
AMIRKABIR UNIVERSITY OF TECHNOLOGY

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
DEPARTMENT OF APPLIED MATHEMATICS

P H D T H E S I S

to obtain the title of

PhD of Applied Mathematics

Defended by

Davoud Mirzaei

Title

Development of Moving Least
Squares Based Meshless

Methods

Thesis Advisor: Mehdi Dehghan

July 10, 2011

Tehran, Iran

ii

Abstract

This thesis is devoted to the development of meshless methods based on the

Moving Least Squares (MLS) approximation for solving partial differential

and integral equations. Some basic concepts are discussed, firstly, and the

stabilization effect of shifted and scaled polynomials as a basis function is

investigated. Then, MLS is used for solving integral equations and the error

analysis is given for Fredholm-type integral equations of the second kind.

Applications are also performed for Volterra-type and integro-differential equa-

tions. For numerical solution of differential equations, some local PDE solvers

based on MLS are reviewed. We mainly focus on the so called “Meshless Local

Petrov-Galerkin (MLPG)” methods. The study then turns to some more

important aspects by introducing a generalized MLS (GMLS) approximation

in next chapters. The relation between this generalization and the so called

diffuse or uncertain MLS derivatives is extracted, and using the concept of

“generalized stable local polynomial reproduction” the error bound of diffuse

derivatives is given. We conclude that there is nothing diffuse or uncertain

about them and they are direct approximations of function derivatives with a

rigorous mathematical background. This extension is also done on MLPG

methods and new methods Direct Meshless Local Petrov-Galerkin (DMLPG)

methods, are developed. DMLPG methods are absolutely superior to classical

MLPG methods in terms of computational costs and accuracy.

Keywords: Moving least squares approximation; Generalized moving least

squares approximation; Meshless methods; Standard derivatives; Diffuse de-

rivatives; GMLS derivative approximation; Meshless Local Petrov-Galerkin

(MLPG) methods; Direct Meshless Local Petrov-Galerkin (DMLPG) me-

thods; Partial differential equations (PDEs); Integral equations; Convergence;

Stability; Computational costs.

iii

Acknowledgements

I would like to thank Mehdi Dehghan, my supervisor, for his suggestions,

guidance and constant support during my PhD (and also Master) research.

I am also thankful to Mostafa Shamsi, my advisor, for all his supports

and friendly encouragements during my studying in Amirkabir University

of Technology (AUT). Here, I would like to express my sincere gratitude to

Robert Schaback (Georg-August-Universität Göttingen) for his hospitality,

motivation and immense knowledge during my sabbatical leave in Göttingen

that helped me in all the time of research and writing of this thesis. I also

appreciate the time and details provided by the referees of this dissertation

Esmaeil Babolian (Tarbiat Moallem University), Hojjatollah Adibi (AUT),

Mahmoud Hadizadeh-Yazdi (K.N. Toosi University) and Shahriar Fariborz

(AUT).

I should also mention that my graduate studies were supported in part by

the Iran’s National Elites Foundation.

Of course, I am so much grateful to my family for their patience and love.

Without them this work would never have come into existence.

Tehran Davoud Mirzaei

July 10, 2011.

iv

Contents

List of Figures vii

List of Tables ix

Preface 1

1 Basic concepts and MLS approximation 3

1.1 Notations . 3

1.2 Some useful definitions and theorems 4

1.3 MLS approximation . 7

1.4 Notes on numerical implementation 14

2 A MLS based method for solution of integral equations 19

2.1 Fredholm integral equations of the second kind 20

2.2 Error analysis . 23

2.3 Domain decomposition . 28

2.4 Application to Volterra integral equations 29

2.5 Numerical results . 33

2.6 Conclusion . 37

3 Local PDE solvers based on MLS 39

3.1 Meshless Methods . 40

3.2 Local weak forms . 41

4 Generalized Moving Least Squares 47

4.1 Introduction . 47

vi CONTENTS

4.2 The GMLS approximation . 48

4.3 Classical and diffuse derivatives 50

4.4 Error bounds . 55

4.5 Numerical examples . 60

4.6 Conclusion . 63

5 Direct Meshless Local Petrov-Galerkin (DMLPG) Method 65

5.1 An overview . 66

5.2 GMLS Approximation . 67

5.3 Implementation of DMLPG 68

5.4 Stability and Convergence . 72

5.5 Numerical results . 73

5.6 Conclusion . 77

References 79

List of Figures

1.1 Determinants (left) and condition numbers (right) of A at

sample point (π/4, π/4) using basis (1.15) 15

1.2 Determinants (left) and condition numbers (right) of A at

sample point (π/4, π/4) using basis (1.17) 16

1.3 Approximation errors of Franke’s function (solid lines and

circles), its first derivative (dash lines and triangles) and its

second derivative (dot lines and squares) using basis (1.15)

(left) and basis (1.17) (right). 17

2.1 Domain, subdomains and meshless points for 2D Fredholm

equation. 35

4.1 First 1000 Halton points . 62

5.1 Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 2. 74

5.2 Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 3. 75

5.3 Comparison of MLPG5 and DMLPG5 in terms of maximum

errors for m = 4. 76

viii LIST OF FIGURES

List of Tables

2.1 Maximum errors and convergence orders; 1D Fredholm equation 34

2.2 Maximum errors and convergence orders; 2D Fredholm equation 36

2.3 Maximum errors and convergence orders; 1D Volterra equation 36

2.4 Maximum errors and convergence orders; 2D Volterra equation 36

2.5 Maximum errors and convergence orders; 1D integro-differential

equation . 37

4.1 The orders of errors of Franke’s function and its first and second

standard and GMLS derivatives 61

4.2 Maximum and ratios of errors of the first standard and GMLS

derivatives of Franke’s function at Halton points with m = 3 . 63

4.3 Maximum and orders of errors of the second standard and

GMLS derivatives of Franke’s function at Halton points with

m = 3 . 63

5.1 The maximum errors, orders and CPU times used for MLPG5

and DMLPG5 with m = 2 . 74

5.2 The maximum errors, orders and CPU times used for MLPG5

and DMLPG5 with m = 3 . 75

5.3 The maximum errors, ratios and CPU times used for MLPG5

and DMLPG5 with m = 4 . 76

x LIST OF TABLES

Preface

There are several approaches for numerical solution of partial differential

equations (PDEs). Finite difference method (FDM), finite elements method

(FEM), finite volumes method (FVM), boundary elements method (BEM)

and spectral methods are some of such technologies. However, these and

other mesh-based methods possess some shortcomings due to their reliance

on a mesh or a predefined grided point set. Moreover, some of these methods

have limitation for increasing the smoothness of the approximate solution.

Attempts to overcome these difficulties have been made through the develop-

ment of meshless methods which have attracted considerable interest over the

past decades and now are in their own way to be another powerful approach.

The primary objective of meshless methods is to eliminate, or at least

alleviate, the difficulty of meshing by writing the unknown solutions entirely

in terms of scattered data points. This great benefit comes at a price of

more complicated interpolation (approximation) functions and subsequently

difficulties with implementing efficient integration schemes, among other

problems.

The moving least squares (MLS) [18] is one of the scattered data approxi-

mation methods, that has been used successfully to approximate the trial

space in many meshless methods such as the element-free Galerkin (EFG)

method [10], the hp-clouds [13], the boundary nodes method (BNM) [31],

the diffuse element method [33] and the finite points method (FPM) [35].

Many of these methods (unless FPM which is a collocation method) employ

basis functions obtained by MLS to approximate the trial solution, and a

background mesh to numerically evaluate integrals appearing in the global

weak formulation of a problem. They are meshless only in approximation

2 Preface

side but have to use background cells to integrate the weak form over the pro-

blem domain. The requirement of background cells for integration makes the

methods not truly meshless. In contrast, the meshless local Petrov-Galerkin

(MLPG) method [7] is based on local sub-domains, rather than a global

problem domain and no background mesh is required to evaluate integrals

appearing in the local weak forms of the problem. Since no globally defined

integration structure is required, the MLPG method has been referred to as

a truly meshless method and has been successfully applied for the solution of

a wide range of problems in engineering and science. For more details see [5].

However, MLPG still suffers from the cost of numerical integration. Weak

forms of MLPG contain the complicated and non-close form MLS shape

functions and their derivatives. To get accurate results, numerical quadrature

with many integration points is required and the MLS subroutines must be

called very often, leading to high computational costs. In contrast to this, the

stiffness matrix in FEM is constructed by integrating over polynomial basis

functions which are much cheaper to evaluate. This thesis has a solution for

this important problem.

In Chapter 1, the MLS approximation is reviewed and in Chapter 2 an

application of MLS for solving integral equations is proposed. Chapter 3

reviews the local weak forms and variations of MLPG methods that will

be required in the forthcoming chapters. The main goal of this thesis is

to introduce a generalized MLS (GMLS) approximation which avoids the

complications caused by MLS shape functions in numerical solution of PDEs.

Chapter 4 is devoted to this purpose and we prove that this GMLS technique

produces diffuse derivatives as introduced by Nyroles et. al. in 1992 [33]

that turn out to be efficient direct estimates of the true derivatives, without

anything “diffuse” about them because we prove optimal rates of convergence

towards the true derivatives. Finally, in Chapter 5 an application of GMLS for

solving PDEs is given which highly accelerates the original MLPG methods

by avoiding integration over shape functions.

For numerical simulations, all routines were written using Matlab© and

run on a Pentium 4 PC with 2.50 GB of Memory and a twin–core 2.00 GHz

CPU.

Chapter 1

Basic concepts and MLS
approximation

In this chapter, first, we introduce some symbols and notations which will

be used throughout the thesis. Then the Moving Least Squares (MLS)

Approximation –the basic method in the whole parts of this study– will

be briefly discussed. These discussions are mostly relied on the book of

Wendland [43]. Finally, we establish the stabilization effect of shifted and

scaled polynomial basis functions in the MLS approximation.

1.1 Notations

Throughout this text we will use the following notations. In whole of this

study, R denotes the real numbers field, N0 the nonnegative integer numbers,

d the dimension and Rd stands the d-dimensional space with real components.

Symbol Ω is used to show a bounded domain in Rd, with boundary ∂Ω or Γ.

Matrices are shown by capital letters such as A, B, P , W , etc., while vectors

are denoted by boldface letters such as u, b, p, etc. We have an exception

for elements of Rd which are denoted by letters x, y, z, etc. The component

of a point x ∈ Rd will be denoted by x = (x1, . . . , xd), whereas x1, . . . , xN will

denote N points in Rd. Letters C and c with or without supper/subscripts

are mostly used to denote the constants, and h to denote the spatial mesh-size

or fill distance. We denote the space of d-variate polynomials of degree at

most m by Pdm and its dimension by Q = (m+d)!/(m!d!). The function space

4 Basic concepts and MLS approximation

Ck(Ω) is the set of k times continuously differentiable functions on Ω, where

we assume Ω ⊂ Rd to be open if k ≥ 1. The intersection of all these spaces is

denoted by C∞(Ω). For a multi-index α ∈ Nd
0 we denote its components by

α = (α1, . . . , αd). The length of α is given by |α| = α1 + · · · + αd and the

factorial α! by α! = α1! · · ·αd!. For two multi-indices α and β, the inequality

α < β is meant component-wise and(
α

β

)
=

α!

β!(α− β)!
.

If |α| ≤ k, x ∈ Rd , and f ∈ Ck(Ω) are given, we denote the α-th derivative

of f by

Dαf =
∂|α|f

∂xα1
1 . . . ∂xαdd

and the α-th power of x by

xα = xα1
1 . . . xαdd .

Other rare symbols and notations will be introduced through the text at the

first place they are appeared.

1.2 Some useful definitions and theorems

According to Belytschko et.al [9], a meshless method constructs the solution

of the problem entirely in terms of scattered data points. Let Ω ⊂ Rd and

X = {x1, x2, . . . , xN} is a set of distinct scattered points in Ω. We will refer

to X as data sites or centers. The meshless approximation is directly depends

on position and quality of these points. To measure the quality of points we

should define the quantities fill distance and separation distance.

Definition 1.1. For a set of points X = {x1, . . . , xN} in a bounded domain
Ω ⊂ Rd the fill distance is defined to be

hX,Ω = sup
x∈Ω

min
1≤j≤N

‖x− xj‖2, (1.1)

1.2 Some useful definitions and theorems 5

and the separation distance is defined by

qX =
1

2
min
i 6=j
‖xi − xj‖2. (1.2)

A set X of data sites is said to be quasi-uniform with respect to a constant
cqu > 0 if

qX ≤ hX,Ω ≤ cquqX . (1.3)

The fill distance hX,Ω denotes the radius of the largest ball which is

completely contained in Ω and which does not contain a data site. The

separation distance gives the largest possible radius for two balls centered at

different data sites to be essentially disjoint.

Let V ∈ C(Ω) be a N dimensional vector space, i.e. there are basis

functions u1, u2, . . . , uN where V = span{u1, u2, . . . , uN}. As we know from

the elementary numerical analysis, every interpolant s ∈ V based on points

x1, x2, . . . , xN in one dimension (d = 1) is uniquely determined if the points

are all disjoint and {u1, . . . , un} forms a haar or Chebysheff space. In this

case the Vandermonde matrix (uj(xi))
N
i,j=1 is non-singular. However, this is

not the case for d ≥ 2. It is well-known after Mairhuber-Curtis Theorem

that there is no finite dimensional Haar space for dimensions more than one.

Hence, the distribution of points should be restricted to a situation that gives

a unique interpolant.

Definition 1.2. The points X = {x1, . . . , xN} ⊂ Rd with N ≥ Q = dim(V)
are called V -unisolvent if the zero is the only element from V that vanishes
on all X.

For instance, if V = Pdm then Q =
(
m+d
d

)
and the set X = {x1, . . . , xN},

N ≥ Q, is Pdm-unisolvent if the zero polynomial is the only polynomial from

Pdm which vanishes on X. As an example take the linear polynomials on R2.

We know that dim(P2
1) = 3. Since every bivariate linear polynomial describes

a plane in three dimensional space this plane is uniquely determined by three

points if and only if these three points are not collinear. Thus three points

in R2 are P2
1-unisolvent if and only if they are not collinear. The following

lemma gives a generalization for Q points in R2. For a proof and an extension

to Rd see [43, pp 21].

6 Basic concepts and MLS approximation

Lemma 1.3. Suppose that {L0, . . . , Lm} is a set of m+ 1 distinct lines in R2

and that X = {x1, . . . , xQ} is a set of Q = (m+ 1)(m+ 2)/2 distinct points
such that the first point lies on L0, the next two points lie on L1 but not on
L0, and so on, so that the last m+ 1 points lie on Lm but not on any of the
previous lines L0, . . . , Lm−1. Then X is P2

m-unisolvent.

It is often difficult to theoretically treat the unisolvency for an arbitrary

domain Ω. Therefore, we restrict ourselves to some special domains satisfying

an interior cone condition.

Definition 1.4. A set Ω ⊂ Rd is said to satisfy an interior cone condition
if there exists an angle θ ∈ (0, π/2) and a radius r > 0 such that for every
x ∈ Ω a unit vector ξ(x) exists such that the cone

C(x, ξ, θ, r) :=
{
x+ ty : y ∈ Rd, ‖y‖2 = 1, yT ξ ≥ cos θ, t ∈ [0, r]

}
is contained in Ω.

For local polynomial approximations, the cone condition allows to consider

the unisolvency on local cones. This uses the fact that the line which connects

the cone’s center to any other points in cone is completely located inside the

cone. Then the multivariate polynomials are restricted to the univariate ones

on that line, and the Markov’s inequality is applied to prove the unisolvency.

The following definition is also essential in local polynomial approximations.

A generalization of this definition will be used in the sequel.

Definition 1.5. A process that defines for every set X = {x1, . . . , xN} ⊂ Ω a
family of functions sj : Ω→ R, 1 ≤ j ≤ N provides a stable local polynomial
reproduction of degree m on Ω if there exist constants h0, C1, C2 > 0 such
that

1.
∑N

j=1 sj(x)p(xj) = p(x), ∀p ∈ Pdm|Ω, ∀x ∈ Ω,

2.
∑N

j=1 |sj(x)| ≤ C1, ∀x ∈ Ω,

3. sj(x) = 0 if ‖x− xj‖2 > C2hX,Ω,

is satisfied for all X with hX,Ω ≤ h0.

The first condition is a reproducing property that means polynomials of

degree at most m are recovered by shape functions sj, while the second one

1.3 MLS approximation 7

refers to the L1 stability of the approximation, and the third one enforces

a local support for shape functions. The crucial point in the definition is

that the constants involved are independent of the data sites. The shape

functions sj will obviously depend on X. Sometimes we will also say {sj}
forms a stable local polynomial reproduction.

The following theorem gives an error bound when a smooth function u is

approximated via shape functions {sj} in a nodal form.

Theorem 1.6. Let Ω ∈ Rd be bounded and Ω∗ denotes the closure of⋃
x∈ΩB(x,C2h0) where C2 and h0 are those in Definition 1.5. Assume

û(x) :=
N∑
j=1

sj(x)u(xj)

where {sj} forms a stable local polynomial reproduction of order m on Ω in
sense of Definition 1.5. Then constant C exists such that for all u ∈ Cm+1(Ω∗)
and all X with hX,Ω ≤ h0 we have

|u(x)− û(x)| ≤ Chm+1
X,Ω |u|Cm+1(Ω∗). (1.4)

The semi-norm on the right-hand side is defined as

|u|Cm+1(Ω∗) := max
|α|=m+1

‖Dαu‖L∞(Ω∗).

The proof of this theorem, which is given in [43, chap. 3], uses the error

of the standard multidimensional Taylor expansion of function u around x.

1.3 MLS approximation

The Moving Least Squares (MLS) approximation was introduced by Lancaster

and Salkauskas [18] in 1981, inspired by the pioneer work of Shepard [41] in

1968 and McLain [21, 22] in 1974 and 1976. Since the MLS approximation

is based on a cluster of scattered nodes instead of interpolation on elements,

many MLS-based meshless methods for numerical solution of differential

equations have been developed in recent years.

The MLS approximation solves for every point x ∈ Ω a locally weighted

L2 minimization problem. For a pure approximation, there is no need to set

8 Basic concepts and MLS approximation

up and solve a large system, but rather than many small linear system should

be solved. For applications to implicit operator equations, such as numerical

solution of differential equations, MLS leads to a sparse system of equations

allowing to adapt an iterative linear algebra solver.

Let, u = {u(x1), u(x2), . . . , u(xN)} is given at certain data site X =

{x1, x2, . . . , xN} ⊆ Ω ⊂ Rd. Here, Ω is supposed to satisfy an interior cone

condition with radius r and angle θ. For every point x ∈ Ω a subset of X in

δ-neighborhood of x (i.e. B(x, δ)∩X) is used to approximate the exact value

u(x). We assume the influence of points on approximation of u(x) decrease as

their distances to x increase, and the points outside B(x, δ) have no influence

on the approximation. Such behavior can be modeled by a weight function

w : Ω × Ω → R which becomes smaller the further away its arguments are

from each other and vanishes for arguments x, y ∈ Ω with ‖x− y‖2 > δ. This

means that w is of the form w(x, y) = Φδ(x− y) where Φδ = Φ(· /δ) is the

scaled version of a compactly supported function Φ : Rd → R.

Definition 1.7. For x ∈ Ω, the value û(x) of the MLS approximant of u(x)
is given by û(x) = p∗(x) where p∗ is the solution of

min
p∈Pdm

 ∑
j∈J(x)

(
u(xj)− p(xj)

)2
Φδ(x− xj)

 . (1.5)

where

J(x) = J(x, δ,X) := {j ∈ {1, 2, . . . , N} : ‖x− xj‖2 ≤ δ}.

In the simplest case m = 0, the minimization problem has the explicit

solution

û(x) = p∗(x) =
∑
j∈J(x)

aj(x)u(xj)

where

aj(x) =
Φδ(x− xj)∑

i∈J(x) Φδ(x− xi)
.

This is called the Shepard approximation [41], and obviously it reproduces the

constants. The basis functions aj have a support of radius δ where δ > C2hX,Ω

1.3 MLS approximation 9

for a suitable constant C2. Finally, one can immediately see that

N∑
j=1

|aj(x)| =
∑
j∈J(x)

Φδ(x− xj)∑
i∈J(x) Φδ(x− xi)

=

∑
j∈J(x) Φδ(x− xj)∑
i∈J(x) Φδ(x− xi)

= 1,

for all x ∈ Ω. Hence we have indeed a local polynomial reproduction for

polynomials of degree m = 0. Moreover, the smoothness of the approximant is

ruled by the smoothness of the weight function, provided that the denominator

is always nonzero. The latter is always true for a sufficiently large δ > 0.

For m > 0 the explicit formula can not be derived simplicity. Indeed more

ingredients need to prove the existence and uniqueness problems in general

case m > 0. To this end we first need a result on quadratic optimization.

Lemma 1.8. Let, a ∈ R, b ∈ Rn, A ∈ Rn×n and P ∈ Rn×m are all given.
For v ∈ Rn define Mv = {x ∈ Rn : P Tx = v} and suppose A = AT

is positive definite on M0. If Mv is nonempty, then the quadratic form
f(x) := a+ bTx+ xTAx has a unique minimum on Mv.

Proof. The reader is referred to Lemma 4.2 page 36 of [43].

What we need here, is an special case of the above Lemma. Indeed A is

positive definite on all Rd.

In 1998 Levin [19] obtained a equivalent constrained minimization problem

to (1.5) where the optimization is defined on coefficient vector {aj} instead of

on space of polynomials Pdm. The following theorem states such optimization

problem.

Theorem 1.9. Suppose that for every x ∈ Ω the set {xj ∈ X : j ∈ J(x)} is
Pdm-unisolvent. Then (1.5) is uniquely solvable and solution û = p∗ can be
written as

û(x) =
∑
j∈J(x)

a∗j(x)u(xj),

where the coefficients a∗j(x) are determined by minimizing the quadratic form

1

2

∑
j∈J(x)

aj(x)2 1

Φδ(x− xj)
(1.6)

10 Basic concepts and MLS approximation

subject to constraints ∑
j∈J(x)

a∗j(x)p(xj) = p(x), p ∈ Pdm. (1.7)

Proof. Although the proof of this Theorem is given in [19] and [43, Theorem
4.3] with slightly different ways, here we rewrite the proof of [43] due to some
important details.

Denote a basis of Pdm by {p1, p2, . . . , pQ}. Suppose our polynomial has the

form p =
∑Q

j=1 bjpj. This reduces the minimization problem (1.5) to finding
the optimal coefficient vector b∗. We use the following notation:

b = (b1, . . . , bQ)T ∈ RQ,

u =
(
u(xj) : j ∈ J(x)

)T ∈ R|J(x)|,

P = P (x) =
(
p`(xj)

)
j∈J(x), 1≤`≤Q

W = W (x) = diag
(
Φδ(x− xj) : j ∈ J(x)

)
∈ R|J(x)|×|J(x)|

p = p(x) =
(
p1(x), . . . , pQ(x)

)T ∈ RQ.

Then we have to minimize the function

C(b) =
∑
j∈J(x)

[
u(xj)−

Q∑
`=1

b`p`(xj)

]2

Φδ(x− xj)

= (u− Pb)TW (u− Pb)

= uTWu− 2uTWPb + bTP TWPb

on RQ. Since C(b) is a quadratic function in b we can apply Lemma 1.8. We
get a unique solution if P TWP is positive definite. From

bTP TWPb = bTP TW 1/2W 1/2Pb = ‖W 1/2Pb‖2 ≥ 0,

it follows that P TWP is positive semi-definite. Moreover, bTP TWPb = 0
means that Pb = 0. Thus the polynomial p =

∑
b`p` vanishes on every

xj, j ∈ J(x). Since this set is assumed to be Pdm-unisolvent, p and hence b
must be zero. Now that we know the existence of a unique solution we can
use the necessary condition ∇C(b∗) = 0 to compute it. We find that

0 = ∇C(b∗) = −2uTWP + 2(b∗)T (P TWP),

1.3 MLS approximation 11

which gives (b∗)T = uTWP (P TWP)−1, and we obtain the solution

p∗(x) = (b∗)Tp(x) = uTWP (P TWP)−1p(x).

In the final step we treat the problem of minimizing (1.6) under the constraints
(1.7). This means that we have to minimize the function

C(a) =
1

2

∑
j∈J(x)

a2
j

1

Φδ(x− xj)
=

1

2
aTW−1a

on the set

M : =
{

a ∈ R|J(x)| :
∑
j∈J(x)

ajp`(xj) = p`(x), 1 ≤ ` ≤ Q
}

=
{
a ∈ R|J(x)| : P Ta = p(x)

}
.

Since we have supposed {xj : j ∈ J(x)} to be Pdm-unisolvent we can always
find Q points that allow unique polynomial interpolation. Hence M is not
empty. Moreover, W−1 is obviously positive definite. Thus Lemma 1.8 gives
us a unique solution to this problem. To compute this solution we can use
Lagrange multipliers. If a∗ ∈M is a solution of the modified problem, there
has to be z ∈ RQ such that

∇C(a∗) = zT
∂

∂a
[P Ta− p(x)]

∣∣
a=a∗

.

This means that (a∗)TW−1 = zTP T or a∗ = WPz, showing in particular
that a∗ is the unique solution of the modified problem, which makes it
also the solution of the initial problem. From a∗ ∈M we can conclude that
p(x) = P Ta∗ = P TWPz, which gives the representation z = (P TWP)−1p(x).
Finally, we find∑

j∈J(x)

a∗j(x)u(xj) = uTa∗ = uTWP (P TWP)−1p(x) = p∗(x).

The basis functions aj are called shape function. From the proof of the

above theorem we can find some interesting properties of the shape functions

aj. The most important of these concerns the explicit form of aj and the

smoothness of the approximant.

12 Basic concepts and MLS approximation

Corollary 1.10. The shape functions aj are given by

a∗j(x) = Φδ(x− xj)
Q∑
k=1

zkpk(xj), (1.8)

where z is the unique solution of

Q∑
k=1

zk
∑
j∈J(x)

Φδ(x− xj)pk(xj)p`(xj) = p`(x), 1 ≤ ` ≤ Q, (1.9)

or in abstract form
P (x)TW (x)P (x)z = p(x).

Corollary 1.11. If weight function Φ possesses k continuous derivatives then
the approximant û(x) is also in Ck.

If we set A(x) = P (x)TW (x)P (x) and B(x) = P (x)TW (x), then we have

a∗(x) = p(x)A−1(x)B(x). Since shape functions aj are zero outside their

“supports” we have

û(x) =
N∑
j=1

aj(x)u(xj). (1.10)

Smoothness of shape functions allows to calculate the partial derivatives of û.

For instance, the first order derivatives are given by

Dei(aj) =

Q∑
k=1

(
Dei(pk)[A

−1B]kj + pk[A
−1Dei(B) +Dei(A−1)B]kj

)
, (1.11)

where ei is the i-th standard vector in Rd and Dei(A−1) represents the first

order derivatives of matrix A and is given by

Dei(A−1) = −A−1Dei(A)A−1.

Higher order derivatives are computationally more involved. This kind of

derivatives are called full derivatives or standard derivatives of MLS shape

functions. We will introduce a different type of approximate derivatives with

simpler structures in Chapter 4.

Different types of weight functions can be used in MLS approximation.

Compactly supported radial basis functions (CSRBF) [43, Chapter 9], for

1.3 MLS approximation 13

example

Φδ(x− xj) = (1− r/δ)4
+(4r/δ + 1), r = ‖x− xj‖2, (1.12)

can be used for instance. This function has a C2 smoothness for d 6 3.

Gaussian weight function

Φδ(x− xj) =


exp[−(r/c)2]−exp[−(δ/c)2]

1−exp[−(δ/c)2]
, 0 ≤ r ≤ δ,

0, otherwise
, (1.13)

where c is a constant, is another candidate. This is a C0 function. Spline

functions can also be used for this scenario. They can be constructed for any

arbitrary order of smoothness. A C1 example is

Φδ(x− xj) =

1− 6(r/δ)2 + 8(r/δ)3 − 3(r/δ)4, 0 ≤ r ≤ δ,

0, otherwise
.

For numerical results presented in this dissertation, the Gaussian and CSRBF

are used.

Error estimations for MLS approximation are given in various articles

and books. Here we refer to some of them. In [19] Levin analyzed the MLS

method for a particular weight function and obtained an error estimate in the

uniform norm for the approximation of a regular function in multi dimensions.

We also refer to [19] for an account of the background connection to Backus–

Gilbert optimality and to [20] for the application to numerical integration.

In [2], Armentano and Duràn proved error estimates in L∞ for the function

and its derivatives in one dimensional case. In [1], Armentano obtained

the error estimates in L∞ and L2 norms in higher dimensions but with a

restriction on convex domains Ω. In [46], Zuppa proved error estimates for

the approximation of the function and the first and second order derivatives

in L∞ norm. Wendland in [42, 43] used the concept of local polynomial

reproduction and obtained the error bound in infinity norm. We should also

mention the work of Melenk [23] for analysis on derivatives. Here we give the

Wendland’s result.

14 Basic concepts and MLS approximation

Theorem 1.12. Let Ω be a bounded domain that satisfies an interior cone
condition. Consider the approximant (1.10) where aj are MLS shape functions.
There exist constant C > 0 such that for every u ∈ Cm+1(Ω∗) and every set
of points X ⊂ Ω satisfying quasi-uniform condition with hX,Ω 6 h0, we have

‖u− û‖L∞(Ω) 6 Chm+1
X,Ω |u|Cm+1(Ω∗). (1.14)

The error bound (1.14) implies that for a sufficiently smooth function u

on close domain Ω, the error of the MLS approximation uniformly behaves as

O(hm+1
X,Ω), where m is the degree of polynomial basis function.

1.4 Notes on numerical implementation

The method solves a weighted least–squares problem per each test point

x. The QR factorization of
√
WP will usually avoid the instability of the

normal Vandermonde-type equations. If a∗ = WP (P TWP)−1p is requested,

we decompose
√
WP = QR, where Q is unitary and R is upper triangular to

get P TWP = RTR. In Matlab,

[Q R] = qr (sqrt(W)*P);

is used. By some simple calculations, (WP)(P TWP)−1RT =
√
WQ. Using

backward substitution, (WP)(P TWP)−1 is derived from this, and a∗ can be

calculated directly. For standard derivatives of MLS shape functions, some

more but still straightforward calculations are needed. For instance, first

derivatives of shape functions are

Deia∗ =
[√

WQ(RT)−1
]
Dei(p) +

[(
ŴQ−

√
W−1QQT W̃Q

)
(RT)−1

]
p,

where Ŵ = Dei(W)
√
W−1 and W̃ =

√
W−1Ŵ . Both brackets are calculated

using backward substitution without taking inverses. Higher order derivatives

can be computed similarly, but in a more complicated way.

Sometimes, the normal system P TWP is directly solved without QR

decomposition, and the set

B = {xα}0≤|α|≤m (1.15)

1.4 Notes on numerical implementation 15

is used as a basis for Pdm in the MLS approximation. The choice of this basis is

important and has a serious influence on conditioning of matrix A = P TWP

and thus on matrix R of the QR factorization. As an example, consider the

unit square [0, 1]2 in R2 with regular node distribution of distance h and fix

m = 2. Use the Wendland’s function (1.12) as weight function. In Figure 1.1,

the determinants and condition numbers of A are depicted in terms of h at a

sample point x = (π/4, π/4) ∈ [0, 1]2 on the left and right sides, respectively.

As we see, the results get worse as h decreases. To overcome this drawback it

10
-2

10
-1

10
-60

10
-50

10
-40

10
-30

10
-20

h

de
t (

A
)

10
-2

10
-1

10
4

10
6

10
8

10
10

10
12

h

co
nd

 (
A

)

Figure 1.1: Determinants (left) and condition numbers (right) of A at sample point
(π/4, π/4) using basis (1.15)

is better to use the shifted and scaled basis polynomials. The shifted basis,

which for example was used by [19] and [42], can be defined for a fixed x ∈ Ω

by

Bx = {(· − x)α}0≤|α|≤m (1.16)

and the shifted and scaled basis by

Bxh =

{
(· − x)α

h|α|

}
0≤|α|≤m

, (1.17)

where h can be qX , hX,Ω or an average of them for a quasi–uniform set X. In

all cases, x is an evaluation point such as a test point or a Gaussian point for

integration in weak-form techniques. Figure 1.2 shows the same results as

before for the shifted and scaled basis functions. The effect of this variation

is shown in Figure 1.3, where we have illustrated the maximum error of

16 Basic concepts and MLS approximation

10
-2

10
-1

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

-16

h

de
t (

A
)

10
-2

10
-1

7.54

7.55

7.56

7.57

7.58

7.59

7.6

7.61

7.62

7.63

h

co
nd

 (
A

)

Figure 1.2: Determinants (left) and condition numbers (right) of A at sample point
(π/4, π/4) using basis (1.17)

reconstruction of Franke’s function and its first and second derivatives with

respect to x1 on [0, 1]2 with and without shifted and scaled basis functions.

The Franke’s function function is defined as

u(x1, x2) =
3

4
exp

(
−1/4(9x1 − 2)2 + 1/4(9x2 − 2)2

)
+

3

4
exp

(
−1/49(9x1 + 1)2 − 1/10(9x2 + 1)2

)
+

1

2
exp

(
−1/4(9x1 − 7)2 + 1/4(9x2 − 3)2

)
− 1

5
exp

(
−(9x1 − 4)2 − (9x2 − 7)2

)
(1.18)

on [0, 1]2 which is a standard test function for 2D scattered data fitting

since the seminal survey of [14]. Numerical instabilities are evident on the

left side, where the basis (1.15) is applied. To analyze this phenomenon,

we use the notations A = P TWP , where the basis B is employed and

Ax = P (· − x)TWP (· − x) and Axh = P (·−x
h

)TWP (·−x
h

) where Bx and Bxh are

used, respectively. By using

(y − x)α =
∑
β≤α

(
α

β

)
(−1)|α−β|xα−β︸ ︷︷ ︸
Cx(α,β)

yβ =
∑
β≤α

Cx(α, β)yβ

1.4 Notes on numerical implementation 17

10
-2

10
-1

10
-6

10
-4

10
-2

10
0

10
2

10
4

h

||
e

|| 

10
-2

10
-1

10
-8

10
-6

10
-4

10
-2

10
0

10
2

h

||
e

|| 
Figure 1.3: Approximation errors of Franke’s function (solid lines and circles), its
first derivative (dash lines and triangles) and its second derivative (dot lines and

squares) using basis (1.15) (left) and basis (1.17) (right).

we have P (· − x) = PCx, where Cx is a Q by Q triangular matrix with

diagonal elements 1. It is clear that Ax = CT
x ACx and det(A) = det(Ax). On

the other side, we set

Hh = diag
{

1,
1

h
, · · · , 1

h︸ ︷︷ ︸
(d
d−1) times

,
1

h2
, · · · , 1

h2︸ ︷︷ ︸
(d+1
d−1) times

, · · · , 1

hm
, · · · , 1

hm︸ ︷︷ ︸
(d−1+m

d−1) times

}
Q×Q

.

It is obvious that P (·−x
h

) = PCxHh and Axh = HhA
xHh, hence det(Axh) =

det(Ax)
[

det
(
Hh

)]2
= det(A)

[
det
(
Hh

)]2
. Using the combinatorial formula

m∑
j=0

jCd−1+j
d−1 = dCm+d

d+1 =: ρ,

we have det
(
Hh

)
= h−ρ, therefore

det(Axh) = h−2ρ det(A).

This is the reason why the determinant of Axh remains constant as h decreases.

Consequently, we have

det(Rx
h) = h−ρ det(R),

18 Basic concepts and MLS approximation

where Rx
h is upper triangular matrix obtained by QR decomposition of√

WP (·−x
h

).

We can also estimate the condition numbers of both matrices Axh and

Rx
h. Since P (·−x

h
) = PCxHh and due to the uniqueness property of QR

decomposition of full-rank matrices, we have

Rx
h = RCxHh.

Finally, cond(Cx) = 1 and cond(Hh) = hm yield

cond(R) ≈
√

cond(A), cond(Rx
h) ≈ cond(R)hm, cond(Axh) ≈ cond(A)h2m.

(1.19)

Although the QR decomposition gives stable results in many cases, (1.19)

implies that the shifted scaled basis is recommendable even when the QR

factorization is applied. In all numerical results presented in this thesis, we

will follow this strategy.

The quantity h can be replaced by a function which varies in accordance

with the node density in Ω, see [15].

The results of this section on shifted and scaled polynomial basis functions

are rewritten form [30].

Chapter 2

A MLS based method for
solution of integral equations

Integral equations are encountered in various fields of science and engineering

with numerous applications. We do not want to concern the applications,

but we aim to present a numerical scheme based on MLS approximation for

numerical solution of some types of integral equations. There exist several

numerical methods for approximating the solution of Fredholm and Volterra

integral equations in one, two and three dimensions. For example, see [3, 12]

and the references therein. One may ask what the reason of developing such

scheme is, while various numerical methods exist in the market? The main

reason is the flexibility of MLS (and other meshless methods) with respect

to the geometry and scattered point layouts. For solving a multi-variable

integral equation on a non-rectangular region using collocation, Galerkin,

or Nyström methods the domain must be segmented to small triangles and

a discretization for both approximation and numerical integration over the

segments is needed. For more details see [3, chap. 5]. Triangulations and

mesh refinement are major difficulties in these methods. Replacing meshless

methods should overcome these problems.

In this chapter, a collocation method with MLS approximation is developed

for integral equations with smooth kernels. Error analysis is provided for Fred-

holm type, and applications are provided for Volterra and integro-differential

equations.

20 A MLS based method for solution of integral equations

2.1 Fredholm integral equations of the

second kind

A Fredholm integral equation of the second kind can be written as

λu(x) +

∫
Ω

κ(x, s)u(s)ds = f(x), x ∈ Ω ⊂ Rd, (2.1)

where u is an unknown function, λ is a real parameter, Ω is a compact domain

in Rd, f is a given continuous right-hand side function, and κ is a given

continuous kernel in Ω× Ω. The above integral equation can be written in

the abstract form

(λ−F)u = f (2.2)

where

Fu =

∫
Ω

κ(x, s)u(s)ds.

The uniform norm of integral operator F is defined as

‖F‖ := max
x∈Ω

∫
Ω

|κ(x, s)|ds.

If F is a compact operator and ‖F‖ < λ then (2.2) has a unique solution for

all continuous functions f and λ 6= 0.

For numerical solution we consider a set of trial points

X = {x1, x2, . . . , xN} ⊂ Ω

with fill distance hX,Ω. We assume that X is quasi-uniform and admits

a well-defined MLS approximation. Suppose that a1, . . . , aN are the MLS

shape functions constructed by polynomial space Pdm and weight function

Φ ∈ Ck(Rd), k ∈ N0. Define

VN := span{a1, . . . , aN},

as a finite dimensional subspace of C(Ω). Recall the MLS approximation û

2.1 Fredholm integral equations of the second kind 21

of u:

u ≈ û =
N∑
j=1

φju(xj) ∈ VN .

We define a projection operator PN : C(Ω) 7→ VN which interpolates any

continuous function into VN on test points

Y = {y1, . . . , yM} ⊂ Ω.

More precisely, for all u ∈ C(Ω) we define

PNu :=
N∑
j=1

ajcj, with PNu(yk) = u(yk), 1 ≤ k ≤M.

In what follows, we let M = N and we assume that, the distribution of

both sets of test and trial points X and Y are well enough to ensure the

non-singularity of AN =
(
aj(yk)

)N
k,j=1

. If it happens then PN is well-defined.

Since û ∈ VN , we simply have PN û = û. Replacing u by û in (2.1) we get

N∑
j=1

[
λaj(x) +

∫
Ω

κ(x, s)aj(s)ds

]
u(xj) = f(x) + r(x),

where r(x) is the reminder. In collocation method we assume that the

reminder is vanished at test points Y , i.e.

PNr = 0,

which leads to

N∑
j=1

[
λaj(yk) +

∫
Ω

κ(yk, s)aj(s)ds

]
u(xj) = f(yk), 1 ≤ k ≤ N,

or in an abstract form

PN(λ−F)û = PNf.

According to the property PN û = û, we have

(λ− PNF)û = PNf.

22 A MLS based method for solution of integral equations

The involved integral can be treated by a numerical quadrature of the form∫
Ω

g(s) ds ≈
QN∑
`=1

g(θ`)ω`, g ∈ C(Ω), (2.3)

where {θ`} and {ω`}, for 1 ≤ ` ≤ QN are integration points and weights,

respectively. We assume that for all g ∈ C(Ω) the quadrature converges to

the exact value of integral as QN increases. Now we define

FNu(x) :=

QN∑
`=1

κ(x, θ`)u(θ`)ω`, x ∈ Ω, u ∈ C(Ω). (2.4)

If we replace F û by FN û, we will get

N∑
j=1

[
λaj(yk) +

QN∑
`=1

κ(yk, θ`)aj(θ`)ω`

]
ũj = f(yk), 1 ≤ k ≤ N, (2.5)

where ũj are the approximation values of u(xj). Solving the linear system

of equations (2.5) gives the values ũj, j = 1, . . . , N , and finally one can

approximate

u(x) ≈ uN(x) =
N∑
j=1

aj(x)ũj,

for any x ∈ Ω. The abstract form of equation (2.5) is

PN(λ−FN)uN = PNf.

Since uN ∈ VN , we have PNuN = uN and the above equation can be rewritten

as

(λ− PNFN)uN = PNf (2.6)

which shows that the scheme is a discrete collocation method [3]. Consequently

an iterated discrete collocation solution can be obtained. For this purpose we

set

vN(x) =
1

λ
[f(x) + FNuN(x)], ∀x ∈ Ω, (2.7)

and by applying the operator PN on both sides of (2.7), and using the relation

2.2 Error analysis 23

(2.6) we simply have

PNvN = uN .

Thus we conclude

(λ−FNPN)vN = f. (2.8)

Equations (2.6) and (2.8) will be referred in the next section when we will

try to give the error bounds for u− uN and u− vN .

Usually and in this study the case M = N is assumed which leads to a

square final linear system. In addition we may assume X = Y . The case

M > N is called oversampling which may help if there is a problem with

solvability.

2.2 Error analysis

As we discussed in the previous section, the method is a discrete collocation,

and the solvability of the integral equation (2.1) and some insights on in-

tegration operators FN and projections PN are required to obtain the final

error bound. Moreover, an error bound for the MLS approximation should

be invoked.

According to (2.4) we define

‖FN‖ := max
x∈Ω

QN∑
`=1

|ω`κ(x, θ`)|.

A direction which makes the analysis possible is to seek for characteristic

properties of operators FN which imply

‖(F − FN)F‖ → 0, ‖(F − FN)FN‖ → 0, as N →∞. (2.9)

For this and following [3] we assume that {FN , N ≥ 1} possesses the following

properties:

1. F and FN , for N ≥ 1, are linear operators on X into X for Banach

space X .

2. FNu→ Fu as N →∞, for all u ∈ X .

24 A MLS based method for solution of integral equations

3. The set {FN , N ≥ 1} is collectively compact which means that {FNu, N ≥
1, ‖u‖ ≤ 1} has a compact closure in X .

Then {FN} is said to be a collectively compact family of pointwise convergent

operators. According to [3, Lemma 4.1.2], if {FN , N ≥ 1} is a collectively

compact family of pointwise convergent operators, then (2.9) is satisfied.

Finally, [3, Theorem 4.1.1] paves the way for finding the final error bound.

Theorem 2.1. Let X be a Banach space, let S and T be bounded operators
on X to X and let S be compact. For given λ 6= 0, assume λ−T : X −→1−1

onto X ,
which implies (λ − T)−1 exists as a bounded operator on X to X . Finally
assume

‖(T − S)S‖ < |λ|
‖(λ− T)−1‖

, (2.10)

then (λ− S)−1 exists and it is a bounded operator from X to X . In fact, we
have

‖(λ− S)−1‖ ≤ 1 + ‖(λ− T)−1‖‖S‖
|λ| − ‖(λ− T)−1‖‖(T − S)S‖

. (2.11)

If (λ− T)w = f and (λ− S)z = f , then

‖w − z‖ ≤ ‖(λ− S)−1‖‖T w − Sw‖. (2.12)

Now we go back to equations (2.6) and (2.8). In section 3.4 of [3] it

is proved that the existence of the inverse operators (λ − FNPN)−1 and

(λ − PNFN)−1 are related to each other. If (λ − PNFN)−1 exists, then so

does (λ−FNPN)−1 and

(λ−FNPN)−1 =
1

λ
[I + FN(λ− PNFN)−1PN].

Conversely, if (λ−FNPN)−1 exists, then so does (λ− PNFN)−1 and

(λ− PNFN)−1 =
1

λ
[I + PN(λ−FNPN)−1FN].

By combining these, we also have

(λ− PNFN)−1PN = PN(λ−FNPN)−1.

We can choose to show the existence of either (λ−FNPN)−1 or (λ−PNFN)−1

whichever is the more convenient, and the existence of the other inverse will

2.2 Error analysis 25

follow immediately.

To use the results of Theorem 2.1 for schemes (2.6) and (2.8), we should

first prove that {FNPN , N ≥ 1} is a “collectively compact family of pointwise

convergent operators”. To this aim, we need a uniform bound for ‖PN‖. Since

PN is the interpolation operator to the MLS space, we first prove that the

MLS approximation converges uniformly for continuous functions on compact

domain Ω.

Theorem 2.2. Suppose that Ω ⊂ Rd is compact and satisfies an interior
cone condition. The MLS approximation su,X converges uniformly for all
continuous function u, as hX,Ω goes to zero for quasi-uniform sets X.

Proof. For a fixed x ∈ Ω, suppose that p0 is the constant polynomial with
p0(x) = u(x). The conditions of Theorem ensure that the MLS shape functions
provide a stable local polynomial reproduction. Thus we can write

|u(x)− û(x)| =
∣∣∣p0(x)−

N∑
j=1

aj(x)u(xj)
∣∣∣

=
∣∣∣ N∑
j=1

aj(x)
(
p0(xj)− u(xj)

)∣∣∣
≤

N∑
j=1

|aj(x)|
∣∣p0(xj)− u(xj)

∣∣
≤ C1‖u− p0‖∞,B(x,δ)∩Ω

= C1 max
y∈B(x,δ)∩Ω

|u(y)− u(x)|

≤ C1ω(u, δ),

where ω(u, δ) is the modulus of continuity of u. The compactness of Ω and
δ = chX,Ω give the uniform convergence.

Now we can prove the following lemma.

Lemma 2.3. Assume that a1, . . . , aN are the MLS shape functions on the
quasi uniform set X = {x1, . . . , xN} with fill distance hX,Ω on a compact
domain Ω which satisfies an interior cone condition. If ‖A−1

N ‖∞ = O(1)
independent of N (or hX,Ω), then there exists a constant cP independent of
N such that ‖PN‖ ≤ cP , and PNu→ u uniformly for all u ∈ C(Ω).

26 A MLS based method for solution of integral equations

Proof. First

PNu(x) =
N∑
j=1

aj(x)cj, and PNu(yk) = u(yk), 1 ≤ k ≤ N,

give c = A−1
N u. On the other hand we have

‖PNu‖∞ ≤ ‖c‖∞max
x∈Ω

N∑
j=1

|aj(x)| ≤ C1‖A−1
N ‖∞‖u‖∞.

The last inequality is satisfied because of the L1 stability of the MLS shape
functions (the second property of a stable local polynomial reproduction).
Thus we can write

‖PN‖ = sup
u∈C(Ω)

‖PNu‖∞
‖u‖∞

≤ C1‖A−1
N ‖∞,

which leads to
cP := sup

N
‖PN‖ <∞. (2.13)

Finally, if û is the MLS approximation of u on X then

‖PNu− u‖∞ ≤ ‖PNu− PN û‖∞ + ‖u− û‖∞
≤ (1 + cP)‖u− û‖∞
≤ C(1 + cP)ω(u, hX,Ω)

In the first inequality we have used PN û = û, and in the last one we have
applied Theorem 2.2. Since the points are quasi uniform, N → ∞ implies
hX,Ω → 0 and PNu→ u, uniformly.

Remark 2.4. Experiments show that ‖A†N‖∞ is of order 1 independent of the
fill distance hX,Ω even if M = N . But it remains to prove this assertion,
theoretically.

In the following lemma we prove that under some conditions {FNPN , N ≥
1} is a collectively compact family of pointwise convergent operators.

Lemma 2.5. Assume that {FN , N ≥ 1} is a collectively compact family of
pointwise convergent operators on X = C(Ω). Then {FNPN , N ≥ 1} is a
collectively compact family of pointwise convergent operators on X .

Proof. From (2.13) we have cP ≡ sup ‖PN‖ <∞. The pointwise convergence
of {FN} implies that cF ≡ sup ‖FN‖ <∞. Together, these imply the uniform

2.2 Error analysis 27

boundedness of {FNPN} with a bound of cP cF . For the pointwise convergence
on C(Ω) we have

‖Fu−FNPNu‖∞ ≤ ‖Fu−FNu‖∞ + ‖FN(u− PNu)‖∞
≤ ‖Fu−FNu‖∞ + cF‖u− PNu‖∞,

and the convergence now follows from that of {FNu} and {PNu}. To prove
the collective compactness of {FNPN} we must show that

K = {FNPNu : N ≥ 1, ‖u‖∞ ≤ 1}

has a compact closure in C(Ω). From (2.13) we have

K ⊂ {FNu : N ≥ 1, ‖u‖∞ ≤ cP}

which proves the assertion because {FN} is collectively compact.

Now (2.9) is satisfied by replacing FN by FNPN , and we can apply

Theorem 2.1.

Theorem 2.6. Let Ω ⊂ Rd be a compact set and satisfy an interior cone
condition, and the quasi uniform set X = {x1, . . . , xN} ⊂ Ω be a set of trial
points with fill distance hX,Ω. Let {PN} be a family of interpolant operators
from C(Ω) to VN = span{a1, . . . , aN} on test points Y = {y1, . . . , yN} ⊂ Ω,
where aj are the MLS shape functions based on X and polynomial space
Pdm. Assume that the distribution of points is well enough to ensure the non-
singularity of AN , and ‖A−1

N ‖∞ = O(1). Further, assume that {FN} in (2.4)
is a collectively compact family of pointwise convergent operators on C(Ω).
Finally, assume that (λ − F)u = f is uniquely solvable for all f ∈ C(Ω).
Then for all sufficiently large N , say N ≥ N0, the operator (λ − FNPN)−1

exists and it is uniformly bounded. In addition, for the iterative solution vN
for equation (λ−FNPN)vN = f we have

‖u− vN‖∞ ≤ cI
{
‖FNu−Fu‖∞ + cF (1 + cP)Chm+1

X,Ω |u|Cm+1
∞ (Ω∗)

}
,

provided that u ∈ Cm+1
∞ (Ω∗) where Ω∗ and |u|Cm+1

∞ (Ω∗) are defined in Theorem
1.6. Moreover, for the discrete collocation solution uN of equation (λ −
PNFN)uN = PNf we have

‖u−uN‖∞ ≤ cI
{
cP‖FNu−Fu‖∞+ (1 + cP cF)cF (1 + cP)Chm+1

X,Ω |u|Cm+1
∞ (Ω∗)

}
,

where cI <∞ is a bound for (λ−FNPN)−1.

28 A MLS based method for solution of integral equations

Proof. According to the assumptions and using Lemma 2.5 we conclude that
{FNPN} is a collectively compact family of pointwise convergent operators.
By [3, Lemma 4.1.2] and the discussions after that, we have

‖(F − FNPN)FNPN‖ → 0.

Thus, (2.10) is satisfied for N ≥ N0 if we insert T = F and S = FNPN in to
Theorem 2.1. Since (λ−F)u = f is uniquely solvable we have (λ−F)−1 ≤
c0 <∞. On the other hand ‖FNPN‖ ≤ cP cF . Consequently, (2.11) implies

‖(λ−FNPN)−1‖ ≤ sup
N≥N0

1 + c0cP cF
|λ| − c0‖(F − FNPN)FNPN‖

:= cI <∞,

which proves the first assertion. If we set w = u and z = vN in (2.12) then

‖u− vN‖∞ ≤ ‖(λ−FNPN)−1‖‖Fu−FNPNu‖∞
≤ cI

{
‖Fu−FNu‖∞ + ‖FN(u− PNu)‖∞

}
≤ cI

{
‖Fu−FNu‖∞ + cF‖u− PNu‖∞

}
≤ cI

{
‖Fu−FNu‖∞ + cF (‖u− û‖∞ + ‖PNu− PN û‖∞)

}
≤ cI

{
‖Fu−FNu‖∞ + cF (1 + cP)‖u− û‖∞

}
≤ cI

{
‖Fu−FNu‖∞ + cF (1 + cP)Chm+1

X,Ω |u|Cm+1
∞ (Ω∗)

}
.

The last inequality follows from Theorem 1.12. Moreover,

u− uN = u− PNvN = (u− PNu) + PN(u− vN),

‖u− uN‖∞ ≤ ‖u− PNu‖∞ + cP‖u− vN‖∞

which finishes the proof.

Theorem 2.6 shows that, both the quadrature and the MLS approximation

error bounds affect the final estimation. If for a sufficiently smooth kernel

κ(x, s) a high order quadrature is employed then the total error is dominated

by the error of the MLS approximation.

2.3 Domain decomposition

For numerical integration, Ω can be partitioned to measurable subdomains

Ω` such that Ω = ∪L`=1Ω` and Ω` ∩Ωk = ∅ for 1 6 k, ` 6 L. For an integrable

2.4 Application to Volterra integral equations 29

function g on Ω we then have∫
Ω

g(x)dx =
L∑
`=1

∫
Ω`

g(x)dx.

Usually we can transfer the integration on Ω` to an integration on the unit

cube for applying a tensor product numerical integration rule. For instance

in a 2D problem without lose of generality we assume

Ω` = {(x1, x2) ∈ R2 : −1 6 x2 6 1, g`(x2) 6 x1 6 f`(x2)}

for continuous functions g` and f`. Now the linear transformation

ξ(`)(x2, θ) =
f`(x2)− g`(x2)

2
θ +

f`(x2) + g`(x2)

2

converts the integration on Ω` onto an integration on [−1, 1]2 with∫
Ω`

g(x)dx =
1

2

∫ 1

−1

∫ 1

−1

[f`(x2)− g`(x2)]g(ξ(`)(x2, θ), x2)dθdx2.

The same formulation can be adapted for a three dimensional domain.

We note that this is a domain decomposition in the test space (integration)

and not in the trial space (approximation) where the MLS shape functions

are calculated independent of this domain decomposition.

2.4 Application to Volterra integral

equations

The proposed method can be simply applied for solving the Volterra-type

integral equations of the second kind. For simplicity we first discuss the one

dimensional case.

1-D Volterra integral equation

Consider the following second kind linear Volterra integral equation

λu(x) +

∫ x

a

κ(x, s)u(s)ds = f(x), x ∈ [a, b] ⊂ R. (2.14)

30 A MLS based method for solution of integral equations

To apply the method, N nodal points {x1, . . . , xN} are selected in interval

[a, b] and the MLS approximation

û(x) =
N∑
j=1

aj(x)u(xj)

is formed based on these points. If û is inserted to (2.14) instead of u we have

λû(x) +

∫ x

a

κ(x, s)û(s)ds = f(x) + r(x), x ∈ [a, b], (2.15)

where r(x) is the reminder at x. Now we collocate (2.15) at nodal points xk

to obtain by assuming PNr = r(xk) = 0,

N∑
j=1

[
λaj(xk) +

∫ xk

a

κ(xk, s)aj(s)ds

]
u(xj) = f(xk), 1 ≤ k ≤ N. (2.16)

Now all intervals [a, xk] are transferred to a fix interval [a, b] by the simple

linear transformation

s(xk, θ) =
xk − a
b− a

θ +
b− xk
b− a

a.

Equation (2.16) now takes the form

N∑
j=1

[
λaj(xk) +

∫ b

a

K(xk, s(xk, θ)) aj(s(xk, θ))dθ

]
u(xj) = f(xk), 1 ≤ k ≤ N,

where

K(x, s(x, θ)) =
x− a
b− a

κ(x, s(x, θ)).

Using a QN -point quadrature formula with points {θ`} and weights {ω`} in

interval [a, b] we have

N∑
j=1

[
λaj(xk) +

QN∑
`=1

K(x, s(xk, θ`)) aj(s(xk, θ`)) ω`

]
ũj = f(xk), 1 ≤ k ≤ N,

(2.17)

2.4 Application to Volterra integral equations 31

where the error of numerical integration forces u(xj) to be replaced by ap-

proximate values ũj. If we define the N by N matrix F by

Fk,j = λaj(xk) +

QN∑
`=1

K(xk, s(xk, θ`)) aj(s(xk, θ`)) ω`,

and N vectors

ũ = (ũ1, ũ2, . . . , ũN)T ,

and

f = (f(x1), . . . , f(xN))T ,

then we have the following linear system of equations

F ũ = f . (2.18)

If F is nonsingular then ũ is uniquely determined and the values of u at any

point x ∈ [a, b] can be approximated by

u(x) ≈ uN(x) =
N∑
j=1

aj(x)ũj, x ∈ [a, b]. (2.19)

2-D Volterra integral equation

The two dimensional Volterra integral equation can be expressed as

u(x, y) +

∫ y

c

∫ x

a

κ(x, y, ξ, η)u(ξ, η)dξdη = f(x, y), (x, y) ∈ [a, b]× [c, d].

where we use the notation (x, y) or (ξ, η) for a point in R2. This violates our

usual notation but simplifies the presentation. A set of N points in the 2-D

domain [a, b]× [c, d] is expressed by {(x1, y1), . . . , (xN , yN)}. Using the linear

transformations and techniques employed in 1-D case the final linear system

is obtained as

Fk,j = aj(xk, yk)+

QN∑
`=1

QN∑
q=1

K(xk, yk, ξ(xk, θq), η(yk, ζ`))aj(ξ(xk, θq), η(yk, ζ`))ωqω`,

32 A MLS based method for solution of integral equations

where

ξ(x, θ) =
x− a
b− a

θ +
b− x
b− a

a,

η(y, ζ) =
y − c
d− c

ζ +
d− y
d− c

c,

and

K(·, ·, ·, ·) =
xk − a
b− a

yk − c
d− c

κ(·, ·, ·, ·).

The error analysis of the above algorithm is not given here but is left for a

future work.

Integro-differential equations

Integro-differential equations contain both integral and differential operators

where derivative are either inside or outside the integrand. These types of

equations were introduced by Volterra in early 1900 to model some popula-

tion dynamics. Afterward, more applications in heat transfer and diffusion

phenomena (for instance in Neutron diffusion theory) where found.

MLS can be simply applied for solving an integro-differential equation.

We give details for a one dimensional Fredholm-type equation because the ex-

tensions to higher dimensions and Volterra-type equations are straightforward.

We consider a Fredholm integro-differential equation of the form

u(n) +

∫ b

a

κ(x, s)u(k)(s)ds = f(x), x ∈ [a, b], (2.20)

u(i)(a) = bi, 0 6 i 6 n− 1, (2.21)

where u(i) are i-th derivative of u and bi are constant initial values. Here

n, k ∈ N0 are fixed and n > k.

As before, u is replaced by the the MLS approximation û but the initial

conditions (2.21) should be imposed, properly. For this we use the following

simple collocation
N∑
j=1

a
(i)
j (a)ũj = bi, 0 6 i 6 n

which imposes n linear equations. Collocating (2.20) at M test points

2.5 Numerical results 33

y1, . . . , yM ∈ [a, b] then leads to F ũ = b with (M + n)×N final matrix

Fi,j =


a

(i)
j (a), 1 6 i 6 n,

a
(n)
j (yi−n) +

QN∑
`=1

κ(yi−n, θ`)a
(k)
j (θ`)ω`, n+ 1 6 i 6 M + n

for 1 6 j 6 N and b = [b1, . . . , bn, f(y1), . . . , f(yM)]T . If M = N − n test

points are chosen then F is a square matrix. Since the equation contains

derivatives up to order n the degree of polynomial basis functions, m, should

satisfy m > n. The error analysis is not given here but is left for a future

work.

2.5 Numerical results

In this section some numerical examples involving Fredholm and Volterra

integral equations in one and two dimensions are considered. Regular or

irregular sets points with fill distances h are used. In all cases the Gaussian

weight function (1.13) with c = 0.6h and shifted and scaled basis function

(1.17) of degree m are employed. The size of MLS weight support is chosen

to be δ = 2mh. The same test and trial points (i.e. X = Y) are utilized and

a 10-point Gauss-Legendre quadrature (and its corresponding tensor product

rule in 2D) is applied for numerical integrations.

1D Fredholm equation

Consider the integral equation (2.1) with Ω = [0, 1], λ = 5 and κ = exp(xs).

We use the true solution

u(x) = exp(−x) cos(x),

and define f(x) accordingly. Since ‖F‖ = e− 1 ' 1.72, the integral equation

is uniquely solvable for any given f ∈ C[0, 1]. Numerical results for m = 1, 2, 3

and different numbers of meshless points N (regular points with fill distance

h = 1/(N − 1)) are given in Table 2.1. Errors are measured in the maximum

norm on a large evaluation set point. Since h is halved row by row, the orders

34 A MLS based method for solution of integral equations

Table 2.1: Maximum errors and convergence orders; 1D Fredholm equation

m = 1 m = 2 m = 3
h ‖e‖∞ orders ‖e‖∞ orders ‖e‖∞ orders
0.2 2.08× 10−3 − 3.68× 10−4 − 7.75× 10−5 −
0.2
2 5.79× 10−4 1.84 5.63× 10−5 2.71 7.74× 10−6 3.36

0.2
4 1.53× 10−4 1.92 8.53× 10−6 2.72 5.75× 10−7 3.71

0.2
8 3.54× 10−5 2.09 1.12× 10−6 2.93 3.69× 10−8 3.96

0.2
16 8.56× 10−6 2.07 1.41× 10−7 2.99 2.40× 10−9 3.94
0.2
32 2.19× 10−6 1.97 1.78× 10−8 2.98 1.54× 10−10 3.96
0.2
64 5.71× 10−7 1.94 2.27× 10−9 2.96 9.86× 10−12 3.96

are computed via

log2

(
‖e(h)‖∞
‖e(h/2)‖∞

)
. (2.22)

In [26] the convergence rate for m = 2 was influenced by an instability that

here is overcome by using the shifted and scaled basis functions. As proved in

Theorem 2.6, the order of convergence is O(hm+1) provided that an accurate

quadrature rule is applied.

2D Fredholm equation in a non-rectangular domain

Consider the Fredholm integral equation (2.1) for Ω ⊂ R2 where Ω is a

non-rectangular domain shown in Figure 2.1 (a). The kernel κ(x1, x2, s1, s2) =

exp(x1 + x2) cos(s1 + s2) is assigned and the true solution is assumed to be

u(x1, x2) = sin(x1 +x2). The right-hand side then is f(x1, x2) = λ sin(x1 +x2)−
β exp(x1 + x2) with β

.
= 0.254801287003867. As is shown in Figure 2.1 (b), Ω

is partitioned to five subdomains. Scattered points of various fill distances

are also depicted in Figure 2.1 (c)-(f). Since ‖F‖ = 5π/8 + 1/4
.
= 2.21, we

set λ = 4. Numerical results are given in Table 2.2.

1-D Volterra equation

Consider the Volterra integral equation (2.14) with a = 0, λ = 3, κ = (x+ s)2

and true solution u(x) = exp(x). The right-hand side function f is calculated

accordingly. All MLS parameters are chosen as those for the 1-D Fredholm

example. Results are given in Table 2.3. Although we did not prove the error

2.5 Numerical results 35

)ب()الف(

)ت()پ(

)ج()ث(

1

3
4 5

2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

Figure 2.1: Domain, subdomains and meshless points for 2D Fredholm equation.

36 A MLS based method for solution of integral equations

Table 2.2: Maximum errors and convergence orders; 2D Fredholm equation

m = 1 m = 2 m = 3
N h ‖e‖∞ orders ‖e‖∞ orders ‖e‖∞ orders
64 0.2 4.69× 10−2 − 1.62× 10−2 − 2.98× 10−4 −
238 0.2

2 1.46× 10−2 1.68 3.09× 10−3 1.98 3.06× 10−4 3.28
917 0.2

4 2.62× 10−3 2.48 4.43× 10−4 2.80 3.41× 10−5 3.17
3603 0.2

8 2.66× 10−4 3.30 1.94× 10−5 4.51 1.71× 10−7 7.49

Table 2.3: Maximum errors and convergence orders; 1D Volterra equation

m = 1 m = 2 m = 3
h ‖e‖∞ orders ‖e‖∞ orders ‖e‖∞ orders
0.2 4.60× 10−3 − 6.31× 10−4 − 6.07× 10−5 −
0.2
2 1.36× 10−3 1.76 9.09× 10−5 2.79 4.38× 10−6 3.79

0.2
4 3.77× 10−4 1.85 1.02× 10−5 3.16 2.89× 10−7 3.93

0.2
8 9.07× 10−5 2.05 1.59× 10−6 2.68 1.76× 10−8 4.03

0.2
16 2.46× 10−5 1.88 2.05× 10−7 2.95 1.17× 10−9 3.91
0.2
32 6.04× 10−6 2.03 2.59× 10−8 2.98 7.42× 10−11 3.98
0.2
64 1.63× 10−6 1.89 3.53× 10−9 2.88 4.89× 10−12 3.92

bound in this case, the experimental results predict the optimal rate hm+1.

2-D Volterra equation

This example covers experimental results of a two-dimensional Volterra inte-

gral equation (2.4) for a = c = 0, b = d = 1, λ = 1, κ = cos(2ξ + η) and true

solution u(x, y) = sin(2x+ y). Regular node distributions on [0, 1]× [0, 1] are

used and results are reported in Table 2.4. Again the experimental rate hm+1

is observed.

Table 2.4: Maximum errors and convergence orders; 2D Volterra equation

m = 1 m = 2 m = 3
h ‖e‖∞ orders ‖e‖∞ orders ‖e‖∞ orders
0.2 1.39× 10−2 − 2.47× 10−3 − 7.19× 10−4 −
0.2
2 3.51× 10−3 1.98 3.58× 10−4 2.78 4.35× 10−5 4.04

0.2
4 8.86× 10−4 1.99 4.63× 10−5 2.95 2.72× 10−6 4.00

0.2
8 2.26× 10−4 1.97 5.90× 10−6 2.97 1.74× 10−7 3.97

2.6 Conclusion 37

Table 2.5: Maximum errors and convergence orders; 1D integro-differential equation

m = 1 m = 2 m = 3
h ‖e‖∞ orders ‖e‖∞ orders ‖e‖∞ orders
0.2 9.49× 10−2 − 1.94× 10−2 − 4.60× 10−3 −
0.2
2 3.92× 10−2 1.28 6.56× 10−3 1.56 1.80× 10−4 4.68

0.2
4 1.17× 10−2 1.75 2.46× 10−4 4.64 1.50× 10−5 3.58

0.2
8 4.05× 10−3 1.50 3.65× 10−4 −0.47 1.36× 10−6 3.46

0.2
16 1.95× 10−3 1.05 6.62× 10−5 1.92 1.77× 10−7 2.94
0.2
32 2.17× 10−4 3.17 2.30× 10−5 2.06 9.96× 10−8 0.83

Integro-differential equation

Finally, we consider equations (2.20) and (2.21) for n = k = 1, a = 0,

b = 1 and κ = exp(xs) with true solution u(x) = x exp(x). Regular node

distribution with fill distance h = 1/(N + 1) on interval [0, 1] are used as

trial set X. The test point set is Y = X \ {0}. At 0 the initial condition is

imposed. Results are reported in Table 2.5. We guess the convergence rate

hm+1−n = hm in this case.

2.6 Conclusion

For numerical solution of an integral equation, If either the equation is

posed on a non-rectangular domain or known information is only available at

scattered points, the use of meshless methods such as MLS approximation is

recommendable. Although the proposed method works also appropriately in

other cases, we suggest more accurate techniques, such as spectral methods,

for solving these types of integral equations.

38 A MLS based method for solution of integral equations

Chapter 3

Local PDE solvers based on
MLS

Numerical methods based on MLS for solving PDEs may be classified to global

and local methods. In general, this classification can be used for both trial and

test spaces. Here, the trial space is formed via MLS shape functions which

construct a “local polynomial reproduction” system as pointed in Chapter 1.

Thus by a local method we refer to a method that is local in the test side.

This title is assigned for weak-based methods where a local weak form is used

instead of a global weak formulation on the whole PDE domain. As a global

meshless method in this scenario we can mention the Element-Free Galerkin

(EFG) method which is meshless is the trial side but still mesh-based in the

test side. In this method the numerical integration is based on a background

triangulation. Thus EFG is not known as a truly meshless method. On the

other side, the Meshless Local Petrov-Galerkin (MLPG) methods are based

on a local weak formulation that leads to a more simple numerical integration.

In these methods integrations are done over independent (non-connected) and

well-shaped local subdomains. Thus, triangulation does not require for either

approximation or integration. Primer attempts to develop such techniques

go back to Meshless Local Boundary Integral Equation (MLBIE) [45] and

MLPG [7] methods in 1998.

In this chapter we first give an overview on meshless methods and then

the derivation of local weak forms are discussed and variations of MLPG

methods are reviewed.

40 Local PDE solvers based on MLS

3.1 Meshless Methods

As pointed before, whatever the given problem is, meshless methods construct

solutions from a trial space U whose functions are parametrized entirely in

terms of nodes [9]. We let these nodes form a set X := {x1, . . . , xN}. Then

the functions u of the linear trial space U are parametrizable by their values

on X iff the linear functionals δx1 , . . . , δxN are linearly independent on U .

This implies that there must be some basis u1, . . . , uN of U such that the

N × N matrix of values uj(xk) is invertible, but we are not interested in

knowing or constructing this basis. We only assume that the discretized

problem is set up with a vector

u = (u(x1), . . . , u(xN))T

of unknowns in “meshless” style, and all data have to be expressed in terms of

these. Furthermore, we assume the discretized problem to consist of equations

λk(u) = βk, 1 ≤ k ≤M, (3.1)

where we have M ≥ N linear functionals λ1, . . . , λM and M prescribed real

values β1, . . . , βM . Section 3.2 will describe how this is done for standard linear

PDE problems, including the variations of the MLPG. This is a discretization

in the test space. If u is replaced by a good trial approximation

û(x) =
N∑
j=1

aj(x)u(xj)

then

λk(û) =
M∑
j=1

λk(aj)u(xj) ≈ λk(u) for all k, 1 ≤ k ≤M. (3.2)

Putting the λk(aj) into an M ×N matrix K, one has to solve the possibly

overdetermined linear system

K u = b (3.3)

3.2 Local weak forms 41

with b = (β1, . . . , βM)T . In a second stage, users might want to evaluate u at

other places than in the nodes xj. This is a problem of recovery of functions

from discrete data values, and completely independent of PDE solving. There

are various possibilities to do so, including the standard MLS with its shape

functions.

3.2 Local weak forms

We now write linear PDE problems in the discretized form (3.1), with special

emphasis on the MLPG method.

Although the technique proposed in this section can be used for a wide

class of PDEs, we illustrate our approach for the Poisson problem

∆u(x) = f(x), x ∈ Ω,

u(x) = uD(x), x ∈ ΓD,
∂u
∂n

(x) = uN(x), x ∈ ΓN

(3.4)

where f is a given source function, the bounded domain Ω ⊂ Rd is enclosed

by the boundary Γ = ΓD ∪ ΓN , uD and uN are the prescribed Dirichlet

and Neumann data, respectively, on the Dirichlet boundary ΓD and on the

Neumann boundary ΓN , while n is the outward normal direction.

The simplest way of discretizing the problem in the form (3.1) is direct

and global collocation. In addition to the trial nodes x1, . . . , xN for obtaining

nodal solution values, we can choose finite point sets

YΩ ⊂ Ω, YD ⊂ ΓD, YN ⊂ ΓN , Y := YΩ ∪ YD ∪ YN , |Y | = M

and discretize the problem by M functionals

λi(u) = ∆u(yi) = f(yi), yi ∈ YΩ ⊂ Ω,

λj(u) = u(yj) = uD(yj), yj ∈ YD ⊂ ΓD,

λk(u) = ∂u
∂n

(yk) = uN(yk), yk ∈ YN ⊂ ΓN

(3.5)

using some proper indexing scheme. In MLPG categories, this is MLPG2

[4, 5]. All functionals are local, and strong in the sense that they do not

42 Local PDE solvers based on MLS

involve integration over test functions.

For FEM–style global weak discretization, one can keep the second and

third part of (3.5), but the first can be weakened using the Divergence

Theorem. With sufficiently smooth test functions vk, we get

λk(u) :=

∫
Γ

(∇u · n)vk dΓ−
∫

Ω

∇u · ∇vk dΩ =

∫
Ω

fvk dΩ

as a replacement of the first functionals in (3.5), leading again to (3.1).

Following the original MLPG method, instead of transforming (3.4) into a

global weak form, we construct weak forms over local subdomains Ωk
σ which

are small regions taken around nodes yk in the global domain Ω. The local

subdomains could theoretically be of any geometric shape and size. But for

simplicity they are often taken to be balls B(yk, σ) intersected with Ω and

centered at yk with radius σ, or squares in 2D or cubes in 3D centered at yk

with sidelength σ, denoted by S(yk, σ) ∩ Ω. The variable σ parametrizes the

local subdomain’s size, and we denote the boundary within Ω by Γkσ := Ω∩∂Ωk
σ.

We call a node yk internal, if the boundary ∂Ωk
σ of the local subdomain Ωk

σ

does not intersect Γ.

The derivation of the local weak form starts with the local integral

λk(u) :=

∫
Ωkσ

∆u v dΩ =

∫
Ωkσ

f v dΩ =: βk, (3.6)

where v is an appropriate test function on Ωk
σ. Employing the Divergence

Theorem, we get an equation

λk(u) :=

∫
Γkσ\ΓN

(∇u · n)v dΓ−
∫

Ωkσ

∇u · ∇v dΩ

=

∫
Ωkσ

fv dΩ−
∫

Γkσ∩ΓN

uNv dΓ =: βk

(3.7)

of the form (3.1). For nodes whose subdomain boundary does not intersect

ΓN , the second term on the left–hand side vanishes.

To impose the Dirichlet boundary conditions we can introduce a penalty

3.2 Local weak forms 43

term

$

∫
Γkσ∩ΓD

(u− uD)vdΓ

in (3.7) to get

λk(u) :=

∫
Γkσ\ΓN

(∇u · n)v dΓ−
∫

Ωkσ

∇u · ∇v dΩ +$

∫
Γkσ∩ΓD

uv dΓ

=

∫
Ωkσ

fv dΩ−
∫

Γkσ∩ΓN

uNv dΓ +$

∫
Γkσ∩ΓD

uDv dΓ =: βk.

(3.8)

The penalty parameter $ must be chosen large enough to impose the boundary

condition u = uD with a reasonable accuracy. Usually, an optimal value for

this parameter is not accessible, theoretically. As we will see, the final linear

system of MLPG methods is unsymmetric with or without the penalty term.

Thus, another possibility for imposing the Dirichlet boundary conditions, that

does not violate the final structure of the stiffness matrix, is the use of a

direct collocation method. In this case the Dirichlet boundary conditions are

imposed directly using the second line of (3.5) for suitable collocation points,

usually taking a subset of the trial nodes. Thus λk and βk are defined as (3.7)

and neither Lagrange multipliers nor penalty parameters are introduced into

the local weak forms.

By applying the Divergence Theorem twice, the second local weak form is

obtained as∫
Γkσ\Γ

∂u

∂n
v dΓ−

∫
Γkσ\Γ

u
∂v

∂n
dΓ +

∫
Γkσ∩ΓN

uNv dΓ +

∫
Γkσ∩ΓD

∂u

∂n
v dΓ

−
∫

Γkσ∩ΓN

u
∂v

∂n
dΓ−

∫
Γkσ∩ΓD

uD
∂v

∂n
dΓ +

∫
Ωkσ

u∆v dΩ−
∫

Ωkσ

fv dΩ = 0.

In this case Ωk
σ = B(yk, σ)∩(Ω∪Γ) and the test function v is shift invariant and

compactly supported on Ωk
σ with center yk such that ∆v(· − yk) = −δ(· − yk),

where δ is the Dirac delta function (distribution) and v = 0 on Γkσ \ Γ. Such

test function is called the companion solution and is given as

v(x− y) =


− 1

2π
ln
r

σ
, in 2D

1

4π

(
1

r
− 1

σ

)
, in 3D

r = ‖x− y‖2. (3.9)

44 Local PDE solvers based on MLS

Using the companion solution we arrive at the following test discretization

λk(u) :=cku(yk)−−
∫

Γkσ\Γ
u
∂v

∂n
dΓ +

∫
Γkσ∩ΓN

u
∂v

∂n
dΓ

∫
Γkσ∩ΓD

∂u

∂n
v dΓ

+

∫
Γkσ∩ΓN

uNv dΓ +

∫
Γkσ∩ΓD

uD
∂v

∂n
dΓ +

∫
Ωkσ

fv dΩ =: βk.

(3.10)

where −
∫

represents the Cauchy Principle Value (CPV) integral (see the BEM

monograph [36] for more details). Here ck = 1 if yk is an internal point and

ck = 1/2 for yk located on smooth parts of the boundary. If yk is a corner

boundary point in a 2D domain then ck = θ/(2π) where θ is the internal

angle of the corner point. Of course, for internal points the CPV integral is

replaced by its corresponding regular integral.

Variations of MLPG differ in their choice of functionals. We already

discussed about the MLPG2. MLPG1, MLPG5 and MLPG6 are based on

locally weak functionals (3.7) (or (3.8) in penalty form). If the test function v

is chosen to vanish on Γyσ \ ΓN , the first integral in (3.7) is zero, and we have

MLPG1. If the local test function v is the constant 1, the second integral

vanishes, and we have MLPG5. In MLPG6 the same trial functions are used

for test functions. Thus σ is identical to the support of trial weight functions.

MLPG3 is based on (3.6) and the trial approximation error function is used

as a test function. Since in MLPG3 and MLPG6 trial and test functions are

coming from a same approximation space they are better to be called MLG3

and MLG6, respectively. Finally, MLPG4 is based on local test functionals

(3.10) with companion solutions (3.9). More details about MLPG classification

may be found in [6, 5].

Although, all meshless approximation spaces in the market can be used

as trial approximation, usually the MLS approximation

û(x) =
N∑
j=1

aj(x)u(xj) ≈ u(x), x ∈ Ω,

where aj are MLS shape functions, is used to discretize the trial space in

MLPG methods. Considering any of the above local weak forms λk(u) = βk,

1 6 k 6 M , and replacing u by û, the final linear system (3.3) is resulted

3.2 Local weak forms 45

where Kk,j = λk(aj) for 1 6 k 6 M and 1 6 j 6 N . To get a full-rank

and stable system, theoretically M (number of test functionals) must be

larger than N (number of trial points). But usually the square case N = M

works without any serious problem. The final matrix in all MLPG methods

is unsymmetric even if the symmetric weak forms are utilized. For more

details around the theoretical background of some MLPG methods we refer

the reader to [38, 39].

There exist numerous papers on application of MLPG methods for solving

PDE problems in science and engineering. As some contributed work by the

present author, in [25] the MLPG4 has been applied for solving the sine-

Gordon equation, in [27] an application of MLPG5 to p-Laplace equation has

been investigated and in [28] an algorithm that uses the MLS approximation

in both time and space domains has been developed.

46 Local PDE solvers based on MLS

Chapter 4

Generalized Moving Least
Squares

As we observed in Chapter 1, the MLS method provides an approximation û

of a function u based solely on values u(xj) of u on scattered “meshless” nodes

X = {x1, . . . , xN}. Derivatives of u are usually approximated by derivatives of

û. In contrast to this, in the present chapter we directly estimate derivatives of

u from the data, without any detour via derivatives of û. This is a generalized

Moving Least Squares (GMLS) technique, and we prove that it produces

diffuse derivatives as introduced by Nyroles et. al. in 1992 [33]. Consequently,

these turn out to be efficient direct estimates of the true derivatives, without

anything “diffuse” about them, and we prove optimal rates of convergence

towards the true derivatives. This chapter is completely based on paper [30].

4.1 Introduction

The MLS approximates the value u(x) of an unknown function u from given

data u(x1), . . . , u(xN) at nodes x1, . . . , xN near x by a value

û(x) =
N∑
j=1

aj(x)u(xj) ≈ u(x),

There have been many meshless techniques based on the MLS approximation

for the numerical solution of differential equations in recent years that we

reviewed some of them in Chapter 3. When setting up large linear system for

48 Generalized Moving Least Squares

solving PDEs, MLS approximations are used to provide approximations to

derivatives Dαu(x). This can be done via Dαû(x) ≈ Dαu(x), i.e. taking exact

derivatives of the MLS solution, or via a direct estimation of Dαu(x) from

the data u(x1), . . . , u(xN) near x. Here we describe the second approach and

link it to the concept of diffuse derivatives introduced by [34]. It turns out

that the second approach calculates diffuse derivatives, and therefore these

are a direct optimal estimation from the data. We prove optimal convergence

rates for the diffuse derivatives and give numerical examples. In next chapter

we apply this result to make the MLPG considerably more effective. This is

the main motivation behind our approach.

Section 5.2 contains a review of the generalized moving least squares

(GMLS) approximation in a form similar to [19]. In section 4.3, classical and

diffuse derivatives in the sense of [34] and their connections to the GMLS

are described. It is proven that diffuse derivatives are GMLS approximations

of true derivatives. The main contribution is in section 4.4 concerning error

bounds for GMLS approximations of derivatives. Here, we follow the analysis

path introduced by [42, 43] and the concept of norming sets introduced by

[16], and adapt it to the approximation of derivatives. Finally, section 4.5

provides some numerical examples.

4.2 The GMLS approximation

In the classical MLS, given a set {u(x1), . . . , u(xN)} of values of an unknown

function u in a domain Ω ⊆ Rd at nodes xj ∈ Ω ⊆ Rd for 1 ≤ j ≤ N , the

value u(x) at a fixed point x ∈ Rd is approximately recovered by minimizing

a certain weighted discrete l2 norm. But here we start with a generalized

version of MLS.

Let u ∈ Cm(Ω) for some m ≥ 0, and let {µj(u)}Nj=1 be a set of continuous

linear functionals µj from the dual Cm(Ω)∗ of Cm(Ω). For a fixed given

functional λ ∈ Cm(Ω)∗, our problem is the approximate recovery of the value

λ(u) from the values {µj(u)}Nj=1. The functionals λ and µj, 1 ≤ j ≤ N , can,

for instance, describe point evaluations of u and its derivatives up to order

m. The approximation λ̂(u) of λ(u) should be a linear function of the data

4.2 The GMLS approximation 49

µj(u), i.e. it should have the form

λ̂(u) =
N∑
j=1

aj(λ)µj(u), (4.1)

and the coefficients aj should be linear in λ. As in the classical MLS, we

assume the approximation equation (4.1) to be exact for a finite dimensional

subspace Pdm = span{p1, p2, . . . , pQ} ⊂ Cm(Ω), i.e.

N∑
j=1

aj(λ)µj(p) = λ(p) for all p ∈ Pdm. (4.2)

The GMLS approximation λ̂(u) to λ(u) is numerically obtained as λ̂(u) =

λ(p∗), where p∗ ∈ Pdm is minimizing the weighted least-squares error functional

N∑
j=1

(
µj(u)− µj(p)

)2
wj, (4.3)

among all p ∈ Pdm, where we use positive weights w1, . . . , wN which later will

be chosen in a specific way to localize the approximation. Of course, we

then have to prove that (4.1) holds, but we shall get it only for the optimal

solution.

Suppose the set point X = {x1, x2, . . . , xN} ⊂ Ω and x ∈ Ω. The classical

MLS is a special case of GMLS when λ and µj , 1 ≤ j ≤ N are point evaluation

functionals at x and xj, 1 ≤ j ≤ N and Pdm is a finite–dimensional space of

polynomials, while the weights are of the form

wj = w(x, xj), 1 ≤ j ≤ N (4.4)

with a nonnegative weight function w that vanishes when the arguments

are at a certain distance. Furthermore, the classical MLS has an equivalent

formulation, which in our generalization amounts to minimizing the quadratic

form
1

2

N∑
j=1

a2
j(λ)/wj (4.5)

50 Generalized Moving Least Squares

as a function of the coefficients aj(λ) subject to the linear constraints (4.2). By

some linear algebra arguments which arise already for the standard MLS and

which we repeat in the next section in order to care for the dependence on the

weights, the solutions p∗ and a∗(λ) = (a∗1(λ), . . . , a∗N (λ))T of the minimization

problems (4.3) and (4.5), respectively, are connected by the relation

λ̂(u) = λ(p∗) =
N∑
j=1

a∗j(λ)µj(u), (4.6)

which also proves (4.1). Formally, the solution p∗ of the minimization problem

(4.3) does not depend on λ. By calculating p∗ from the data µj(u) first, one

can obtain estimates of λ(u) for all λ by just evaluating λ(p∗). This is very

useful for approximating derivatives as long as the weights are independent

of λ, but needs some care because both problems depend on the weights,

and the weights will be connected to the functionals in most cases. This is

the main implementation recipe in the general situation. We shall be more

precise in the next section.

4.3 Classical and diffuse derivatives

We take a closer look now at estimating derivative values

λα,x(u) := uα(x) = δxD
αu (4.7)

for fixed x ∈ Ω in standard multi-index notation with |α| ≤ m, and where δx

denotes the Dirac point–evaluation functional

δx : f 7→ f(x).

This situation was already mentioned as a special case in [19].

We now have to be more careful and take account of the weights. We use

the weights (4.4) like in the standard MLS, even when we take more general

functionals as in (4.7), but with the same x. By localization at a fixed point

4.3 Classical and diffuse derivatives 51

x, the indices j ∈ {1, . . . , N} are restricted to

J(x) := {j : 1 ≤ j ≤ N, w(x, xj) > 0}

and we introduce a basis p1, . . . , pQ of Pdm and the notation

u :=
(
u(xj), j ∈ J(x)

)T ∈ R|J(x)|

P :=
(
p`(xj)

)
j∈J(x), 1≤`≤Q

b :=(b1, . . . , bQ)T ∈ RQ

W :=diag
(
w(x, xj) : j ∈ J(x)

)
p :=

Q∑
k=1

bkpk ∈ Pdm

where almost everything depends on x. Then the problem (4.3) is

Minimize ‖
√
W (u− Pb)‖2

2 (4.8)

over all b ∈ RQ, and by classical least–squares argumentation, the solution b∗

satisfies the normal equations

Ab∗ = Bu, (4.9)

where A = P TWP and B = P TW . The matrix A is of order Q × Q and

plays an important role in the MLS approximation. The solution is unique if

the rank of A is Q. We assume this in what follows, i.e. we assume the data

point set X = {x1, . . . , xN} is Pdm-unisolvent.

The minimization of (4.5) can be rewritten as

Minimize
1

2
aTW−1a

subject to P Ta = λ(p)

where λ(p) := (λ(p1), . . . , λ(pQ))T ∈ RQ. Introducing a Lagrange multiplier

z∗(λ), we have to construct the global minimizer a∗(λ) of

1

2
aTW−1a + (z∗(λ))T (P Ta− λ(p))

52 Generalized Moving Least Squares

with respect to a. Then the solution a∗(λ) is given by the two systems

a∗(λ) =WPz∗(λ)

P Ta∗(λ) =λ(p)

which implies

P TWPz∗(λ) = λ(p), a∗(λ) = WP (P TWP)−1λ(p).

In some more detail,

a∗j(λ) = wj

Q∑
k=1

z∗k(λ)µj(pk), (4.10)

where, due to our assumption of unisolvency, the z∗k(λ) are the unique solution

of
Q∑
k=1

z∗k(λ)
N∑
j=1

wjµj(pk)µj(p`) = λ(p`), 1 ≤ ` ≤ Q. (4.11)

If µj = δxj , 1 ≤ j ≤ N , the two solutions are connected by

λ(p)Tb∗ = uTa∗(λ) =
∑
j∈J

a∗j(λ)u(xj)

which is (4.1).

The solution b∗ of the first problem is dependent on x via the weights and

the index set, but, except that, not on λ. If λ is independent of x, we can

get an approximation to λ(u) by

λ(p∗) = λ(p)Tb∗ =

Q∑
k=1

b∗kλ(pk). (4.12)

If we keep x fixed and let the multi-index α for λα,x = δxD
α vary, we have

no problems and can use

λ̂α,x(u) = λα,x(p)Tb∗ =

Q∑
k=1

b∗kp
(α)
k (x) (4.13)

to get estimates of all derivatives of u at x after the calculation of b∗, yielding

4.3 Classical and diffuse derivatives 53

(4.6). With (4.7), we have

λ̂α,x(u) = D̂αu(x) =

Q∑
k=1

b∗kp
(α)
k (x) =

∑
j∈J(x)

a∗j,α(x)u(xj), (4.14)

where a∗j,α are generalized MLS shape functions that correspond to the above

functionals. Note that by (4.14) we have a direct estimation of Dαu from the

data.

The implementation of the method solves the weighted least–squares

problem (4.8) first, usually by a QR decomposition of
√
WP , avoiding the

stability problems induced by solving the normal equations (4.9). Once

the solution vector b∗ is known, all target functionals λ that use the same

input data and weights can be estimated via (4.12). Note that this requires

evaluation of λ on polynomials only, not on any shape functions. This can

be used to accelerate certain meshless methods for solving PDEs, as will be

demonstrated in the next chapter focusing on applications.

If a∗(λ) = WP (P TWP)−1λ(p) is requested, we decompose
√
WP = QR,

where Q is unitary and R is upper triangular to get P TWP = RTR. By

some simple calculations, (WP)(P TWP)−1RT =
√
WQ. Using backward

substitution, (WP)(P TWP)−1 is derived from this, and a∗(λ) can be calcu-

lated directly. This is what we need in GMLS derivatives when λ = δxD
α.

As given at the beginning of Section 1.4, for standard derivatives of MLS

shape functions more complicated calculations are required. Clearly, the

direct estimation of derivatives is computationally much more efficient than

calculating the derivatives of the MLS shape functions.

We now connect this to the notion of diffuse derivatives (see [11, 17, 34, 44])

that we explain now. If we use the standard MLS with λ = δx, the vector b∗

comes out the same as above, and the resulting approximation is

û(x) :=

Q∑
k=1

b∗kpk(x),

but it should be kept in mind that b∗ depends subtly on x via the weights

and the index set J(x). The derivatives of û at x, if calculations are done for

54 Generalized Moving Least Squares

varying x, will thus not be what we did above, since the dependence of b∗ on

x cannot be ignored. If it is ignored, the value

Dα
dif (û)(x) :=

Q∑
k=1

b∗kp
(α)
k (x)

is called the diffuse derivative of û at x.

Theorem 4.1. The GMLS approximation when applied for λ = λα,x := δxD
α

and µj = δxj , 1 ≤ j ≤ N , calculates the diffuse derivative of the standard
MLS. The latter is a good approximation to Dαu(x), but is not the same as
the standard derivative Dαû(x).

For applications in meshless methods, the estimation of Dαu(x) via (4.7) is

all that is needed when setting up linear system of equations, since it is the best

weighted moving least squares estimate based on the data u(x1,), . . . , u(xN).

It is a completely unnecessary detour to go via û(x) and take derivatives

thereof. We shall support this theoretically and practically in what follows. As

we shall see, the accuracies of both schemes are nearly the same. Comparing

the diffuse and full (standard) derivatives of û, the computational cost of

the diffuse derivatives is considerably less. For the GMLS, we just have to

calculate b∗, which takes the same amount of work like in the standard MLS,

and then we just need the derivatives of the polynomial basis to get (4.13).

Since polynomials of degree up to m are exactly reproduced for all choices of

weights, the full and diffuse derivatives of these polynomials coincide ([17]).

The use of û and its derivatives is not necessary when setting up the linear

system. After solving, we will have approximations for the values u(xj) at

the nodes. Then, for postprocessing, it may be necessary to calculate exact

derivatives of the approximate solution û, e.g. for calculation of stress in

elasticity problems. At this time, it is up to the user whether exact or diffuse

derivatives are calculated. If users want to have a single solution function û

with exact derivatives, they will have to pay a price. If they can admit small

errors, they can get away with diffuse derivatives. For postprocessing, the

use of diffuse derivatives makes a lot of sense in certain situations, but not

for setting up linear systems.

4.4 Error bounds 55

Since the word “diffuse” may mislead readers to assume that these deriva-

tives are not first–choice, we ignore this term from now on and use D̂αu(x)

or λ̂(u) instead, to let the notation indicate that we have a direct and usually

very good numerical approximation to Dαu(x) or λ(u), respectively. For

future work, we suggest to drop the term diffuse derivative in favor of GMLS

derivative approximation. There is nothing diffuse or uncertain about it.

4.4 Error bounds

To be more precise with the generation of weights, we choose a continuous

function Φ : [0,∞) → R that is positive on [0, 1/2] and supported in [0, 1],

and define

w(x, y) = Φ

(
‖x− y‖2

δ

)
,

for δ > 0 as a weight function. Then we define J(x) = {j ∈ {1, 2, . . . , N} :

‖x− xj‖2 ≤ δ}. At first, the convergence rate of a generalized local polyno-

mial reproduction system will be presented and then we will show that the

generalized MLS of the first section is a local polynomial reproduction in the

following sense.

Definition 4.2. Consider a process that defines for every Pdm–unisolvent set
X = {x1, x2, . . . , xN} ⊂ Ω and each multi-index α with |α| ≤ m a family of
functions sj,α : Ω→ R, 1 ≤ j ≤ N to approximate

Dαu(x) ≈
N∑
j=1

sj,α(x)u(xj)

for functions u ∈ Cm(Ω). Then we say that the process provides a local polyno-
mial reproduction of degree m on Ω if there exist constants h0, C1,α, C2,α > 0
such that

1.
∑N

j=1 sj,α(x)p(xj) = Dαp(x), for all p ∈ Pdm, x ∈ Ω,

2.
∑N

j=1 |sj,α(x)| ≤ C1,αh
−|α|
X,Ω , ∀x ∈ Ω,

3. sj,α(x) = 0 if ‖x− xj‖2 > C2,αhX,Ω,

is satisfied for all |α| ≤ m and all X with hX,Ω ≤ h0.

56 Generalized Moving Least Squares

This definition is a generalized form of Definition 1.5 of Chapter 1. (see

[43, chap. 3]). We avoided the notation s
(α)
j (x) since it is not true that

sj,α = Dαsj,0, as suggested by item 1 above.

Theorem 4.3. Suppose that Ω ⊂ Rd is bounded. Define Ω∗ to be the closure
of
⋃
x∈Ω B(x,C2h0). Define

D̂αu(x) :=
N∑
j=1

sj,α(x)u(xj),

where {sj,α} is a local polynomial reproduction of order m on Ω for |α| ≤ m.
Then there exists a constant C > 0 such that for all u ∈ Cm+1(Ω∗) and all X
with hX,Ω ≤ h0 there is an error bound

|Dαu(x)− D̂αu(x)| ≤ Ch
m+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.15)

Proof. Let p ∈ Pdm be an arbitrary polynomial. Using the properties of local
polynomial reproduction in Definition 4.2 yields

∣∣∣Dαu(x)− D̂αu(x)
∣∣∣ ≤ |Dαu(x)−Dαp(x)|+

∣∣∣Dαp(x)−
N∑
j=1

sj,α(x)u(xj)
∣∣∣

≤ |Dαu(x)−Dαp(x)|+
N∑
j=1

|sj,α(x)| |p(xj)− u(xj)|

≤ ‖Dαu−Dαp‖L∞(D) + ‖u− p‖L∞(D)

N∑
j=1

|sj,α(x)|

≤ ‖Dαu−Dαp‖L∞(D) + C1,αh
−|α|
X,Ω‖u− p‖L∞(D)

(4.16)

where D = B(x,C2,αhX,Ω). Now choose p to be the Taylor polynomial of u
around x. This gives for each |β| = m+ 1 and y ∈ Ω a ξ(y, β) ∈ Ω∗ such that

u(y) =
∑
|β|≤m

Dβu(x)

β!
(y − x)β +

∑
|β|=m+1

Dβu(ξ(y, β))

β!
(y − x)β

= p(y) +
∑

|β|=m+1

Dβu(ξ(y, β))

β!
(y − x)β.

(4.17)

4.4 Error bounds 57

where

p(y) =
∑
|β|≤m

Dβu(x)

β!
(y − x)β. (4.18)

Hence

‖u− p‖L∞(D) ≤(C2,αhX,Ω)m+1
∑

|β|=m+1

1

β!
‖Dβu‖L∞(Ω∗)

≤Chm+1
X,Ω |u|Cm+1(Ω∗).

(4.19)

Moreover, since Dαu ∈ Cm+1−|α|(Ω∗) the Taylor expansion of order m− |α|
for Dαu around x ∈ Ω exists. This gives for each |β| = m+ 1− |α| and every
y ∈ Ω a ζ(y, β) ∈ Ω∗ such that

Dαu(y) =
∑

|β|≤m−|α|

Dβ+αu(x)

β!
(y − x)β +

∑
|β|=m+1−|α|

Dβ+αu(ζ(y, β))

β!
(y − x)β.

(4.20)
The first part of the right hand side of equation (4.20) is clearly Dαp(y) with
p(y) defined in equation (4.18). Therefore∥∥Dαu−Dαp

∥∥
L∞(D)

≤ Ch
m+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.21)

Combining (4.19) and (4.21) with (4.16) leads to (4.15).

Now it suffices to show that the family of functions {a∗j,α} in (4.14) forms

a local polynomial reproduction in sense of Definition 4.2. It can be done by

the concept of norming sets, introduced by Jetter et.al [16]. Before that we

need some definitions.

Let V be a finite-dimensional vector space with norm ‖·‖V and let Λ ⊆ V ∗

be a finite set consisting of N functionals. Here, V ∗ denotes the dual space

of V consisting of all linear and continuous functionals defined on V .

Definition 4.4. Λ is a norming set for V if the mapping T : V → T (V) ⊆ RN

defined by T (v) = (λ(v))λ∈Λ is injective. The operator T is called the sampling
operator.

Theorem 4.5. ([16], [24] and [43]) Suppose V is a finite-dimensional normed
linear space and Λ = {µ1, . . . , µN} is a norming set for V , T being the
corresponding sampling operator. For every λ ∈ V ∗ there exists a vector

58 Generalized Moving Least Squares

s ∈ RN depending only on λ such that, for every v ∈ V ,

λ(v) =
N∑
j=1

sjµj(v),

and
‖s‖RN∗ ≤ ‖λ‖V ∗‖T−1‖.

Theorem 3.8 of [43] proves:

Theorem 4.6. If Ω ⊂ Rd is compact and satisfies an interior cone condition
with radius r and angle θ ∈ (0, π/2), for fixed number m if the set X satisfies

hX,Ω ≤
r sin θ

4(1 + sin θ)m2
, (4.22)

then Λ = {δx1 , . . . , δxN} is a norming set for Pdm(Ω) and ‖T−1‖ ≤ 2.

Also it is easy to show that

Proposition 4.7. Λ = {δx1 , . . . , δxN} forms a norming set for Pdm(Ω) if and
only if X ⊂ Ω is Pdm-unisolvent.

One the other side, from Proposition 2.2 of [32] and 11.6 of [43], we have:

Proposition 4.8. Suppose that Ω ⊂ Rd is bounded and satisfies an interior
cone condition with radius r and angle θ. If p ∈ Pdm and |α| ≤ m then

‖Dαp‖L∞(Ω) ≤
(

2m2

r sin θ

)|α|
‖p‖L∞(Ω). (4.23)

If V = Pdm(Ω) and λ = δxD
α, in the situation of Theorem 4.6, using (4.23)

and (4.22) it is easy to show

‖λ‖V ∗ ≤
(

2m2

r sin θ

)|α|
≤
(
2(1 + sin θ)

)−|α|
h
−|α|
X,Ω .

Consequently we can state:

Corollary 4.9. Let Ω ⊂ Rd be bounded and satisfy an interior cone condition
with radius r and angle θ. If X = {x1, . . . , xN} ⊂ Ω and (4.22) is satisfied,
then there exist for every x ∈ Ω real numbers sj,α(x) such that

N∑
j=1

|sj,α(x)| ≤ 2
(
2(1 + sin θ)

)−|α|
h
−|α|
X,Ω ,

4.4 Error bounds 59

and
N∑
j=1

sj,α(x)p(xj) = Dαp(x)

for all p ∈ Pdm.

Now we should convert this global existence result to the local situation. It

can be done using the fact that for every point x ∈ Ω we can find a cone C(x)

that is completely contained in Ω and since every cone itself satisfies a cone

condition, we can apply Corollary 4.9 to the cone C(x) and Y = X ∩ C(x).

Therefore, as in Theorem 3.14 of [43], we can prove:

Theorem 4.10. If Ω ⊂ Rd is compact and satisfies an interior cone condition
with radius r and angle θ ∈ (0, π/2), for fixed m ∈ N there exist constants

C1,α = 2
(
2(1 + sin θ)

)−|α|
, C2,α =

16(1 + sin θ)2m2

3 sin2 θ
, h0 =

1

C2

such that for every X ⊂ Ω with hX,Ω ≤ h0 and every x ∈ Ω we can find
real numbers sj,α(x), 1 ≤ j ≤ N such that they form a local polynomial
reproduction as in Definition 4.2.

Now using the minimal property of a∗j,α in (4.14), we can show these

functions form a local polynomial reproduction. This comes in the following

theorem. The proof is same as the proof of Theorem 4.7 of [43].

Theorem 4.11. Suppose that Ω ⊂ Rd is compact and satisfies an interior
cone condition with radius r and angle θ ∈ (0, π/2). Fix m ∈ N. Let h0, C1,α,
and C2,α denote the above-mentioned constants. Suppose that X satisfies (??)
and hX,Ω ≤ h0. Let δ = 2C2,αhX,Ω. Then the basis functions a∗j,α from (4.14)
provide a local polynomial reproduction as in Definition 4.2 with constant
C̃1,α and C̃2,α that can be derived explicitly.

Finally using Theorems 4.3 and 4.11 we conclude the following corollary

that includes the order of convergence of the MLS approximation and its

diffuse derivatives.

Corollary 4.12. In the situation of Theorem 4.11, define Ω∗ to be the closure
of
⋃
x∈Ω B(x,C2,αh0). Define

D̂αu(x) :=
N∑
j=1

a∗j,α(x)u(xj)

60 Generalized Moving Least Squares

where a∗j,α(x) are functions derived from the MLS approximation in (4.14).
Then there exists a constant c > 0 such that for all u ∈ Cm+1(Ω∗) and all
X ⊂ Ω with hX,Ω ≤ h0 which are quasi–uniform in the sense of (??) with the
same constant cqu we have

‖Dαu− D̂αu‖L∞(Ω) ≤ ch
m+1−|α|
X,Ω |u|Cm+1(Ω∗). (4.24)

The error estimates of MLS approximation and its full derivatives are

given in [2] and [46] using different strategies. They have proved that the

error of full derivatives of order |α| is of order O(hm+1−|α|) where h plays the

same role as hX,Ω. Thus, direct estimation of derivatives from function values

is recommendable instead of taking full or diffuse derivatives of the classical

MLS solution û.

4.5 Numerical examples

To confirm the above theoretical bounds, we look at MLS approximation for

Franke’s function (1.18). First, regular node distributions with distance h

along each axis are used. A compactly supported and C4 RBF

Φ(x− xj) = (1− r)6
+(35r2 + 18r + 3), r = ‖x− xj‖2,

is used as weight function, and the shifted scaled polynomials (see Section

1.4) are employed as basis functions.

Table 4.1 presents the ratios of errors for the function and its first and

second standard and GMLS derivatives in a fixed and sufficiently fine test

point mesh of size 31× 31 on [0, 1]2. “Order0”, “Order1” and “Order2” refer

to the computational orders of error of the function, its first derivative with

respect to x1 and its second derivative with respect to x1, respectively. The

distance h is divided by 2 row by row, so the orders are computed by formula

(2.22). We consider both standard and GMLS derivatives. The results are

presented for m = 1, 2, 3 and δ = 1.5mh. According to theoretical bounds,

the oeders should be approximately m+ 1−|α|. As we can see, the numerical

4.5 Numerical examples 61

Table 4.1: The orders of errors of Franke’s function and its first and second standard
and GMLS derivatives

Oeder1 Order2
h Order0 standard GMLS standard GMLS

m = 1
0.1 − − − − −
0.1
2 1.82 1.39 1.38 − −

0.1
4 1.94 0.99 0.98 − −

0.1
8 1.99 0.98 0.98 − −

0.1
16 2.00 0.95 0.95 − −

m = 2
0.1 − − − − −
0.1
2 3.06 1.37 1.37 1.33 1.34

0.1
4 3.72 1.80 1.79 1.50 1.48

0.1
8 3.93 1.95 1.94 1.22 1.21

0.1
16 3.86 1.98 1.98 1.13 1.12

m = 3
0.1 − − − − −
0.1
2 2.23 1.99 2.05 0.88 0.84

0.1
4 3.36 3.30 3.30 1.59 1.55

0.1
8 3.82 3.80 3.81 1.88 1.87

0.1
16 3.95 3.95 3.95 1.97 1.97

62 Generalized Moving Least Squares

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: First 1000 Halton points

results confirm the analytical bounds. Also it is evident that there is no

significant difference between the rates of convergence of standard and GMLS

derivatives. Note that with m = 1 we can not recover the second derivatives.

In this example, for instance, the CPU time needed to compute the second

GMLS derivative with h = 0.1/16 (N = 25921) and m = 2 in the above test

point mesh is 2.60 sec, while it is 3.35 sec. for the standard derivative.

Now, we choose the set of centers to be Halton points in [0, 1]2. We use

the following commands in Matlab to generate such sets:

p = haltonset(2,’Skip’,1e3,’Leap’,1e2);

N = 1000; % number of selected centers

X = net(p,N);

The first 1000 Halton points are depicted in Fig. 4.1. Following [42], it is

in general too expensive to compute hX,Ω exactly. Therefore we used the

approximation hX,Ω ≈ h = 1/
√
N together with δ = 1.5mh. The maximum

errors and ratios, which are provided in a regular mesh 31× 31 in [0, 1]2, are

presented in Tables 4.2 and 4.3 for the first and the second derivatives with

respect to first variable, respectively, for m = 3. The approximate fill distance

h is divided by 2 consecutively and the ratios are computed by (2.22). One

can see that the theoretical bounds are obtained and the results are nearly

the same for both standard and GMLS derivatives. The CPU time required

4.6 Conclusion 63

Table 4.2: Maximum and ratios of errors of the first standard and GMLS derivatives
of Franke’s function at Halton points with m = 3

Standard GMLS
N h ‖e‖∞ ratio ‖e‖∞ ratio
1000 0.03162 7.89× 10−2 − 7.76× 10−2 −
4000 0.01581 1.08× 10−2 2.87 1.08× 10−2 2.84
16000 0.00791 2.00× 10−3 2.43 1.99× 10−3 2.45
64000 0.00395 1.08× 10−4 4.22 1.08× 10−4 4.20

Table 4.3: Maximum and orders of errors of the second standard and GMLS deriva-
tives of Franke’s function at Halton points with m = 3

Standard GMLS
N h ‖e‖∞ ratio ‖e‖∞ ratio
1000 0.03162 8.00× 100 − 7.77× 100 −
4000 0.01581 2.16× 100 1.87 2.17× 100 1.84
16000 0.00791 5.76× 10−1 1.93 5.74× 10−1 1.92
64000 0.00395 1.40× 10−1 2.04 1.41× 10−1 2.03

to execute the GMLS subroutine for computing the second derivative with

N = 16000 in the above-mentioned test point mesh is 2.03 sec, while it is

3.40 sec for the standard MLS derivative subroutine.

4.6 Conclusion

This chapter implies that “diffuse” derivatives used within certain applications

of the MLS can be stably implemented and induce no loss in accuracy, because

they are identical to direct optimal estimates of derivatives provided by

the generalized moving least squares (GMLS). In particular, the orders of

convergence of both derivatives to the exact values turn out to be the same,

and the computational efficiency of GMLS derivatives is better.

64 Generalized Moving Least Squares

Chapter 5

Direct Meshless Local
Petrov-Galerkin (DMLPG)
Method

In MLPG and other MLS based methods, the stiffness matrix is provided

by integrating over MLS shape functions or their derivatives. These shape

functions are complicated and have no closed forms. To get accurate results,

numerical quadrature with many integration points is required. Thus the

MLS subroutines must be called very often, leading to high computational

costs. In contrast to this, the stiffness matrix in finite element methods

(FEMs) is constructed by integrating over polynomial basis functions which

are much cheaper to evaluate. This relaxes the cost of numerical integrations

somewhat. For an account of the importance of numerical integration within

meshless methods, we refer the reader to [8].

In this chapter, using the GMLS approximation of previous chapter,

a new direct MLPG technique is presented. As pointed, GMLS recovers

local test functionals directly from values at nodes, without any detour

via shape functions. This technique avoids integration over MLS shape

functions in MLPG and replaces it by the much cheaper integration over

polynomials. It ignores shape functions completely. Altogether, the method

is simpler, faster and more accurate than the original MLPG method. GMLS

directly approximates boundary conditions and local weak forms, shifting

the numerical integration into the MLS itself, rather than into an outside

66 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

loop over calls to MLS routines. We call this approach Direct Meshless Local

Petrov-Galerkin (DMLPG) method. The convergence rate of MLPG and

DMLPG seems to be the same, but thanks to the simplified computation,

the results of DMLPG often are more precise than the results of MLPG.

Numerical examples illustrate the superiority of the new technique over the

classical MLPG.

This chapter is completely based on submitted manuscript [29] that

borrows the idea of GMLS approximation of paper [30].

5.1 An overview

If Section 3.1 we presented an overview on meshless methods that parameterize

the solution u of a PDE entirely in terms of nodal values

u = (u(x1), . . . , u(xN))T

if we assume the discretized problem consists of linear equations

λk(u) = βk, 1 ≤ k ≤M,

where M ≥ N . Also, in Section 3.2 we described a methodology to discretize

a PDE problem in the above form via the concept of local weak forms for

constructing variations of MLPG methods along with equation (3.2). But,

looking more generally, the upshot of all meshless methods is to provide good

estimates λ̂k of all λk using only values at nodes. This means that one has to

only find real numbers aj(λk) with

λ̂k(u) =
M∑
j=1

aj(λk)u(xj) ≈ λk(u) for all k, 1 ≤ k ≤M. (5.1)

Putting the aj(λk) into an M ×N matrix K, one has to solve the possibly

overdetermined linear system

K u = b (5.2)

5.2 GMLS Approximation 67

with b = (β1, . . . , βM)T . Comparing (5.1) with (3.2), here we do not mention

shape functions at all. They are not needed to set up a linear system in

terms of values at nodes. The goal just is to find good estimates for the

target functionals λk in terms of the values at nodes, e.g. via (5.1), to set

up the matrix K. Note that in some cases, e.g. when the functionals λk are

derivatives at points, this is just a variation of a finite–difference approach.

5.2 GMLS Approximation

As given in Chapter 4, the GMLS approximation recovers a general linear

functional λ ∈ Cm+1(Ω)∗, m ≥ 0 from nodal values µ1(u), . . . , µN(u) where

u ∈ Cm+1(Ω). Even if a different numerical method is used to minimize (4.5)

or (4.3), the optimal solution a∗(λ) ∈ RN can be written as

a∗(λ) = WP T (P W P T)−1λ(p) (5.3)

where W is the diagonal matrix carrying the weights wj on its diagonal, P is

the N ×Q matrix of values µj(pk), 1 ≤ j ≤ N, 1 ≤ k ≤ Q, and λ(p) ∈ RQ is

the vector with values λ(p1), . . . , λ(pQ) of λ on the basis of Pdm. Thus it suffices

to evaluate λ on the space Pdm, not on a certain trial space spanned by certain

shape functions. This will significantly speed up numerical calculations, if

the functional λ is complicated, e.g. a numerical integration against a test

function. Standard examples are functionals of the form

λ(u) =

∫
D

v(x)Lu(x)dx

where L is a linear differential operator preserving polynomials or just the

identity, v is some weight function and D is a measurable domain. Such

functionals will arise for PDE problems in weak form in the next section.

Then our GMLS technique will perform integration only over polynomials.

Note that this generalizes to any type of functional: we finally just have to

evaluate it on a polynomial. No other calls to MLS routines are necessary,

because we do not apply the functional to shape functions.

68 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

5.3 Implementation of DMLPG

In this section, we describe the implementation of GMLS approximations to

solve the Poisson problem (3.4) using the weak form equations (3.7).

At first we fix m, the maximal degree of polynomial basis functions we

use. If the problem has enough smoothness, m will determine the convergence

rate. Then we choose a set X = {x1, x2, . . . , xN} ⊂ Ω of scattered trial points

which is filling the domain reasonably well, without letting two points come

extraordinarily close to each other. In this sense, we require the set X of trial

nodes to be quasi–uniform.

We now have to define the functionals λ1, . . . , λM discretizing our PDE

problem. This requires a selection between MLPG1, MLPG2, and MLPG5,

and the decision to use oversampling or not, i.e. M > N or M = N .

Oversampling will often increase stability at increased cost, but we found that

in our examples it was not necessary. Since we have to execute the GMLS

method for each functional λk, approximating it in terms of function values

at the trial nodes in B(yk, δ)∩X, we have to make sure that the GMLS does

not break down. This means that the matrix P of (5.3) must have rank Q, if

formed for the nodes in B(yk, δ) ∩X.

Theorem 5.1. ([40], see also [43]) For any compact domain Ω in Rd with
an interior cone condition, and any m ≥ 0 there are positive constants h0

and c0 such that for all trial node sets X with fill distance hX,Ω ≤ h0, all test
points y ∈ Ω, and all radii δ ≥ c0 hX,Ω, the set B(y, δ) ∩X is Pdm–unisolvent.

This means that the placement of test nodes and the choice of weight

function supports can be linked to the fill distance of the set of trial nodes.

Oversampling never causes problems, if the weight function support radius is

kept proportional to the fill distance of the trial nodes.

Some test nodes should be scattered over the Dirichlet boundary ΓD to

impose the Dirichlet boundary conditions. We denote the subset of these

points by YD ⊂ Y ∩ ΓD. For MLPG2, we similarly define YN , and then the

setup of the functionals simply follows (3.5), with or without oversampling.

In principle, the sets YΩ, YN , YD need not be disjoint.

For weak problems in MLPG1 or MLPG5 form, we just implement the

5.3 Implementation of DMLPG 69

functionals λk of (3.7) as described in Section 3.2. Altogether, we follow

Section 5.1 by implementing (3.1) via (5.1), and ending with the system (5.2).

The order of convergence of the approximated functional to its exact value

is important in this case. Applying the same strategy presented in Section

4.4 for λk(u) := Dαu(yk), we can prove

Theorem 5.2. Let

λk(u) :=

∫
D

v(x)Lu(x)dx, D = Ωk
σ or ∂Ωk

σ, yk ∈ Ωk
σ.

Define

λ̂k(u) :=
N∑
j=1

a∗j(λk)u(xj),

where a∗j(λk) are functions derived from the GMLS approximation in (5.3).
Then there exists a constant c > 0 such that for all u ∈ Cm+1(Ω∗) and all
quasi-uniform X ⊂ Ω with hX,Ω ≤ h0 we have∣∣λk(u)− λ̂k(u)

∣∣ ≤ chm+1−n
X,Ω |u|Cm+1(Ω∗), (5.4)

providing
∫
D
|v(x)|dx <∞ and if λ(u) 6= 0,

∫
D
v(x)Lxαdx 6= 0 (λk(x

α) 6= 0)
for some α with |α| = m. Here n is the maximal order of derivatives involved
in linear operator L.

However, we cannot guarantee that the system (5.2) has full rank, since

we only made sure that the rows of the system can be calculated via the

GMLS if Theorem 5.1 applies. Oversampling will usually help if the system

causes problems.

After the solution vector u of (5.2), consisting of values u(xj) of values

at the trial nodes is determined by solving the system, other values of the

solution function u(x) and also its derivatives can be calculated in every point

x ∈ Ω again using the GMLS approximation by taking λ(u) = Dαu(x).

Since we have direct approximations for boundary conditions and lo-

cal weak forms, this method is called direct meshless local Petrov-Galerkin

(DMLPG) method. It comes in the DMLPG1, DMLPG2, and DMLPG5

variations.

In contrast to MLPG2, if the GMLS derivatives (“diffuse” derivatives) are

70 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

used instead of the standard derivatives of MLS shape functions, we have

DMLPG2. As investigated in Chapter 4, the accuracies for calculating the

matrix K of (5.2) are the same, but the computational cost of DMLPG2 is

less. When looking into the literature, we found that DMLPG2 coincides with

the Diffuse Approximation Method (DAM) [37]. But since we avoid using the

word diffuse because there is nothing “diffuse” about these derivatives, we

will call the method DMLPG2 or direct MLS collocation (DMLSC) method.

As we saw in Section 5.2, in DMLPG1/5 methods the integrations are

done only over polynomials, if the latter are used in the GMLS. For every

functional λk, 1 ≤ k ≤M ≥ N , the GMLS routine is called only once. There

are no calls to produce values of shape functions. The standard MLPG/MLS

technique at degree m implements numerical integration by calling shape

function evaluations, and thus the MLS routine is called approximatively

M QN times where QN is the average number of integration points. Moreover,

in standard MLPG methods the derivatives of MLS shape function must also

be provided, while DMLPG has no shape functions at all. Consequently,

DMLPG is considerably faster than MLPG. In addition, due to the error

analysis presented in Theorem 5.2 for the new GMLS method, the final

accuracies of both MLPG and DMLPG methods are the same. We will see

experimentally that DMLPG is even more accurate than MLPG.

As highlighted in [8], numerical integration in FEM is simple because the

integrands of the elements of the stiffness matrix are polynomials. In contrast

to this, the shape functions used in standard meshless methods are much more

costly to evaluate, making numerical integration a much bigger challenge than

for the FEM. In MLPG methods, numerical integrations are simpler than for

various other meshless methods, since the local weak form breaks everything

down to local well–shaped subdomains. However, since the integrands are

based on MLS shape functions and their derivatives, a Gauss quadrature with

many points is required to get accurate results, especially when the density of

nodes increases. Overcoming this drawback is a major advantage of DMLPG

methods, because the integrations are done over polynomials, like in FEM.

It is interesting to note that if local sub-domains are chosen in DMLPG5

as S(x, σ) (square or cube), a (d− 1)–times
⌈
m
2

⌉
–points Gauss quadrature

5.3 Implementation of DMLPG 71

gives the exact solution for local boundary integrals around the nodes in the

interior of Ω. In DMLPG1, if again S(x, σ) is chosen as a local sub-domain

and if a polynomial test function is employed, a d-times
⌈

(m−1)(n−1)+1
2

⌉
–points

Gauss quadrature is enough to get exact interior local domain integrals. Here,

n is the degree of the polynomial test function. As a polynomial test function

on the square or cube for DMLPG1 with n = 2, we can use

v(x;xk) =


d∏
i=1

(
1− 4

σ2
(xi − xki)

2

)
, x ∈ S(xk, σ),

0, otherwise

where x = (x1, . . . , xd) and xk = (xk1, . . . , xkd). In DMLPG1 with balls as

sub-domains, weight functions of the form function

v(x, y) = Φ

(
‖x− y‖2

σ

)
, (5.5)

can be used as test functions. Both of these test functions vanish on Γkσ\ΓN
if x = yk, as required in DMLPG1.

Note that, if the second local weak formulation (for example the local weak

forms (3.10) for a 2D equation) is used the process gives the DMLPG4 rather

than MLPG4 or the meshless LBIE method presented in [45]. In DMLPG4,

it is better to use balls as local sub-domains, because in this case the modified

fundamental solution, used as a test function, can be derived easily. But the

test function is not a polynomial.

Both DMLPG3 and DMLPG6 can be formulated as well using our ap-

proach, but they require more ingredients, so we leave them out here.

Instead, we add some remarks about selecting m, the degree of polynomial

basis functions in the GMLS. For m = 1, the variants DMLPG 1, 4, and 5

will necessarily fail. The background is that the GMLS performs an optimal

recovery of a functional λ in terms of nodal values, and the recovery is exact

on a subspace Pdm, using minimal coefficients at the nodal values. Thus, in all

cases where the functional is zero on Pdm by some reason or other, the recovery

formula will be zero and will generate a zero row in the stiffness matrix. This

happens for all variations based on functionals (3.7) and functionals extracted

72 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

from the second weak form on interior points, since all those functionals are

reformulations of

λ(u) =

∫
B(yk,σ)

v∆u dω

and thus vanish on harmonic functions u, in particular on linear functions.

Thus, for solving inhomogeneous problems, users should pick spaces Pdm of

non–harmonic functions, if they employ GMLS with exactness on Pdm. This

rules out polynomials with degree m ≤ 1.

Another closely related point arises from symmetry of subdomains. Since

polynomials in a ball B(y, σ) or a cube S(y, σ) have symmetry properties,

the entries of stiffness matrices in rows corresponding to internal points will

often be the same for m = 2k and m = 2k + 1. Thus convergence rates often

do not increase when going from m = 2 to m = 3, for instance. But this

observation affects MLPG and DMLPG in the same way.

5.4 Stability and Convergence

For the classical MLS and the generalized MLS from Chapter 4and Theorem

5.2 it is known that the recovery λ̂(u∗) of values of functionals λ on a true

solution u∗ has an error of order O(hm+1−`), if h is the fill distance of the

trial nodes, m is the degree of polynomials used locally, if the exact solution

u∗ is at least Cm+1, ` is the maximal order of derivatives of u∗ involved in

the functional, and if numerical integration has an even smaller error. In

particular, the classical MLS and the new GMLS produce roughly the same

stiffness matrices, but the GMLS has a considerably smaller computational

complexity.

However, the error committed in the approximation of the test functionals

in terms of function values at nodes does not always carry over to the

convergence rate of the full algorithm, since there is no stability analysis, so

far. Even if perfect stability would hold, the best one can expect is to get

the convergence rate implied by the local trial approximation, i.e. by local

polynomials of degree m. This would again mean a rate of O(hm+1−`), but

only if the solution is indeed locally approximated by polynomials of that

5.5 Numerical results 73

degree. In fact, the next section will show that this rate can often be observed.

But our symmetry arguments at the end of the previous section show that

sometimes the degree m = 2k + 1 cannot improve the behavior for m = 2k,

because the odd–degree polynomials simply do not show up in most of the

calculations for the stiffness matrix.

5.5 Numerical results

In this section some numerical results are presented to demonstrate the

efficiency of DMLPG methods and its advantages over MLPG methods. We

consider the Poisson equation (3.4) on the square [0, 1]2 ⊂ R2 with Dirichlet

boundary conditions. Since we want to study convergence rates without being

limited by smnoothness of the solution, we take Franke’s function (1.18) as

analytical solution and calculate the right hand side and boundary conditions

accordingly. Regular mesh distributions with mesh-size h are provided in

all cases, though the methods would work with scattered data. We do not

implement oversampling in the results of this paper. In fact, the trial and test

points are chosen to be coincident. Also, the shifted scaled polynomial basis

(1.17) where x is a fixed evaluation point such as a test point or a Gaussian

point for integration is used for both MLS and GMLS approximations. We

let m = 2, 3 and 4. The Gaussian weight function (1.13) is employed where

c = c0h is a constant controlling the shape of the weight function and δ = δ0h

is the size of the support domains.

Let m = 2 and set c0 = 0.6 and δ0 = 2m. At first the local sub-domains

are taken to be circles. To get the best results in MLPG we have to use

an accurate quadrature formula. Here a 20-points regular Gauss-Legendre

quadrature is employed for numerical integrations over local sub-domains.

Numerical results, for different mesh-sizes h, are presented in terms of

maximum errors, orders and CPU times used for MLPG5 and DMLPG5

in Table 5.1. The mesh-size h is divided by two row by row, therefore the

ratios are computed by (2.22). Both methods have nearly the same order 2,

which cannot be improved for this trial space, since the expected optimal

order is m + 1 − ` = 3 − 1 = 2. But significant differences occur in the

74 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

Table 5.1: The maximum errors, orders and CPU times used for MLPG5 and
DMLPG5 with m = 2

MLPG5 DMLPG5 CPU time
h ‖e‖∞ Orders ‖e‖∞ Orders MLPG5 DMLPG5
0.2 0.44× 10−1 − 0.23× 10−1 − 1.4 sec. 0.2 sec.
0.1 0.15× 10−1 1.59 0.72× 10−2 1.68 9.0 0.5
0.05 0.73× 10−2 0.99 0.20× 10−2 1.84 45.0 2.2
0.025 0.24× 10−2 1.61 0.58× 10−3 1.80 215.2 9.4
0.0125 0.66× 10−3 1.85 0.14× 10−3 1.98 2456.9 59.6

columns with CPU times. As we stated before, this is due to restricting

local integrations to polynomial basis functions in DMLPG rather than to

integrate over MLS shape functions in the original MLPG. We could get

the same results with fewer integration points for DMLPG, but to be fair in

comparison, we use the same quadrature. In addition, to give more insight

into the errors, the maximum errors of MLPG5 and DMLPG5 are illustrated

in Figure 5.1. Once can see that DMLPG is more accurate, maybe due to

avoiding many computations and hence many roundoff errors.

0.2 0.1 0.05 0.025 0.0125

10
-3

10
-2

h

||
e

|| 

DMLPG5

MLPG5

Figure 5.1: Comparison of MLPG5 and DMLPG5 in terms of maximum errors for
m = 2.

5.5 Numerical results 75

Table 5.2: The maximum errors, orders and CPU times used for MLPG5 and
DMLPG5 with m = 3

MLPG5 DMLPG5 CPU time
h ‖e‖∞ Orders ‖e‖∞ Orders MLPG5 DMLPG5
0.2 0.28× 10−1 − 0.23× 10−1 − 2.0 sec. 0.2 sec.
0.1 0.13× 10−1 1.08 0.74× 10−2 1.62 18.2 0.8
0.05 0.33× 10−2 1.98 0.20× 10−2 1.89 103.2 3.4
0.025 0.78× 10−3 2.09 0.58× 10−3 1.80 493.9 15.0
0.0125 0.19× 10−3 2.06 0.15× 10−3 1.98 3830.0 82.5

0.2 0.1 0.05 0.025 0.0125

10
-3

10
-2

h

||
e

|| 

DMLPG5

MLPG5

Figure 5.2: Comparison of MLPG5 and DMLPG5 in terms of maximum errors for
m = 3.

In Table 5.2 and Figure 5.2, we have compared MLPG5 and DMLPG5

in case m = 3. The convergence rate stays at 2 for both methods, since the

third–degree polynomials cannot contribute to the weak form. The figure

shows approximately the same error results. But the CPU times used are

indeed different.

In the results presented up to here, we used balls (circles) as local sub-

domains. Now we turn to use squares for both MLPG5 and DMLPG5. Also,

we run the programs with m = 4 to see the differences. The parameters

c0 = 0.8 and δ0 = 2m are selected. In DMLPG5, a 2-points Gaussian

76 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

Table 5.3: The maximum errors, ratios and CPU times used for MLPG5 and
DMLPG5 with m = 4

MLPG5 DMLPG5 CPU time
h ‖e‖∞ Orders ‖e‖∞ Orders MLPG5 DMLPG5
0.2 0.10× 100 − 0.12× 100 − 2.2 sec. 0.3 sec.
0.1 0.25× 10−1 2.04 0.17× 10−1 2.87 28.4 0.9
0.05 0.78× 10−2 1.66 0.12× 10−2 3.75 189.6 4.2
0.025 0.79× 10−3 3.30 0.75× 10−4 4.04 1451.0 19.3
0.0125 0.55× 10−4 3.86 0.43× 10−5 4.12 8021.5 107.6

0.2 0.1 0.05 0.025 0.0125

10
-5

10
-4

10
-3

10
-2

10
-1

h

||
e

|| 

DMLPG5

MLPG5

Figure 5.3: Comparison of MLPG5 and DMLPG5 in terms of maximum errors for
m = 4.

quadrature is enough to get exact numerical integrations. But for MLPG5

and the right hand sides we use a 10-points Gaussian quadrature for every

sides of squares. The results are depicted in Table 5.3 and Figure 5.3. DMLPG

is more accurate and approximately gives the full order 4 in this case. Beside,

as we expected, the computational cost of DMLPG is remarkably less than

MLPG.

Results for MLPG1 and DMLPG1 turn out to behave similarly. As

we know, MLPG1 is more expensive than MLPG5 [4, 5], but there is no

significant difference between computational costs of DMLPG5 and DMLPG1.

5.6 Conclusion 77

Therefore the differences between CPU times used for MLPG1 and DMLPG1

are absolutely larger.

5.6 Conclusion

In the present chapter we describe a new MLPG method, called DMLPG

method, based on GMLS approximation for solving boundary value problems.

The new method is considerably faster than the classical MLPG variants,

because

• direct approximations of data functionals are used for Dirichlet boundary

conditions and local weak forms,

• local integrations are done over polynomials rather than over complica-

ted MLS shape functions,

• numerical integrations can sometimes be performed exactly.

The convergence rate of both methods should be the same, but thanks to

avoiding many computations and roundoff errors, and of course by treating

the numerical integrations in a more elegant and possibly exact way, the

results of DMLPG turn often out to be more accurate than the results of

MLPG.

On the downside, DMLPG does not work for m = 1 since it locally uses

(harmonic) linear functions instead of complicated shape functions. But

most MLPG users choose higher degrees anyway, in order to obtain better

convergence rates.

Altogether, we believe that the DMLPG methods have great potential to

replace the original MLPG methods in many situations.

78 Direct Meshless Local Petrov-Galerkin (DMLPG) Method

References

[1] M.G. Armentano. Error estimates in sobolev spaces for moving least

square approximations. SIAM Journal on Numerical Analysis, 39(1):38–

51, 2001.

[2] M.G. Armentano and R.G. Durán. Error stimates for moving least square

approximations. Applied Numerical Mathematics, 37:397–416, 2001.

[3] K. E. Atkinson. The numerical solution of integral equations of the

second kind. Cambridge University Press, New York, 1997.

[4] S. N. Atluri. The meshless method (MLPG) for domain and BIE discre-

tizations. Tech Science Press, Encino, CA, 2005.

[5] S. N. Atluri and S. Shen. The Meshless Local Petrov-Galerkin (MLPG)

Method. Tech Science Press, Encino, CA, 2002.

[6] S. N. Atluri and S. Shen. The meshless local Petrov-Galerkin (MLPG)

method: A simple and less costly alternative to the finite element and

boundary element methods. CMES: Computer Modeling in Engineering

and Sciences, 3 (1):11–52, 2002.

[7] S.N. Atluri and T.-L. Zhu. A new meshless local Petrov-Galerkin (MLPG)

approach in Computational mechanics. Computational Mechanics, 22:117–

127, 1998.

[8] I. Babuska, U. Banerjee, J.E. Osborn, and Q. Zhang. Effect of nume-

rical integration on meshless methods. Computer Methods in Appleid

Mechanics and Engineering, 198:27–40, 2009.

80 REFERENCES

[9] T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, and P. Krysl.

Meshless methods: an overview and recent developments. Computer

Methods in Applied Mechanics and Engineering, special issue, 139:3–47,

1996.

[10] T. Belytschko, Y.Y. Lu, and L. Gu. Element-Free Galerkin methods.

International Journal for Numerical Methods in Engineering, 37:229–256,

1994.

[11] P. Breitkopf, A. Rassineux, G. Touzot, and P. Villon. Explicit form

and efficient computation of MLS shape functions and their derivatives.

International Journal for Numerical Methods in Engineering, 48:451–466,

2000.

[12] H. Brunner. Collocation Methods for Volterra Integral and Related

Functional Differential Equations. Cambridge University Press, 2004.

[13] C.A. Duarte and J.T. Oden. H-p clouds-an hp meshless method. Nume-

rical Methods for Partial Differential Equations, 12:673–705, 1996.

[14] R. Franke. Scattered data interpolation: tests of some methods. AMS

Mathematics of Computation, 48:181–200, 1982.

[15] Th. Hangelbroek. On local RBF approximation. to appear in Adv. in

Comp. Math., arXiv:0909.5244, 2011.

[16] K. Jetter, J. Stöckler, and J.D. Ward. Error estimates for scattered data

interpolation on spheres. AMS Mathematics of Computation, 68:733–747,

1999.

[17] D. W. Kim and Y. Kim. Point collocation methods using the fast moving

least-square reproducing kernel approximation. International Journal

for Numerical Methods in Engineering, 56:1445–1464, 2003.

[18] P. Lancaster and K. Salkauskas. Surfaces generated by moving least

squares methods. AMS Mathematics of Computation, 37:141–158, 1981.

REFERENCES 81

[19] D. Levin. The approximation power of moving least-squares. AMS

Mathematics of Computation, 67:1517–1531, 1998.

[20] D. Levin. Stable integration rules with scattered integration points.

Journal of Computational and Applied Mathematics, 112:181–187, 1999.

[21] D.H. McLain. Drawing contours from arbitrary data points. Comput. J.,

17:318–324, 1974.

[22] D.H. McLain. Two dimensional interpolation from random data. Comput.

J., 19:178–181, 1976.

[23] J. M. Melenk. On approximation in meshless methods. In A. W. Craig

J. F. Blowey, editor, Frontiers of Numerical Analysis, pages 65–141,

Durham, 2005. Springer.

[24] H.N. Mhaskar, F.G. Narcowich, and J.D. Ward. Spherical Marcinkiewicz-

Zygmund inequalities and positive quadrature. AMS Mathematics of

Computation, 70:1113–1130, 2001.

[25] D. Mirzaei and M. Dehghan. Implementation of meshless LBIE method

to the 2D non-linear SG problem. International Journal for Numerical

Methods in Engineering, 79:1669–1682, 2009.

[26] D. Mirzaei and M. Dehghan. A meshless based method for solution of

integral equations. Applied Numerical Mathematics, 60:245–262, 2010.

[27] D. Mirzaei and M. Dehghan. MLPG approximation to the p-Laplace

problem. Computational Mechanics, 46(6):805–812, 2010.

[28] D. Mirzaei and M. Dehghan. MLPG method for transient heat conduction

problem with MLS as trial approximation in both time and space domains.

CMES: Computer Modeling in Engineering and Sciences, 72(3):185–210,

2011.

[29] D. Mirzaei and R. Schaback. Direct meshless local Petrov-Galerkin

(DMLPG) method: A generalized MLS approximation. Submitted. 2011.

82 REFERENCES

[30] D. Mirzaei, R. Schaback, and M. Dehghan. On generalized moving least

squares and diffuse derivatives. IMA Journal of Numerical Analysis,

2011. doi: 10.1098/imanum/drr030.

[31] Y.X. Mukherjee and S. Mukherjee. The boundary node method for

potential problems. International Journal for Numerical Methods in

Engineering, 40:797–815, 1997.

[32] F.J. Narcowich, J.D. Ward, and H. Wendland. Sobolev bounds on

functions with scattered zeros, with application to radial basis function

surface fitting. AMS Mathematics of Computation, 47(250):743–763,

2004.

[33] B. Nyroles, G. Touzot, and P. Villon. Generalizing the finite element

method: Diffuse approximation and diffuse elements. Computational

Mechanics, 10:307–318, 1992.

[34] B. Nyroles, G. Touzot, and P. Villon. Generalizing the finite element

method: Diffuse approximation and diffuse elements. Computational

Mechanics, 10:307–318, 1992.

[35] E. Onate, S. Idelsohn, O.C. Zienkiewicz, and R.L. Taylor. A finite

point method in computational mechanics. Applications to convective

transport and fluid flow. International Journal for Numerical Methods

in Engineering, 39:3839–3866, 1996.

[36] F. Paris and J. Canas. Boundary Element Method: Fundamental and

Applications. Oxford University Press, Oxford, 1997.

[37] C. Prax, H. Sadat, and P. Salagnac. Diffuse approximation method for

solving natural convection in porous media. Transport in Porous Media,

22:215–223, 1996.

[38] R. Schaback. Why does MLPG work? Accepted paper for a keynote

lecture in ICCES 07, 2006.

[39] R. Schaback. Unsymmetric meshless methods for operator equations.

Numerische Mathematik, 114:629–651, 2010.

REFERENCES 83

[40] R. Schaback. Kernel-based meshless methods. Lecture Note, Göttingen,

2011.

[41] D. Shepard. A two-dimensional interpolation function for irregularly-

spaced data. In Proceedings of the 23th National Conference ACM, pages

517–523, 1968.

[42] H. Wendland. Local polynomial reproduction and moving least squares

approximation. IMA Journal of Numerical Analysis, 21:285–300, 2001.

[43] H. Wendland. Scattered Data Approximation. Cambridge University

Press, 2005.

[44] Y.C. Yoon, S.H. Lee, and T. Belytschko. Enriched meshfree collocation

method with diffuse derivatives for elastic fracture. Computers and

Mathematics with Applications, 51:1349–1366, 2006.

[45] T. Zhu, J.D. Zhang, and S.N. Atluri. A local boundary integral equation

(LBIE) method in computational mechanics, and a meshless discretization

approach. Computational Mechanics, 21:223–235, 1998.

[46] C. Zuppa. Error estimates for moving least square approximations.

Bulletin of the Brazilian Mathematical Society, 34(2):231–249, 2003.

	List of Figures
	List of Tables
	Preface
	Basic concepts and MLS approximation
	Notations
	Some useful definitions and theorems
	MLS approximation
	Notes on numerical implementation

	A MLS based method for solution of integral equations
	Fredholm integral equations of the second kind
	Error analysis
	Domain decomposition
	Application to Volterra integral equations
	Numerical results
	Conclusion

	Local PDE solvers based on MLS
	Meshless Methods
	Local weak forms

	Generalized Moving Least Squares
	Introduction
	The GMLS approximation
	Classical and diffuse derivatives
	Error bounds
	Numerical examples
	Conclusion

	Direct Meshless Local Petrov-Galerkin (DMLPG) Method
	An overview
	GMLS Approximation
	Implementation of DMLPG
	Stability and Convergence
	Numerical results
	Conclusion

	References

