proteins have been
computed as E(t) = 300 mol, S(t) = 200 mol, C(t) = 100 mol, and P (t) = 50 mol.
The task is to compute the number of proteins in the next time level t + τ . To this
aim, we have generated two uniform random numbers u1 = 0.64 and u2 = 0.83 from the
U(0, 1) distribution. The number u1 must be used to determine the steplength τ , and u2 to
determine the specific reaction that will occur. Given these conditions, proceed to compute
the next time level and the number of proteins at this new time. Write down all steps and
details of your solution.

Exercise 9.17. Estimate Ef [h(X1, X2)] using the Metropolis-Hastings algorithm where
g(x, y) = xy and f is given in (8.5). Use different values N = 103, 104, 105 and 106.

Exercise 9.18. In thins exercise, we extend the the scenario in Example 8.2 to a two-
parameter case where we estimate the recovery rates for two different patient groups, θ =
(θ(1), θ(2)). Each parameter, θ(1) and θ(2), stands for the recovery rate for a different group of
patients and both are assumed to follow exponential distributions with independent Gamma
priors. We have two sets of observed recovery times

data1 = {5, 8, 12, 7, 9, 10, 3, 6, 8, 11}

data2 = {10, 14, 7, 11, 13, 8, 15, 9, 10, 16}.

Each group has 10 observations, and we assume that recovery times for each group are
independent and exponentially distributed:

p(x|θ(1)) = θ(1)e−θ(1)x and p(x|θ(2)) = θ(2)e−θ(2)x.

Both recovery rates, θ(1) and θ(1), are independent and follow Gamma prior

θ(i) ∼ Gam(αi, βi), i = 1, 2.

Assume that the prior parameters are α1 = 2, β1 = 1, α2 = 2, and β2 = 1 which indicates
that we expect similar rates for both groups.
For independent recovery times in each group, the likelihood function for each set of obser-
vations is

p(datai|θ(i)) =
10∏

j=1
θ(i)e−θ(i)xj , i = 1, 2,

73

and the joint likelihood of observing all data given θ = (θ(1), θ(2)) is

p(data|θ(1), θ(2)) = p(data1|θ(1)) · p(data2|θ(2)).

Start with an initial values θ0 = (θ(1)
0 , θ

(2)
0) = (1, 1) and use the random walk sampler with

covariance matrix

Σ =
0.2 0

0 0.2


at each time step t to generate the new parameter vector θt+1 using the Metropolis-Hastings
algorithm. Plot the histogram of generated samples, and compute the mean, variance and
the confidence intervals for each parameter.

A Appendix
In this appendix section we summarize some basic definitions and results from probability

theory. For more details, see standard textbooks in the subject. As examples I refer you to
[DeGroot-Schervish:2007] and [Rubinnstein-Kroese:2017].

A.1 Random experiments
An experiment whose outcome can not be determined in advance is called a random exper-

iment. The sample space of the random experiment is the set of all its possible outcomes. We
denote the sample space by Ω. For example, assume that a fair coin is flipped three times. If
H and T stand for ‘heads’ and ‘tails’, the sample space of this experiment is

Ω = {HHH, HHT, HTH, THH, TTH, THT, HTT, TTT}

which contains eight possible outcomes. Here THT means that the first flip lands tails, the
second heads, and the third tails. Subspaces of the sample space are called events. For example
the event A that the second flip is heads is

A = {HHH, HHT, THH, THT}.

We say that event A occurs if the outcome of the experiment is one of the elements of A. Since
events are sets, we can apply the usual set operations to them. For example, the event

A ∪B

is the event that A or B or both occur, and the event

A ∩B

is the event that A and B both occur. Similar notation holds for unions and intersections of
more than two events. For intersection of n events A1, A2, . . . , An, we usually use the abbrevia-
tion A1A2 . . . An = A1∩A2∩· · ·∩An, for simplicity. The event Ac called the complement of A,
is the event that A does not occur. Two events A and B are called disjoint if their intersection
is empty.

74

Definition A.1. The probability P is a rule that assigns a number P(A) to each event A ⊆ Ω
such that

1. 0 ⩽ P(A) ⩽ 1,

2. P(Ω) = 1,

3. for any sequence A1, A2, . . . of disjoint events we have

P

(⋃
k

Ak

)
=
∑

k

P(Ak). (A.1)

The item 1 states that the probability that the outcome of the experiment lies within A

is some number between 0 and 1. The item 2 states that with probability 1 any outcome is
a member of the sample space Ω, and the item 3 states that for any set of mutually disjoint
events, the probability that at least one of these events occurs is equal to the sum of their
respective probabilities.

Since A and Ac are always mutually disjoint, and since A ∪ Ac = Ω, we have from items 2
and 3 that

1 = P(Ω) = P(A ∪ Ac) = P(A) + P(Ac)
or equivalently

P(Ac) = 1− P(A).
In other words, the probability that an event does not occur is 1 minus the probability that it
does.

In the coin flipping experiment, since the coin is fair, the eight possible outcomes are equally
likely to occur and thus has probability 1/8. For example P({HTH}) = 1/8. Since each event
A is the union of the events {HHH}, . . . , {TTT}, and this events are disjoint, we have

P(A) = |A|
|Ω|

where |A| denotes the number of outcomes in A. For example, the probability of the event A

that the second flip is heads is P(A) = 4/8 = 1/2.

A.2 Conditional probability and independence
Assume that B ⊂ Ω is an event. Given that the outcome lies in B, the event A will occur if

and only if A ∩ B occurs and the relative chance of A occurring is therefore P(A ∩ B)/P(B).
This leads to the definition of the conditional probability of A given B:

P(A|B) = P(A ∩B)
P(B) . (A.2)

For example, if a fair coin is flipped 3 times, and B is the event of total number of heads being
2, then the probability of event A that the second flip is heads given that B occurs is 2/8

3/8 = 2
3

because
B = {HHT, HTH, THH}, P(B) = 3

8

75

and

A = {HHH, HHT, THH, THT}, A ∩B = {HHT, THH}, P(A ∩B) = 2
8 .

From (A.2), by changing the role of A and B we can write

P(AB) = P(A)P(B|A), (A.3)

and this formula can be generalized for any sequence of events A1, A2, . . . , An,

P(A1A2 · · ·An) = P(A1)P(A2|A1)P(A3|A1A2) · · ·P(An|A1 · · ·An−1) (A.4)

which is known as the product rule of probability.
Assume that B1, B2, . . . , Bn are disjoin events and their union is Ω. Then any event A ⊂ Ω

can be written as A = ∪n
k=1(A ∩ Bk). From the third property of probability, i.e. (A.1), we

have P(A) = ∑n
k=1P(A ∩Bk). Then form (A.2) we can write

P(A) =
n∑

k=1
P(A|Bk)P(Bk), (A.5)

which is known as the law of total probability. Then, from the fact that P(A)P(Bj|A) =
P(ABj) = P(A|Bj)P(Bj), we may write

P(Bj|A) = P(A|Bj)P(Bj)
n∑

k=1
P(A|Bk)P(Bk)

(A.6)

which is known as the Bayes’ rule.
Two events A and B are called independent if P(A|B) = P(A) which means that the

occurrence of B does not effect on the occurrence of A. An equivalent definition is: A and B

are independent if and only if
P(AB) = P(A)P(B).

Thus definition can be extended to a sequence of events.

Definition A.2. The events A1, A2, . . . , are called independent if for any k and any distinct
indexes i1, . . . , ik we have

P(Ai1Ai2 · · ·Aik
) = P(Ai1)P(Ai2) · · ·P(Aik

).

A.3 Random variables and distributions
It might not always be feasible or necessary to provide a model for a random experiment

through a detailed description of Ω and P. In practice, we are only interested in certain
observations in the experiment. These quantities of interest that are determined by the results
of the experiment are known as random variables, which are usually denoted by capital letters
X, Y or Z with or without subscripts.

Example A.1. Consider an experiment in which a fair coin is tossed n times. In this
experiment, the sample space Ω can be regarded as the set of outcomes consisting of the 2n

76

different sequences of elementary outcomes, for instance {HTHHT · · ·T︸ ︷︷ ︸
n times

}. Assume that we

are interested only in the number of heads in the observed outcome. Let X be a real-valued
function defined on Ω that counts the number of heads in each outcome. For example,
for n = 10 in the elementary outcome s = HHTTTHTTTH, we have X(s) = 4. For
each possible sequence s, the value X(s) equals the number of heads in the sequence. The
possible values for the function X are {0, 1, . . . , 10}.

Definition A.3 (Random Variable). Let Ω be the sample space for an experiment. A real-
valued function X that is defined on Ω is called a random variable.

The cumulative distribution function (cdf), or more simply the distribution function, F of a
random variable X is defined for any real number x by

F (x) = P(X ⩽ x).

A random variable that can take either a finite or at most a countable number of possible
values is said to be a discrete random variable. For a discrete random variable X we define its
probability mass function (pmf) f(x) by

f(x) = P(X = x).

If X is a discrete random variable that takes on one of the possible values x1, x2, . . . , then,
since X must take one of these values, we have

∞∑
k=1

f(xk) = 1.

Example A.2. Assume that a biased coin with p the probability of heads is flipped n times.
Suppose that we are interested only in number of heads in this experiment. The number
of heads is a random variable, let us denote it by X, and can take any of the values in
{0, 1, . . . , n}. Each elementary event {HTH · · ·T} with exactly k heads and n− k tails has
probability pk(1− p)n−k, and there are

(
n
k

)
such events. Thus we have

f(k) = P(X = k) =
(

n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

This is the pmf of random variable X. The cdf of X then is

F (k) =
k∑

j=0
P(X = j) =

k∑
j=0

(
n

j

)
pj(1− p)n−j, k = 0, 1, . . . , n.

A random variable X is said to have a continuous distribution if there exists a positive
function f with total integral 1, such that for all a and b,

P(a ⩽ X ⩽ b) =
∫ b

a
f(u)du.

The function f is called the probability density function (pdf) of X. Note that in the continuous

77

case the cdf is given by
F (x) = P(X ⩽ x) =

∫ x

−∞
f(u)du.

Differentiating both sides yields
d

dx
F (x) = f(x).

Note that in the discrete case we use the term probability mass function (pmf) for f and in
the continuous case the term probability density function (pdf). In a more advance probability
theory, both pmf and pdf can be viewed as particular instances of a general notion called
probability density. Therefore, from here on we will call f a pdf in both discrete and continuous
cases.

We use the notation X ∼ f and X ∼ F to denote that X has the pdf f and cdf F ,
respectively. Sometimes we write fX to stress that f is the distribution of random variable X.
In Tables 1 and 2 the list of some well-known discrete and continuous distributions are given.

Table 1: Some well-known discrete distributions

Name Notation f(x) domain of x Parameters
Bernoulli Ber(p) px(1− p)1−x {0, 1} 0 ⩽ p ⩽ 1
Binomial Bin(n, p)

(
n
x

)
px(1− p)n−x {0, 1, . . . , n} 0 ⩽ p ⩽ 1

Discrete uniform DU{1, . . . , n} 1
n

{1, . . . , n} n ∈ {1, . . . , n}
Geometric Geo(p) p(1− p)1−x {1, 2, . . .} 0 ⩽ p ⩽ 1
Poisson Poi(λ) e−λ λx

x! N λ > 0

Table 2: Some well-known continuous distributions

Name Notation f(x) domain of x Parameters
Uniform U(a, b) 1

b−a
[a, b] a < b

Normal N (µ, σ2) 1
σ

√
2π

e− 1
2(x−µ

σ)2

R σ > 0, µ ∈ R
Gamma Gam(α, β) βα

Γ(α)x
α−1e−βx R+ α, β > 0

Exponential Exp(λ) λe−λx R+ λ > 0
Inv-Gamma InvGam(α, β) βα

Γ(α)(1/x)α+1e−β/x R+ α, β > 0
Beta Beta(α, β) Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1 [0, 1] α, β > 0

Weibull Weib(α, λ) α
λ
(x

λ
)α−1e−(x/λ)α R+ α, λ > 0

A.4 Expectation and variance
The distribution of a random variable X contains all of the probabilistic information about

X. Summaries of the distribution, such as expected value and variance, can be useful for giving
people some information about X without trying to describe the entire distribution.

The intuitive idea of the expectation or mean of a random variable is that it is the weighted
average of the possible values of the random variable with the weights equal to the probabilities.

78

Definition A.4. Let X be a random variable with pdf f . The expectation (or expected
value or mean) of X, denoted by E[X] (or sometimes µ), is defined by

E[X] =


∑

x

xf(x), discrete case∫ ∞

−∞
xf(x)dx, continuous case,

provided that the sum and integral in the definition are finite.

Example A.3. Let X be a random variable with Bernoulli distribution with parameter p,
that is, assume that X takes only the two values 0 and 1 with P(X = 1) = p. Then the
mean of X is

E[X] = 0× (1− p) + 1× p = p.

If X has exponential distribution with parameter λ then

E[X] =
∫ ∞

0
λxe−λxdx = 1

λ
.

It is important to note that although E[X] is called the expectation of X, it depends only
on the distribution of X. Every two random variables that have the same distribution will
have the same expectation. So, we refer to the expectation of a distribution even if we do not
have in mind a random variable with that distribution.

If X is a random variable then a function of X such as X2 or sin(X) is another random
variable. The expectation of a function of X, say g(X), is simply defined as

E[g(X)] = Ef [g(X)] =


∑

x

g(x)f(x), discrete case∫ ∞

−∞
g(x)f(x)dx, continuous case,

(A.7)

provided that the sum and integral are finite. Here f is the pdf of X.
Another useful quantity is the variance which measures the spread or dispersion of the

distribution.

Definition A.5. The variance of a random variable X is denoted by Var(X) (or σ2) and is
defined by

Var(X) = E[(X − µ)2] = E[X2]− (E[X])2.

The square root of the variance is called standard deviation.

The variance tells us how much X deviates from its mean value. If X has infinite mean or if
the mean of X does not exist, we say that Var(X) does not exist. In Table 3 the expectations
and variances of some well-known distributions are summarized.

79

Table 3: Expectations and variances of some well-known distributions

Name Notation E(X) Var(X)
Bernoulli Ber(p) p p(1− p)
Binomial Bin(n, p) np np(1− p)
Geometric Geo(p) 1/p (1− p)/p2

Poisson Poi(λ) λ λ
Uniform U(a, b) (a + b)/2 (b− a)2/12
Normal N (µ, σ2) µ σ2

Gamma Gam(α, β) α/β α/β2

Exponential Exp(λ) 1/λ 1/λ2

Inv-Gamma InvGam(α, β) β
α−1 , α > 1 β2

(α−1)2(α−2) , α > 2
Beta Beta(α, β) α

α+β
αβ

(α+β)2(1+α+β)
Weibull Weib(α, λ) λΓ(1 + 1/α) λ2 [Γ(1 + 2/α)− Γ(1 + 1/α)2]

A.5 Joint distribution
Let X1, X2, . . . , Xd be random variables describing some random experiments. We can collect

them to a random vector X = (X1, X2, . . . , Xd). Then the joint distribution of X1, . . . , Xd is
specified by the joint cdf

F (x1, . . . , xd) = P(X1 ⩽ x1, . . . , Xd ⩽ xd)

and the joint pdf is given in the discrete case by

f(x1, . . . , xd) = P(X1 = x1, . . . , Xd = xd),

and in the continuous case, f is such that

P(X ∈ B) =
∫

B
f(x1, . . . , xd)dx1 . . . dxd

for any measurable set B in Rd. The marginal pdfs can be recovered from the joint pdf by
integration or summation. For example in the case of continuous random vector (X, Y) with
joint pdf f(x, y), the pdf fX of X is obtained as

fX(x) =
∫

f(x, y)dy.

Suppose that X and Y are both discrete or both continuous, with joint pdf f , and suppose
that fX(x) > 0. Then the conditional pdf of Y given X = x is given by

fY |X(y|x) = f(x, y)
fX(x) , for all y.

The corresponding conditional expectation is (in the continuous case)

E[Y |X = x] =
∫

yfY |X(y|x)dy.

Note that E[Y |X = x] is a function of x, say h(x). The corresponding random variable h(X)
is written as E[Y |X].

When the conditional distribution of Y given X is identical to that of Y , X and Y are said
to be independent. More precisely:

80

Definition A.6 (Independent Random Variables). The random variables X1, . . . , Xd are called
independent if we have

P(X1 ∈ A1, . . . , Xd ∈ Ad) = P(X1 ∈ A1)× · · · × P(Xd ∈ Ad).

for all events {Xi ∈ Ai} with Ai ⊂ R, i = 1, . . . , d.

A direct consequence of the definition above for independence is that the random variables
X1, . . . , Xd with a joint pdf f (discrete or continuous) are independent if and only if

f(x1, . . . , xd) = fX1(x1) · · · fXd
(xd) (A.8)

for all x1, · · · , xd, where fXk
are the marginal pdfs.

An infinite sequence X1, X2, . . . of random variables is called independent if for any finite
choice of parameters i1, i2, . . . , id (none of them the same) the random variables Xi1 , . . . , Xid

are independent. Random variables X1, X2, . . . that are independent and identically distributed
(iid) are frequently appeared in probabilistic models.

The expectation of any real-valued function g of variables X1, . . . , Xd is defined as

E[g(X1, . . . , Xd)] =
∫
· · ·

∫
g(x1, . . . , xd)f(x1, . . . , xd)dx1 · · · dxd.

A direct consequent of the definitions of expectation and independence (equation (A.8)) is

E[a + b1X1 + b2X2 + · · ·+ bdXd] = a + b1E[X1] + b2E[X2] + · · ·+ bdE[Xd]

for any sequence of independent random variables X1, . . . , Xd and constant a, b1, . . ., bd. For
independent random variables we also have (prove!)

E[X1X2 · · ·Xd] = E[X1]E[X2] · · ·E[Xd].

Sometimes it is useful to have a summary of how much the two random variables depend on
each other. The covariance and correlation are additional notions to measure that dependence,
but they only capture a linear dependence.

Definition A.7. The covariance of two random variables X and Y with expectations µX =
E[X] and µY = E[Y] is defined as

Cov(X, Y) = E[(X − µX)(Y − µY)].

A scaled version of the covariance is given by correlation coefficient

ρ(X, Y) = Cov(X, Y)
σXσY

where σ2
X = Var(X) and σ2

Y = Var(Y).

It can be shown that the correlation coefficient is always lies between −1 and 1. Values close
to 0 show a more dependency while values close to 1 and −1 stand for a linear independency
between two variables. Some important properties of the variance and covariance are listed
bellow.

1. Var(X) = E[X2]− (E[X])2,

81

2. Var(aX + b) = a2Var(X),

3. Cov(X, Y) = E[XY]− E(X)E(Y),

4. Cov(X, Y) = Cov(Y, X),

5. Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z),

6. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y),

7. X and Y independent ⇒ Cov(X, Y) = 0.
For random vectors, such as X = (X1, . . . , Xd)T , it is convenient to write the expectations

and covariances in vector notation as

E(X) = (E[X1], . . . ,E[Xd])T = (µ1, . . . , µd)T = µ

Σ = E[(X − µ)(X − µ)T] = [Cov(Xi, Xj)]i,j=1,...,d.

Note that any covariance matrix Σ is a symmetric positive semidefinite matrix.

A.6 Functions of random variables
Suppose that X is a random variable and Z = g(X) for some monotonically increasing

function g. To find the pdf of Z from that of X we first write

FZ(z) = P(Z ⩽ z) = P(X ⩽ g−1(z)) = FX(g−1(z)).

Differentiation with respect to z then gives

fZ(z) = fX(g−1(z)) d

dz
g−1(z) = fX(g−1(z))

g′(g−1(z)) = fX(x)
g′(x) .

For monotonically decreasing functions, d
dz

g−1(z) in the first equation need to be replaced with
its negative value. For example let Z = aX + b where a ̸= 0 and suppose that a > 0. Since
g−1(z) = 1

a
(z − b) and g′(z) = a, we have fZ(z) = 1

a
fX(1

a
(z − b)). Similarly, for a < 0 we have

fZ(z) = 1
−a

fX(1
a
(z − b)). Thus in general

fZ(z) = 1
|a|

fX

(
z − b

a

)
.

Now consider a random vector X = (X1, . . . , Xd)T ∈ Rd, and let Z = AX where A is an
m× d matrix. Then Z is a random vector in Rm. If we know the joint distribution of X, then
we can derive the joint distribution of Z. First, we can show that

µZ = AµX , ΣZ = AΣXAT

because µZ = E[Z] = E[AX] = AE[X] = AµX and ΣZ = E[(Z − µZ)(Z − µZ)T] = E[A(X −
µX)(A(X − µX))T] = AE[(X − µX)(X − µX)T]AT = AΣXAT . Then by using some tools from
calculus, we can prove that

fZ(z) = 1
|det(A)|fX(x). (A.9)

In a more general case for a fixed x ∈ Rm, let z = g(x) where g : Rd → Rm is invertible. Then

fZ(z) = 1
|detJg(g(x))|fX(x),

82

where Jg is the Jacobian matrix of g.

A.7 Joint normal random variables
Assume that X has standard normal distribution, i.e., X ∼ N (0, 1). Then X has density

fX given by

fX(x) = 1√
2π

exp
(
−x2

2

)
, x ∈ R.

If Z = µ+σX then E[Z] = µ and Var(Z) = σ2, i.e., Z ∼ N (µ, σ2), thus Z has density function

fZ(z) = 1
σ
√

2π
exp

(
−1

2

(
z − µ

σ

)2
)

, z ∈ R.

We can also state this as follows: if Z ∼ N (µ, σ2) then
Z − µ

σ
∼ N (0, 1),

which is called standardization. This can be generalized to d dimensions. Let X1, . . . , Xd be
independent and standard normal random variables. The joint pdf of X is given by

fX(x) = (2π)−n/2 exp
(
−1

2xT x
)

, x ∈ Rd.

If Z = µ + BX for some m × d matrix B then Z has expectation vector µ and covariance
matrix Σ = BBT . The random vector Z is said to have a jointly normal or multivariate
normal distribution. We write

Z ∼ N (µ, Σ).
In a special case when B is d × d and invertible, the pdf of Z can be derived as follows. If
Y = Z − µ then from (A.9) the pdf of Y is given by

fY (y) = (2π)−n/2

|det(B)| exp
(
−1

2(B−1y)T (B−1y)
)

.

Using the facts that |det(B)| =
√
|det(Σ)| and (BBT)−1 = Σ−1, we have

fY (y) = 1√
(2π)d|det(Σ)|

exp
(
−1

2yT Σ−1y
)

.

Since Z = Y + µ for a constant vector µ, we have fZ(z) = fY (z − µ), and therefore

fZ(z) = 1√
(2π)d|det(Σ)|

exp
(
−1

2(z − µ)T Σ−1(z − µ)
)

.

Conversely, given a covariance matrix Σ = (σij), there exists a unique lower triangular matrix

B =



b11 0 · · · 0
b21 b22 · · · 0
...

...
. . .

...

bn1 bn2 · · · bnn


such that Σ = BBT . Recall that every covariance matrix is positive semi-definite. The lower
triangular matrix B can be obtained efficiently via the Cholesky factorization.

83

A.8 Generating normal random variables
In this section we use the inverse transform method to generate normal random variables.

Before start reading this part, read Section 3 if you are not familiar with the inverse transform
method. The problem is that the inverse of the normal cdf is not available explicitly, and it
is numerical expensive to compute. A suitable transformation helps to make things simpler.
Assume that X ∼ N (µ, σ2). The pdf of X is

f(x) = 1
σ
√

2π
exp

(
−1

2

(
x− µ

σ

)2
)

, x ∈ R. (A.10)

It is enough to generate from the standard normal distribution N (0, 1) because any random
variable Z ∼ N (µ, σ2) can be written as Z = σX + µ where X ∼ N (0, 1). The cdf of the
standard normal distribution then is

F (x) = 1√
2π

∫ x

−∞
exp

(
−1

2u2
)

du = 1
2

[
1 + erf

(
x√
2

)]
where erf is the error function. The error function should be computed via its series represen-
tation or numerical integration. Computing an accurate inverse for F is numerically expensive
thus the inverse transform method is not practically applicable.

One of the earliest method for generating from the standard normal distribution was de-
veloped by Box and Muller as follows: Assume that X ∼ N (0, 1) and Y ∼ N (0, 1) are two
independent random variables. The variable (X, Y) has joint distribution

fX,Y (x, y) = 1
2π

exp
(
−1

2(x2 + y2)
)

, (x, y) ∈ R2.

By transferring the variables to polar coordinates (r, θ) with change of variables

x = r cos θ, y = r sin θ, r ⩾ 0, θ ∈ [0, 2π), (A.11)

the joint distribution of the transferred variables (R, Θ) becomes

fR,Θ(r, θ) = r

2π
exp

(
−r2

2

)
, r ⩾ 0, θ ∈ [0, 2π),

where the factor r behind the exponential term comes from the determinant of the Jacobian
matrix of the transformation. Now, we have

FR,Θ(r, θ) =
∫ θ

0

∫ r

0

r′

2π
exp

(
−r′2

2

)
dr′dθ′ = − θ

2π
exp

(
−r2

2

)
,

which shows that R and Θ are independent with cdf’s

FΘ(θ) = − θ

2π
, θ ∈ [0, 2π), FR(r) = exp

(
−r2

2

)
, r ⩾ 0.

Consequently, Θ ∼ U(0, 2π) and R has the same distribution as
√

Q with Q ∼ Exp(1/2)
because

F√
Q(r) = P(

√
Q ⩽ r) = P(Q ⩽ r2) = exp

(
−r2/2

)
.

Both R and Θ are easy to generate. First we generate U1 ∼ U(0, 1) and U2 ∼ U(0, 1). Then
we set Θ = 2πU1 and R =

√
−2 ln U2 from (3.2). Finally, we transfer R and Θ back to X and

Y via transformation (A.11):

84

X = R cos(Θ) =
√
−2 ln U2 cos(2πU1),

Y = R sin(Θ) =
√
−2 ln U2 sin(2πU1).

Note that, using this approach we generate two standard random variables X and Y from two
uniform variables U1 and U2. A Python code is given here.

def RandNormal(mu, sigma2, N):
U1 = np.random.rand(N)
U2 = np.random.rand(N)
X = np.sqrt(-2*np.log(U1))*np.cos(2*np.pi*U2)
X = mu + np.sqrt(sigma2)*X
return X

The code snippet below generates N random normal points and plots the corresponding
histograms. Outputs are shown in Figure 30 for N = 500 and 5000.

import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize = (5,3))
N = 500
X = RandNormal(0, 1, N)
plt.hist(X, bins = 30, histtype = ’bar’, color = ’red’, density = ’true’)
x = np.linspace(-4,4,200)
f = 1/(np.sqrt(2*np.pi))*np.exp(-x**2/2)
plt.plot(x,f,linestyle = ’-’, color = ’blue’)
plt.title(’Histogram of X and the pdf $f(x)$’)
plt.xlabel(’X’); plt.ylabel(’Frequency %’)

−4 −3 −2 −1 0 1 2 3 4
X

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y
%

Histogram of X and the pdf f(x)

−4 −3 −2 −1 0 1 2 3 4
X

0.0

0.1

0.2

0.3

0.4

Fr
eq

ue
nc

y
%

Histogram of X and the pdf f(x)

Figure 30: Histograms of generated random points from the standard normal distribution with N =
500 (left), N = 5000 (right)

85

A.9 Generating from multivariate distributions
Before start reading this section, you may need to take a look at Section 3 for random point

generation algorithms for univariate distributions.
To generate a random vector X = (X1, . . . , Xd) for a given d dimensional distribution with

pdf f(x) = f(x1, . . . , xd), we can use the product rule (A.4)

f(x1, . . . , xd) = f1(x1)f2(x2|x1) · · · fd(xd|x1, · · · , xd−1)

where f1(x1) is the marginal pdf of X1, fk(xk|x1, . . . , xk−1) is the conditional pdf of Xk given
X1 = x1, . . . , Xk−1 = xk−1. If X1, X2, . . . , Xd are independent then fk(xk|x1, . . . , xk−1) =
fk(xk), and the techniques of univariate distributions can be simply applied to each component
individually. To generate X in the case that variables are dependent, one can first generate
X1 from pdf f1(x1), then given X1 = x1 generate X2 from f2(x2|x1), and so on. To run
this approach, a knowledge on conditional distributions is required. Markov models provide
a feasible and simple way to obtain such a knowledge and to generate from a general joint
distribution. See section 6.

Drawing from the multi-normal distribution
Assume that X ∼ N (µ, Σ), where µ = (µ1, . . . , µd)T is the mean vector and Σ ∈ Rd×d is the

covariance matrix of X. Then we have X = µ+BZ where Z is a vector of iid random variables
with distributions N (0, 1), and B is the Cholesky factorization of the covariance matrix Σ.
The following Python code can be used to generate N multi-normal random variables with
expectation vector mu and covariance matrix Sigma.

def RandMultiNormal(mu, Sigma, N):
dim = np.size(mu)
Z = X = np.zeros([dim,N])
if dim > 1:

B = np.linalg.cholesky(Sigma)
else:

B = [np.sqrt(Sigma)]
for d in range(dim):

Z[d,:] = np.random.normal(0, 1, N)
X = np.matlib.repmat(mu, N, 1).T + np.matmul(B,Z)
return X

A.10 Limit theorems
In this part we review the law of large numbers and the central limit theorem. Both are

associated with sums of independent random variables.

86

Let X1, X2, . . . be iid random variables with expectation µ and variance σ2. For each n, let

Sn = X1 + X2 + · · ·+ Xn.

Since X1, X2, . . . are iid, we have E[Sn] = nE[X1] = nµ and Var(Sn) = nVar(X1) = nσ2.
The law of large numbers states that Sn/n is close to µ for large n. Here is the more precise
statement.

Theorem A.8 (Strong Law of Large Numbers). If X1, . . . , Xn are iid with expectation µ, then

P

(
lim

n→∞

Sn

n
= µ

)
= 1.

The central limit theorem describes the limiting distribution of Sn (or Sn/n), and it applies
to both continuous and discrete random variables. Loosely, it states that the random sum Sn

has a distribution that is approximately normal, when n is large. The more precise statement
is given next.

Theorem A.9 (Central Limit Theorem). If X1, . . . , Xd are iid with expectation µ and variance
σ2 <∞, then for all x ∈ R,

lim
n→∞

P

(
Sn − nµ

σ
√

n
⩽ x

)
= Φ(x)

where Φ is the cdf of the standard normal distribution.

In other words, Sn has a distribution that is approximately normal, with expectation nµ and
variance nσ2. These theorem are valid independent of the type of distribution of X1, X2,

There is also a central limit theorem for random vectors. The multidimensional version is
as follows: Let X1, . . . , Xn be iid random vectors with expectation vector µ and covariance
matrix Σ. Then for large values of n the random vector X1 + · · · + Xn has approximately a
multivariate normal distribution with expectation vector nµ and covariance matrix nΣ.

References
[1] M. H. DeGroot, M. J. Schervish, Probability and Statistics, 4th Edition, Pearson Education,

Inc., 2012.

[2] S. M. Ross, Simulation, Academic Press, 3rd Edition, 2002.

[3] R. Y. Rubinnstein, D. P. Kroese, Simulation and the Monte Carlo Method, 3rd Edition,
Wiley, 2017.

[4] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer-Verlag, New York,
2nd edition, 2004.

87

