
Lecture Notes

Numerical Solution of ODEs

Davoud Mirzaei
Uppsala University

February 16, 2023

Contents
1 An introduction to ODEs 1

1.1 Modelling with ODEs: a funny example 4
1.2 Higher order ODEs . 5
1.3 First order system of ODEs . 8
1.4 Stability of solutions . 11

2 Basic numerical methods 12
2.1 Euler’s method . 13

2.1.1 Error analysis of Euler’s method . 15
2.2 General explicit one-step methods . 20
2.3 Zero-stability . 21
2.4 Absolute stability . 22
2.5 Implicit methods . 25
2.6 Taylor series methods . 30
2.7 Runge-Kutta methods . 31

3 Stiff differential equations 36
3.1 What is stiffness? . 36
3.2 Stiff systems . 38
3.3 A-stability . 41
3.4 L-stability . 42

4 Adaptive time stepping 45
4.1 Using two methods of different order . 45
4.2 Embedded RK methods . 46

1

5 Implicit Runge-Kutta methods 48

6 Multistep methods 50
6.1 Adams-Bashforth methods . 51
6.2 Adams-Moulton methods . 52
6.3 Backward differentiation formulas (BDF) 53
6.4 Error analysis of multistep methods . 55
6.5 Stability regions of multistep methods . 58
6.6 One-step versus multistep methods . 59

7 MATLAB’s ODE suite 61

8 Appendix 65

Welcome to a beautiful subject in scientific computing: numerical solution of ordinary dif-
ferential equations (ODEs) with initial conditions. More precisely, we consider

y′(t) = f(t, y(t)), y(t0) = y0, t ∈ [t0, b]

where t is an independent variable (usually plays the role of time), y is the unknown solution
of the problem (possibly a vector) which is sought, f is a known function and y0 is the initial
condition at t = t0. We first give a brief introduction to the theory of ODEs and existence
and uniqueness of solutions. Then some standard numerical techniques are derived and their
advantages and disadvantages for solving different differential equations are outlined. In some
parts of this lecture we follow [Atkinson-et-al:2009] and [LeVeque:2007].

1 An introduction to ODEs
The simplest ordinary differential equation (ODE) has the form

y′(t) = g(t) (1.1)

for a given function g. The general solution of this equations is

y(t) =
∫
g(τ)dτ + c

with c an arbitrary integration constant. Here
∫
f(τ)dτ denotes any fixed antiderivative of g.

In Figure 1, with the case of g(t) = cos 5t, the plots of y(t) for four different values of c are
shown. Such plots are sometimes called integration curves. For the simple ODE (1.1), the
integration curves are just copies (shifts) of each other along the y-axis.

0 2 4 6 8 10
t

−0.50
−0.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50

y(
t)

Figure 1: Integration curves

The constant c can be obtained by specifying the value of y at some given point

y(t0) = y0,

where y0 is known. The particular solution of the differential equation then can be written as

y(t) = y0 +
∫ t

t0
g(τ)dτ,

provided that g be (for example) a continuous function. Another simple differential equation

1

is
y′(t) = λy(t), y(t0) = y0, λ ∈ R

which possesses the exponential solution

y(t) = y0e
λ(t−t0).

A more general form which contains both the above differential equations reads as

y′(t) = λy(t) + g(t), y(t0) = y0. (1.2)

The general solution of this equation can be obtained by the so-called method of integration
factors. Multiplying the above linear equation by integration factor e−λt, the equation is
reformulated as

d

dt

(
e−λty(t)

)
= e−λtg(t).

Integrating both sides from t0 to t, we obtain

y(t) = eλt
[
c+

∫ t

t0
e−λτg(τ)dτ

]
.

Imposing the condition y(t0) = y0 gives c = exp(−λt0)y0, and therefore

y(t) = y0e
λ(t−t0) +

∫ t

t0
eλ(t−τ)g(τ)dτ. (1.3)

In many applications of differential equations the independent variable t plays the role of time,
and t0 can be interpreted as the initial time, and y(t0) = y0 is referred to the initial condition.
A differential equation of the above type is called an initial value problem (IVP). In a more
general form an IVP has the form

y′(t) = f(t,y(t))

y(t0) = y0

(1.4)

which is a system of IVPs for vector y = [y1, . . . , yn]T . Here f may represent a nonlinear
relation between the independent variable t and the dependent variable y.

For the linear IVP (1.2) the solution is given by (1.3) and it exists and is unique on any
open interval where the data function f is continuous. But for the nonlinear IVP (1.4) even if
the right hand side function f(t, y) has derivatives of any order the solution of IVP may exist
on only a smaller interval. In some cases the solution is not unique.

Example 1.1. Consider the nonlinear equation

y′(t) = −y(t)2, t ⩾ 0.

This problem has the trivial solution y(t) ≡ 0 and a general solution

y(t) = 1
t+ c

with arbitrary constant c. Let the equation be accompanied by initial condition y(0) = y0.
If y0 = 0 then y(t) ≡ 0 is the solution of the IVP for any t ⩾ 0. If y0 ̸= 0 then the solution
of IVP is

y(t) = 1
t+ y−1

0
.

2

For y0 > 0 the solution exists for any t ⩾ 0 while for y0 < 0 the solution exists only on
interval [0,−y−1

0].

Example 1.2. Consider the IVP

y′(t) = 2
√
y(t), t ⩾ 0, y(0) = 0.

It is clear that both y(t) ≡ 0 and y(t) = t2 are solutions of this IVP. In additions any C2

function y(·;α) of the form

y(t;α) = (t− α)2
+ =

0, 0 ⩽ t ⩽ α

(t− α)2, t > α

for any α ⩾ 0 is a solution for this IVP. In Figure 2 the solution with α = 0, 1, 2 are plotted.
This example reveals the non-uniqueness of the nonlinear IVP (1.4) for some right hand
side functions f .

0 1 2 3 4 5 6
0
5
10
15
20
25
30
35 y(t) = (t−0)2+

y(t) = (t−1)2+
y(t) = (t−2)2+

Figure 2: Three sample solutions for IVP y′ = 2√y with y(0) = 0 (non-uniqueness).

To guarantee that there is a unique solution it is necessary to impose a certain amount of
smoothness on function f(t, y). The following well-known theorem establishes the existence
and uniqueness of the IVP (1.4).

Theorem 1.1. Let D be an open and connected set in R2 and f(t, y) be a continuous
function in both t and y in D, and let (t0, y0) be an interior point in D. Assume that f
satisfies the Lipschitz continuity in its second argument, i.e., there exists a constant L ⩾ 0
such that

|f(t, y)− f(t, ỹ)| ⩽ L|y − ỹ|, ∀(t, y), (t, ỹ) ∈ D.

Then there exists a unique function y(t) defined on an interval [t0−β, t0 +β] for some β > 0
satisfying

y′(t) = f(t, y(t)), t0 − β ⩽ t ⩽ t0 + β, y(t0) = y0.

The Lipschitz continuity is slightly stronger than mere continuity, which only requires that

3

|f(t, y)− f(t, ỹ)| → 0 as ỹ → y. Lipschitz continuity requires that

|f(t, y)− f(t, ỹ)| = O(|y − ỹ|), as ỹ → y.

If f is differentiable with respect to y in D and this derivative ∂f
∂y

(t, y) is bounded then we can
take

L = max
(t,y)∈D

∣∣∣∣∣∂f∂y (t, y)
∣∣∣∣∣

because the Taylor series representation gives

f(y, t) = f(t, ỹ) + (y − ỹ)∂f
∂y

(t, η), for some (t, η) ∈ D.

The number β in the statement of the theorem depends on the IVP (1.4). For some equations,
solutions exist for any t, thus we can take β to be infinity. However for many nonlinear
equations solutions can exist only in a bounded interval.

Example 1.3. For IVP (1.2) we have f(t, y) = λy + g(t); hence L = |λ|. This problem of
course has a unique solution for any initial y0 and for any t. In particular, if λ = 0 then
f(t, y) = g(t). In this case f is independent of y. The solution is then obtained by simply
integrating the function g(t).

Example 1.4. Consider the IVP

y′(t) = 2ty(t)2, y(0) = 1.

For this equation f(t, y) = 2ty2 and ∂f
∂y

(t, y) = 4ty. Both functions are continuous for all
(t, y). On any bounded domain D = (a, b) × (c, d) containing (t0, y0) = (0, 1) we can take
L = 4bd. According to Theorem 1.1 there is a unique solution to this IVP for t in some
neighborhood of t0 = 0. This solution is

y(t) = 1
1− t2 , −1 < t < 1.

As a side note, this example shows that the continuity of f(t, y) and ∂f
∂y

(t, y) for all (t, y)
does not imply the existence of a solution y(t) for all t.

1.1 Modelling with ODEs: a funny example
Imagine that you are jogging along a given path. Suddenly a dog in a nearby garden sees

you and begins chasing you at full speed with constant velocity w. What is the trajectory of
the dog if we assume it is always running directly toward you?1

This situation is depicted in Figure 3. We assume that the trajectory of you is represented
by (ξ(t), η(t)) and the trajectory of dog by (x(t), y(t)). Since the dog is running with constant
speed w, we have

[x′(t)]2 + [y′(t)]2 = w2, ∀t ⩾ 0. (1.5)

1This example is taken form: W. Gander, M. J. Gander, F. Kwok, Scientific Computing, An Introduction
using Maple and MATLAB, Springer (2014).

4

x

y

(ξ, η)

(x, y)

w

Dog

Jogger

Figure 3: Dog chasing a jogger. (left image from freepik.com)

Since the dog is always running toward you, the velocity vector of the dog is proportional to
the difference vector between the position of you and the dog, i.e.,x′(t)

y′(t)

 = λ(t)
ξ(t)− x(t)
η(t)− y(t)

 , ∀t ⩾ 0, (1.6)

where λ(t) > 0 is a constant of proportionality. To find λ(t) we can substitute (1.6) in to (1.5)
to obtain

λ2 = w2

(ξ − x)2 + (η − y)2 .

The trajectory of the dog therefore satisfies the following system of ODEsx′(t)
y′(t)

 = w√
(ξ(t)− x(t))2 + (η(t)− y(t))2

 ξ(t)− x(t)
η(t)− y(t).

 (1.7)

The initial condition for this ODE is the initial position of the dog, i.e., (x(0), y(0)) = (x0, y0).
To find the trajectory of the dog, it remains to solve this IVP. But there is no hope for

finding a closed-form solution for a general jogging path (ξ(t), η(t)). Soon we will solve this
equation using some numerical methods, but let see the dog trajectories for different choices
of jogger’s path in Figure 4. This results are obtained by the Euler’s method. See section 2
below.

1.2 Higher order ODEs
The highest-order derivative appearing in an ODE determines the order of the ODE. A k-th

order ODE in the most general form can be written as

f(t, y, y′, . . . , y(k)) = 0,

where f : Rk+2 → R is a known function and y(t) is to be determined. A k-th order ODE is
said to be explicit if it can be written in the form

y(k)(t) = f(t, y, y′, . . . , y(k−1)). (1.8)

5

Figure 4: Jogging path and the numerically computed trajectory of the dog: The jogger running in
a straight path (top-left), the jogger notices the dog and tries to run back (top-right), the jogger
running on a circular track (bottom-left), the jogger running on a circular track but the dog is slow
(bottom-right).

As a necessary condition for a unique solution, this ODE should accompany with k initial
conditions

y(t0) = y0, y′(t0) = y′
0, . . . y(k−1)(t0) = y

(k−1)
0 . (1.9)

Many ODEs arise naturally of the form (1.8), and many others can be transformed into it. So
far we considered the case k = 1. This is not a real restriction because a higher-order ODE can
always be reduced to a system of first-order equations as follows. For the explicit k-th order
ODE (1.8) define k new variables

y1(t) = y(t), y2(t) = y′(t), . . . yk(t) = y(k−1)(t),

so that the original k-th order equation becomes a system of k first-order equations

y′(t) =



y′
1(t)
y′

2(t)
...

y′
k−1(t)
y′

k(t)


=



y2(t)
y3(t)

...
yk(t)

f(t, y1, y2, . . . , yk)


=: g(t,y),

6

with initial condition

y1(t0) = y0, y2(t0) = y′
0, . . . yk(t0) = y

(k−1)
0 .

or simply
y(t0) = y0,

for y0 = [y0, y
′
0, . . . , y

(k−1)
0]. In general, we will focus on explicit first-order system of ODEs

with initial conditions of the form
y′(t) = f(t,y)

y(t0) = y0

(1.10)

where f : Rn+1 → Rn and y0 ∈ Rn. If f is not explicitly depend on t, i.e., f(t,y) = f(y), the
system is called autonomous and can be written in the form

y′ = f(y).

A nonautonomous ODE y′ = f(t,y) can always be converted to autonomous form by intro-
ducing an additional dependent variable yn+1(t) = t, so that y′

n+1(t) = 1 and yn+1(t0) = t0

yielding the autonomous ODE  y′(t)
y′

n+1(t)

 =
f(yn+1,y)

1

 .
It is often convenient to assume f is of this form since it simplifies notation.

Example 1.5. Consider the second order ODE

θ′′(t) = −g
ℓ

sin(θ(t)),

which models the motion of a pendulum with mass m at the end of a rigid bar of length ℓ by
ignoring the mass of the bar and forces of friction and air resistance. Here θ(t) is the angle
of the pendulum from vertical at time t, and g is the gravitational constant. The motion is
independent of the mass of pendulum. Let v = θ′ be the velocity and define

y =
θ
v


to obtain the following first-order linear system of equationsθ′

v′

 =
 v

−(g/ℓ) sin θ

 =:
f1(θ, v)
f2(θ, v)

 .

Workout 1.2. Convert the following system of third order equations to a system of first
order equations:

u′′′(t) + 4u′′(t) + 5u′(t) + 2u(t) = 2t2 + 10t+ 8

u(0) = 1, u′(0) = −1, u′′(0) = 3.

7

Workout 1.3. The following system of second order equations arises from studying the
gravitational attraction of one mass by another. Convert it to a system of first order
equations.

x′′(t) = −cx(t)
r(t)3 , y′′(t) = −cy(t)

r(t)3 , z′′(t) = −cz(t)
r(t)3 ,

Here c is a positive constant and r(t) =
√
x(t)2 + y(t)2 + z(t)2 with t denoting time.

1.3 First order system of ODEs
The study of first order system of ODEs is essentially important not only in solving a high

order scaler equation using the techniques for first order ODEs but also in variety of other
applications in which the system is obtained directly from the problem model. Such systems
also appear in the procedure of solving parabolic and hyperbolic partial differential equations
using the method of lines (MOL).

The system of ODEs (1.10) is linear if

f(t,y) = A(t)y + g(t)

where A(t) ∈ Rn×n and g ∈ Rn. An important special case is the constant coefficient linear
system

y′(t) = Ay(t) + g(t)

where A ∈ Rn×n is a constant matrix. If g(t) = 0, then the equation is homogeneous. The
solution to the homogeneous system y′(t) = Ay(t) with initial data y(t0) = y0 is

y(t) = eA(t−t0)y0.

where eA(t−t0) is matrix exponential.

Example 1.6 (Chemical Reaction Kinetics). Let X and Y represent chemical compounds and
consider a reaction of the form

X
k1−−→ Y

which represents a reaction in which X is transformed into Y with rate k1 > 0. If we let
y1 represent the concentration of X and y2 represent the concentration of Y (often denoted
by y1 = [X] and y2 = [Y], then the ODEs for y1 and y2 are

y′
1 = − k1y1

y′
2 = + k1y1

If there is also a reverse reaction at rate k2, we write

X −−−→←−−−
k1

k2
Y

8

and we have the system of ODEs

y′
1 = − k1y1 + k2y2

y′
2 = + k1y1 − k2y2

which with given initial concentrations y1(0) and y2(0) forms a linear system of initial value
problems with constant coefficient matrix:y′

1

y′
2

 =
−k1 k2

k1 −k2

y1

y2

 ,
y1(0)
y2(0)

 =
y1,0

y2,0

 . (1.11)

Another simple system arises from the decay process

X
k1−−→ Y

k2−−→ Z.

If y1 = [X], y2 = [Y] and y3 = [Z] then we have the following equations
y′

1 = −k1y1

y′
2 = k1y1 − k2y2

y′
3 = k2y2

, or


y′

1

y′
2

y′
3

 =


−k1 0 0
k1 −k2 0
0 k2 0



y1

y2

y3

 . (1.12)

Consider a linear system y′ = Ay with initial condition y(t0) = y0, where A is a constant
n× n matrix, and suppose for simplicity that A is diagonalizable, i.e., A has a complete set of
n linearly independent eigenvectors vk corresponding to eigenvalues λk for k = 1, . . . , n such
that

Avk = λkvk, k = 1, . . . , n
or equivalently

A = V DV −1,

where V = [v1 v2 . . .vn] and D = diag(λ1, . . . , λn). Applying the change of variables u(t) =
V −1y(t), the linear system y′ = Ay will transfer to

u′ = Du, u(t0) = V −1y0 =: u0.

This is a decoupled system of ODEs because D is diagonal. We may write

u′
k = λkuk, uk(t0) = uk,0, k = 1, 2, . . . , n, (1.13)

with solutions uk(t) = uk,0e
λk(t−t0) or in a matrix form

u(t) = eD(t−t0)u0

or equivalently
V −1y(t) = eD(t−t0)V −1y0

which finally gives
y(t) = V eD(t−t0)V −1y0 = eA(t−t0)y0.

Keep in mind that eA(t−t0) is a matrix and y0 is a vector, thus eA(t−t0)y0 is a matrix-vector
multiplication.

9

Example 1.7. Consider the linear system of ODEs (1.11) with k1 = 2 and k2 = 1 and initial
conditions y1(0) = 5 and y2(0) = 2:y′

1

y′
2

 =
−2 1

2 −1

y1

y2

 ,
y1(0)
y2(0)

 =
5
2

 .
It can be simply shown that the eigenvalues and eigenvectors of A are

λ1 = −3, v1 = [1,−1]T

λ2 = 0, v2 = [1, 2]T ,

which gives

V =
 1 1
−1 2

 , D =
−3 0

0 0

 .
Therefore, the solution can be written as

y(t) = V eDtV −1y0 = 1
3

 1 1
−1 2

 e−3t 0
0 e0t

2 −1
1 1

 5
2


which shows that

y1(t) = 5
3
[
2e−3t + 1

]
+ 2

3
[
−e−3t + 1

]
y2(t) = 5

3
[
−2e−3t + 2

]
+ 2

3
[
e−3t + 2

]
.

The plots of solutions are depicted in Figure 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y(
t) y1(t)

y2(t)

Figure 5: Solutions of a chemical reaction kinetics problem.

Since, in this example, the reaction rate k1 is larger than k2, the amount y1 decreases while
y2 increases. Both solutions reach the steady states y1(t) → 1

3(y1(0) + y2(0)) = 7
3 and

y2(t)→ 2
3(y1(0) + y2(0)) = 14

3 when t increases.

Workout 1.4. In the chemical reaction model (1.12) let k1 = 2 and k2 = 1 and
[y1(0), y2(0), y3(0)] = [1, 3, 2]. Obtain the solution.
Hint: Calculate the eigenvalues and eigenvectors of the coefficient matrix and put them into
the formula.

10

The situation will be more complicated for a nonlinear system of equations. In the sequel
we study several numerical algorithms for solving different types of ODEs; both linear and
nonlinear equations.

1.4 Stability of solutions
Depending on given data f and y0, solutions of IVP may behave differently as t→∞. The

Lipschitz constant measures how much f(t, y) is changed if y is perturbed (at some fixed time
t). Since f(t, y) = y′(t) is the slope of the line tangent to the solution curve through the value
y, this indicates how the slope of the solution curve is varied if y is perturbed.

Example 1.8. The solutions of y′(t) = g(t) with Lipschitz constant L = 0 are parallel curves
each for a prescribed initial condition y0. See Figure 1. The ODE y′(t) = λy(t) with L = |λ|
possesses solutions y(t) = y0e

λt. Depending on the sign of λ solutions decay exponentially
to zero (if λ < 0), grow exponentially to infinity (if λ > 0), or stay parallel lines (if λ = 0)
for different values of y0. See Figure 6.

t

y(
t)

t

y(
t)

t

y(
t)

Figure 6: Solutions of IVP y′ = λy with different initial values y0 for λ < 0 (left), λ > 0 (middle),
and λ = 0 (right).

For the case of λ > 0 any two solutions diverge away from each other, i.e., a small pertur-
bation in the initial condition results in a substantial difference between the final solutions
at time t > t0. For the case of λ < 0 the situation is different; any two solutions converge
toward each other and even large perturbation in initial data will finally diminish in the
solutions. For the case of λ = 0 perturbations in data and solution are of the same order.
If λ is a complex number, λ = a+ ib say, then

y(t) = y0e
at(cos bt+ i sin bt).

The behaviour now depends on the sign of Re(λ) = a. We have exponential decay for
Re(λ) < 0, exponential growth for Re(λ) > 0 and oscillatory solutions (parallel curves) for
Re(λ) = 0.

A solution of the ODE y′(t) = f(t,y) is said to be stable if for every ϵ > 0 there is a δ > 0

11

such that if ŷ(t) satisfies the ODE and ∥ŷ(t0)− y(t0)∥ ⩽ δ, then

∥ŷ(t)− y(t)∥ ⩽ ϵ, for all t ⩾ t0. (1.14)

Hence, for a stable solution, if the initial value is perturbed, the perturbed solution remains
close to the original solution. This roles out the exponential divergence solutions allowed by
the ODE. A stable solution is said to be asymptotically stable if

∥ŷ(t)− y(t)∥ → 0, as t→∞.

This stronger form of stability means that the original and perturbed solutions not only remain
close to each other, they converge toward each other over time. As we will soon see in detail, the
significance of these concepts for the numerical solution of ODEs is that any errors introduced
during the computation can be either amplified or diminished over time, depending on the
stability of the solution.

Workout 1.5. Consider the IVP

y′(t) = −[y(t)]2, y(0) = 1.

Show that the solution is y(t) = 1/(1 + t). Then solve the perturbed problem

ŷ′(t) = −[ŷ(t)]2, ŷ(0) = 1 + δ

and show this IVP is stable, and even asymptotically stable.
Hint: This is a separable differential equation, so the analytical solution can be easily
obtained.

Example 1.9. For system of ODEs
y′ = Ay

for n × n constant diagonalizable matrix A, the stability of solutions depends on the sign
of the real part of eigenvalues of A. See (1.13). In this case eigenvalues with negative real
parts yield exponentially decaying solution components, eigenvalues with positive real parts
yield exponentially growing solution components, and eigenvalues with zero real parts give
oscillatory solutions. This means that the solutions of this ODE are stable if Re(λk) ⩽ 0
for all k = 1, 2, . . . , n, and asymptotically stable if Re(λk) < 0 for all k = 1, 2, . . . , n, but
unstable if there is any eigenvalue such that Re(λk) > 0.

For the general case y′(t) = A(t)y(t) where A(t) is a time dependent matrix or for the
nonlinear equation y′(t) = f(t,y) the stability analysis is more complicated.

2 Basic numerical methods
Although the exact solution of some ODEs can be obtained by few analytic methods, such

as method of integration factors, the solution of most ODEs arising in applications are so com-

12

plicated that should be computed only by numerical methods. Even when a solution formula is
available, it may involve integrals that can be calculated only by numerical integration formu-
las. An analytical solution of an ODE is a continuous (and sometimes a close form) function
in an infinite-dimensional space, while a numerical solution is a table of approximate values of
the solution function at a discrete set of points which can be considered as a vector in a finite
dimensional space.

In this section some basic numerical methods are given for solving (1.2). In all methods,
starting from the initial condition y0 at t = t0, the approximate solutions at times t1, t2, . . .
are obtained successively by solving an algebraic (system of) difference equations obtained by
discretizing the differential equation.

2.1 Euler’s method
The simplest technique is the Euler’s method, also called explicit or forward Euler’s

method. For a given time step h > 0 assume that tk = t0 + kh, k = 1, 2, . . . , N , is a par-
titioning of time domain [t0, b] with b = tN . Let the derivative y′(t) in the ODE y′(t) = f(t, y)
at t = tk be approximated by the first-order forward difference approximation

y′(tk) = y(tk+1)− y(tk)
h

+ h

2y
′′(ξk), tk ⩽ ξk ⩽ tk+1.

By dropping the error term and using the approximate values yk instead of y(tk), we obtain

yk+1 = yk + hf(tk, yk), k = 0, 1, . . . , N − 1,

y0 = y(t0)
(2.1)

We use y0 = y(t0) or some close approximation of it. Formula (2.1) gives a rule for computing
y1, y2, . . . , yN in succession. We bring an example from [Heath:2018].

Example 2.1. Consider the simple IVP y′ = y with initial value y0 at initial time t0 = 0.
The approximate value y1 is obtained as y1 = y0 + hy0 = (1 + h)y0. It is obvious that
y1 ̸= y(t1), thus, the value y1 lies on a different solution curve of the ODE from the one on
which we started, as shown in the left side of Figure 7. The approximate value y1 is the slope
of the tangent line for the new (perturbed) solution curve. Now we continue to obtain the
approximate value y2 at t = t2 by starting from y1 with Euler rule y2 = y1 +hy1 = (1+h)y1.
The approximate value y2 carries both previous approximation error in y1 and a new error
introduced in the current step of the Euler’s method. In fact, in this step we have moved to
still another solution of the ODE, as is again shown in Figure 7. We can advance to future
times t3, t4, . . . until reaching the final time b = tN . In each step a new local truncation error
is introduced and the approximate solution falls down (or rises up) to another solution curve.
Since the solutions of this ODE are unstable, the errors are amplified with time. For an
equation with stable solutions, on the other hand, the errors in the numerical solution do
not grow, and for an equation with asymptotically stable solutions, such as y′ = −y, the

13

errors diminish with time, as is shown in the right hand side of Figure 7.

Figure 7: Steps of Euler’s method for y′ = y (left) and y′ = −y (right).

Workout 2.1. Write down Euler’s formula for the following IVPs. Compute 1 iteration for
the third ODE with h = 0.1.

• (a) y′(t) = te−t − y(t), y(0) = 1,

• (b) y′(t) = [cos(y(t))]2, y(0) = 0,

• (c) y′(t) = t3/y(t), y(0) = 1.

If the ODE is a system then y and f in formula (2.1) are simply replaced by vectors y and
f . The ODE algorithms are usually simple to program. Here is the function of explicit Euler’s
method.

1 function [T,Y] = ExEuler (f,y0 ,tspan ,h)
2 % Euler 's method for IVP system y' = f(t,y) with y(t0) = y0
3 % Inputs:
4 % f: right hand side function f(t,y)
5 % y0: initial condition of size (1 x m)
6 % tspan: [t0 , tfinal]
7 % h: stepsize
8 % Output:
9 % T: vector of time step

10 % Y: solution of size (N x m)
11 Y = y0; T = tspan (1);
12 for t = tspan (1):h:tspan (2) -h
13 y = y0 + h*f(t,y0);
14 Y = [Y y]; y0 = y; T = [T t+h];
15 end

14

The input f is a function of t and y variables, and can be defined as a separated function in
the main script. For example we use the following commands for solving the chemical reaction
kinetics ODE (1.11) on interval [0, 3] with k1 = 2 and k2 = 1 and initial conditions y1(0) = 5
and y2(0) = 2. We also set h = 0.01.

1 %% Setup of the problem

2 y0 = [5;2]; tspan = [0 3]; h = 0.01;
3 % ODE call
4 [t,y] = ExEuler (@func ,y0 ,tspan ,h);
5 % plot solutions y1 and y2
6 plot(t,y(1 ,:) ,'-b',t,y(2 ,:) ,'--r')
7 set(gca ,'TickLabelInterpreter ','latex ')
8 xlabel('Time t', Interpreter ='latex ');
9 ylabel('Solution y',Interpreter ='latex ');

10 leg = legend('y_1','y_2'); set(leg , Interpreter ='latex ');
11 %% definition of right -hand side function f

12 function yprime = func(t,y)
13 yprime = [-2*y(1) + y(2); 2*y(1) -y(2)];
14 end

The exact solution was given in Example 1.7 and Figure 5. If you run this script on your
computer you will receive the same plot.

Lab Exercise 2.2. Solve the dog-jogger problem using the Euler’s method and reproduce
the plots of Figure 4. Use (x(0), y(0)) = (60, 70) and

• (ξ(t), η(t)) = (8t, 0) for t ∈ [0, 12] and w = 10,

• (ξ(t), η(t)) =

(8t, 0), t ∈ [0, 7)

(8(7− t), 0), t ∈ [7, 12]
and w = 10,

• (ξ(t), η(t)) = (30 + 20 cos t, 20 + 15 sin t) and t ∈ [0, 4π] and w = 10,

• (ξ(t), η(t)) = (30 + 20 cos t, 20 + 15 sin t) and t ∈ [0, 4π] and w = 18.
Solve the problem with other jogger’s paths and dog speeds.

2.1.1 Error analysis of Euler’s method
The analysis of Euler’s method is useful to understand how it works, to predict the error

when using it and perhaps to accelerate its convergence. Moreover, it gives an insight to how
analyze other more efficient numerical methods.

We analyze the scaler IVP y′ = f(t, y) with y(t0) = y0 by assuming that it has a unique

15

solution y(t) on t0 ⩽ t ⩽ b and this solution has a bounded second derivative y′′(t) over this
interval. Using the Taylor series formula we have

y(tk+1) = y(tk) + hy′(tk) + 1
2h

2y′′(ξk)

for some tk ⩽ ξk ⩽ tk+1. Using the fact that y′(t) = f(t, y(t)) we can write

y(tk+1) = y(tk) + hf(tk, y(tk)) + 1
2h

2y′′(ξk). (2.2)

The term
τk+1 = 1

2h
2y′′(ξk)

is a local truncation error (or one-step error) for the Euler’s method introduced in step k + 1.
Subtracting (2.2) from the Euler’s rule

yk+1 = yk + hf(tk, yk),

we will obtain

y(tk+1)− yk+1 = (y(tk)− yk) + h[f(tk, y(tk))− f(tk, yk)] + τk+1, (2.3)

which shows that the error in yk+1 consists of two parts:
• (1) the newly introduced local truncation error τk+1,

• (2) the propagated error (y(tk)− yk) + h[f(tk, y(tk))− f(tk, yk)].
If we assume that

ek = y(tk)− yk

then eN would be the global error at the final time t = tN . The global error reflects not only
the local error at the final step, but also the compounded effects of the local errors at all
previous steps. Unless in some specific situations where f is independent of y, the global
error is not simply the sum of the local errors. For example, for ODE y′ = y since
the solutions are diverging, the local errors at each step are magnified over time, so that the
global error is greater than the sum of the local errors, as shown in Figure 8, where the local
errors are indicated by small vertical bars between solutions and the global error is indicated
by a bar at the end. On the other hand for ODE y′ = −y since the solutions are converging,
the global error is less than the sum of the local errors. It is obvious that for the only case
f(t, y) = g(t), where the solutions are parallel curves, the global error is the direct sum of
local errors. Because in this case we have [f(tk, y(tk))− f(tk, yk)] = g(tk)− g(tk) = 0 and (2.3)
reduced to ek+1 = ek +τk+1 for k = 0, 1, . . . , N−1. We then simply have eN = τ1 +τ2 + · · ·+τN .
However, for a general f(t, y) we have to analyze the effect of [f(tk, y(tk)) − f(tk, yk)] in each
step. Considering f(t, y) as a function of y and using the mean value theorem, we can write

f(tk, y(tk))− f(tk, yk) = ∂f

∂y
(tk, ηk)(y(tk)− yk)

for some ηk between y(tk) and yk. Then, (2.3) yields

ek+1 =
(

1 + h
∂f

∂y
(tk, ηk)

)
ek + τk+1, (2.4)

16

Figure 8: Local and global errors of Euler’s method for y′ = y (left) and y′ = −y (right).

which shows that the amplification (or diminishing) factor for propagation error is
(
1 + h∂f

∂y
(tk, ηk)

)
which is related to the stability of solutions via the Lipschitz constant of f .

We assume that the function f(t, y) satisfies the following stronger Lipschitz condition: there
exists a constant L > 0 such that

|f(t, y)− f(t, ỹ)| ⩽ L|y − ỹ|, ∀(t, y), (t, ỹ) ∈ [t0, b]× R.

In (2.4) if we go through absolute value of ek, the term ∂f
∂y

(tk, ηk) can be replaced by the
Lipschitz constant L to obtain

|ek+1| ⩽ (1 + hL)|ek|+ |τk+1|, k = 0, 1, . . . , N − 1 (2.5)

from (2.4). We assume that

τ(h) = 1
2h∥y

′′∥∞ = 1
2h max

t0⩽t⩽b
|y′′(t)|.

Then we have |τk| ⩽ hτ(h) for k = 1, . . . , N . Now, apply (2.5) recursively, we obtain

|ek| ⩽ (1 + hL)k|e0|+ [1 + (1 + hL) + (1 + hL)2 + · · ·+ (1 + hL)k−1]hτ(h).

Using the formula for sum of geometric series,

1 + r + r2 + · · ·+ rn−1 = rn − 1
r − 1 , r ̸= 1,

we obtain
|ek| ⩽ (1 + hL)k|e0|+

[
(1 + hL)k − 1

L

]
τ(h).

Now we use the standard formula

1 + x ⩽ ex, x ⩾ 0

with x = hL to obtain
|ek| ⩽ ekhL|e0|+

[
ekhL − 1

L

]
τ(h).

On the other hand kh = tk − t0, so we can write

|eN | ⩽ eL(tN −t0)|e0|+
[
eL(tN −t0) − 1

L

]
τ(h).

If y0 = y(t0) or |e0| = |y(t0)− y0| ⩽ c1h then we have a global error of order h for the Euler’s

17

method, i.e.,

|eN | ⩽ Ch, C = c1e
L(b−t0) + 1

2

[
eL(b−t0) − 1

L

]
∥y′′∥∞. (2.6)

Therefore, the Euler’s method is said to converge with order 1. This order of convergence is
obtained by assuming y to have a continuous second derivative y′′ over interval [t0, b]. When
such assumption fails the error bound (2.6) no longer holds. See Workout 2.11.

Since the error bound (2.6) uses the Lipschitz constant L instead of ∂f
∂y

and ignores the sign
of ∂f

∂y
, it sometimes produces a very pessimistic numerical bound for the error. If

∂f

∂y
(t, y) ⩽ 0 (2.7)

then we may have a smaller than 1 amplification factor
(
1 + h∂f

∂y
(tk, ηk)

)
instead of (1 + hL)

which is always bigger than 1. In this case (negative partial derivative of f) if we assume that

L = sup
t∈[t0,b],y∈R

∣∣∣∣∣∂f∂y (t, y)
∣∣∣∣∣

and h is chosen so small that 1− hL ⩾ −1 then we have

1 ⩾ 1 + h
∂f

∂y
(tk, ηk) ⩾ 1− hL ⩾ −1,

and from (2.4) we can write

|ek+1| ⩽ |ek|+ |τk|, k = 0, 1, . . . , N − 1.

Applying this bound recursively, we obtain

|eN | ⩽ |e0|+ (b− t0)τ(h) = Ch, C = c1 + (b− t0)∥y′′∥∞ (2.8)

where |e0| ⩽ c1h is assumed. The constant C behind h in bound (2.8) is much smaller than
that in bound (2.6) which contains the exponential terms. But, the error bound (2.8) is valid
with restrictive assumption (2.7).

Example 2.2. For simple IVP

y′(t) = −y(t), y(0) = 1, 0 ⩽ t ⩽ b,

we have ∂f(t, y)/∂y = −1 and L = 1. The true solution is y(t) = e−t, hence ∥y′′∥∞ = 1.
With y0 = y(0) = 1 (|e0| = 0). From the bound (2.6) we have

|eN | ⩽
1
2h(eb − 1)

which shows the convergence with order h. However the constant in the bound grows
exponentially in b. For example with b = 5 the bound becomes approximately 73.7h which
is far larger than the actual error in Table 1. The error bound (2.8), on the other hand gives

|eN | ⩽
1
2bh

which is very close to the actual error with different h in Table 1. The fifth column of the
table also confirms the theoretical order 1 for the method.

18

Table 1: Euler’s method: numerical solutions, errors, orders, and error bounds for IVP
y′ = −y with y0 = 1 at time t = b = 5.

h yN |eN | |eN |/|y(b)| order 1
2h(eb − 1) 1

2bh

0.2 3.778e− 3 2.960e− 3 4.393e− 1 − 14.74 0.5
0.1 5.154e− 3 1.584e− 3 2.351e− 1 0.90 7.37 0.25
0.05 5.921e− 3 8.174e− 4 1.213e− 1 0.95 3.69 0.12
0.025 6.323e− 3 4.149e− 4 6.158e− 2 0.98 1.84 0.06
0.0125 6.529e− 3 2.090e− 4 3.102e− 2 0.99 0.92 0.03
0.00625 6.633e− 3 1.049e− 4 1.557e− 2 0.99 0.46 0.02

The results of this table are obtained by executing the following code:

1ExactSol = @(t) exp(-t);
2b = 5;
3h = 0.2;
4for n = 1:6
5[t,y] = ExEuler (@(t,y) -y, 1, [0 b], h);
6AppSol(n) = y(end);
7ABSerr(n) = abs(AppSol(n)-ExactSol (b));
8RELerr(n) = ABSerr(n)/ ExactSol (b);
9h = h/2;
10end
11Order = log2(ABSerr (1:5) ./ ABSerr (2:6));
12fprintf ('y_N = \n'); fprintf (' %1.3e\n',AppSol);
13fprintf ('abs_err = \n'); fprintf (' %1.3e\n',ABSerr);
14fprintf ('rel_err = \n'); fprintf (' %1.3e\n',RELerr);
15fprintf ('order = \n'); fprintf (' %1.2f\n',Order);

Try understanding why the numerical orders are computed using that logarithmic formula
in line 11 of the script above!

Table 2: Euler’s method: numerical solutions, errors, orders, and error bounds for IVP
y′ = +y with y0 = 1 at time t = b = 5

h yN |eN | |eN |/|y(b)| order 1
2h(eb − 1)∥y′′∥∞

0.2 9.540e + 1 5.302e + 1 3.572e− 1 − 2.187e + 3
0.1 1.174e + 2 3.102e + 1 2.090e− 1 0.77 1.093e + 3
0.05 1.315e + 2 1.691e + 1 1.140e− 1 0.88 5.470e + 2
0.025 1.396e + 2 8.849e + 0 5.963e− 2 0.93 2.735e + 2
0.0125 1.439e + 2 4.529e + 0 3.052e− 2 0.97 1.367e + 2
0.00625 1.461e + 2 2.291e + 0 1.544e− 2 0.98 6.837e + 1

19

Now consider the IVP
y′(t) = y(t), y(0) = 1, 0 ⩽ t ⩽ b.

For this problem the the error bound (2.8) is not applicable because ∂f(t, y)/∂y = 1 > 0.
However, the error bound (2.6) is nearly sharp for this IVP. The exact solution is y(t) = et

and ∥y′′∥∞ = eb. See the results in Table 2.

Lab Exercise 2.3. Solve the following problems using Euler’s method with stepsizes h =
0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625. Compute the relative errors using the true solutions
y(t). In each case plot the error function in terms of h in the log-log scale, and compute the
computational order of convergence.

• (a) y′(t) = te−t− y(t), 0 ⩽ t ⩽ 10, y(0) = 1, with exact solution y(t) = (1 + 0.5t2)e−t.

• (b) y′(t) = [cos(y(t))]2, 0 ⩽ t ⩽ 10, y(0) = 0, with exact solution y(t) = tan−1(t).

• (c) y′(t) = t3/y(t), 0 ⩽ t ⩽ 10, y(0) = 1, with exact solution y(t) =
√

0.5t4 + 1.

2.2 General explicit one-step methods
The Euler’s method is a one-step method (counterpoise to multistep methods) as in each

time level the approximate solution is obtained from merely the previous time level. A general
explicit one-step method has the form

yk+1 = yk + hψ(tk, yk, h) (2.9)

for a more general function ψ instead of f . We will assume that ψ(t, y, h) is continuous in t

and h and Lipschitz continuous in y, with Lipschitz constant L̃ that is generally related to the
Lipschitz constant L of f .

Example 2.3. The choice ψ(t, y, h) = f(t, y + h
2f(y)) results in the two-stage Runge-Kutta

method that will be addressed later. For this scheme we can simply show that ψ has Lipschitz
constant L̃ = L+ h

2L
2 where L is the Lipschitz constant of f .

A one-step method is said to be consistent if

ψ(t, y, 0) = f(t, y), (2.10)

for all t, y, and ψ is continuous in h. The consistency, indeed, implies that the local truncation
error of method (2.9) is at least of order h2, because

τk+1 = y(tk+1)− y(tk)− hψ(tk, yk, h)

= hy′(tk)− hψ(tk, y(tk), h) +O(h2)

= hψ(tk, y(tk), 0)− h[ψ(tk, y(tk), 0) +O(h)] +O(h2)

= O(h2)

20

The error analysis of general one-step methods can be obtained in a similar way as was done
for the Euler’s method. First, like as (2.2), the truncation error is obtained as

τk+1 = y(tk+1)− y(tk)− hψ(tk, y(tk), h),

and then (2.3) is modified to

ek+1 = ek + h[ψ(tk, y(tk), h)− ψ(tk, yk, h)] + τk+1.

The reminder parts of analysis follow a same direction only L should be replaced by L̃ in new
error bounds. We then can conclude the following theorem.

Theorem 2.4. If ψ(t, y, h) is continuous in all its arguments and is Lipschitz continuous in
its second argument, and the consistency condition (2.10) holds, then the explicit one-step
method (2.9) is convergent with a global error of at least order h1. If the local truncation
errors τk+1 behave as hp+1, then the global order is of order hp.

2.3 Zero-stability
In the convergence proof of the one-step methods we observed the effect of amplification

factor in propagating the local errors which finally was summed up to factor C in the error
bound (2.6). Although this factor grows in b, it is bounded independent of h as h → 0.
Consequently the method is stable. This form of stability for a numerical method is often
called zero-stability, since it is concerned with the stability of the method in the limit as h
tends to zero. To see this observation in a more relevant presentation to stability of the original
IVP (1.4), assume that the initial condition y0 is perturbed by ε and define numerical solutions
of the perturbed problem by

zk+1 = zk + hf(tk, zk), z0 = y0 + ε.

For comparing two numerical solutions yk and zk, let ek = zk−yk. Then e0 = ε and subtracting
from yk+1 = yk + hf(tk, yk) we obtain

ek+1 = ek + h[f(tk, zn)− f(tk, yk)].

This is exactly the same form as (2.3) with τk+1 set to be zero. Using the same procedure we
obtain

|ek+1| ⩽ (1 + hL)k|e0| ⩽ eL(tk−t0)|ε|.
Consequently, we can write

max
0⩽k⩽N

|zk − yk| ⩽ eL(b−t0)|ε|

which is the analog to the stability result (1.14) for the original IVP (1.4). The zero-stability is
different from other forms of stability which are of equal importance in practice. The fact that
a method is zero-stable (and converges as h → 0) is no guarantee that it will give reasonable
results on the particular grid with h > 0 that we want to use in practice. Other stability issues
of a different nature will be taken up in the next sections.

21

2.4 Absolute stability
The zero-stability is needed to guarantee convergence of a numerical method as h → 0.

In practice, however, we need to perform a single calculation using a given positive stepsize
h > 0. Moreover, to minimize the computational cost a larger as possible h (consistent with
our desired accuracy) is usually preferred. A stronger form of stability than the zero-stability is
required in this case to force the method to work for this particular stepsize h. Let’s illustrate
the situation in three numerical examples borrowed from [LeVeque:2007].

Example 2.4. We apply the Euler’s method on a simple IVP of the form

y′(t) = − sin(t), 0 ⩽ t ⩽ 2, y(0) = 1

with exact solution y(t) = cos t. Since f(t, y) = sin(t) is independent of y, (L = 0) the
global error is the sum of local errors

|τk| =
h2

2 |y
′′(ξk)| ⩽ h2

2 .

Indeed we have
|eN | ⩽ (b− t0)τ(h) = 2τ(h) = h.

Suppose we want to compute the solution at t = 2 with a global error less than 0.001.
According to the error bound it suffices to take h = 0.001 and obtain the approximate
solution after 2000 time steps. The computed solution y2000

.= −0.4156921 has error |e2000| =
|y2000 − cos(2)| .= 0.45× 10−3.
Now, we change the IVP to

y′(t) = λ(y − cos t)− sin(t), 0 ⩽ t ⩽ 2, y(0) = 1, (2.11)

for some constant λ. The exact solution is y(t) = cos t, as before. Let λ = −10. The error
bound (2.8) suggests again the global error |eN | ⩽ h. For this reason, we again choose h =
0.001 for a global error less than 0.001. The computed solution now is y2000

.= −0.4161629
with error |e2000|

.= 0.16× 10−4 which is even better than the previous one.
Let us examine some larger (in magnitude) λ. Let λ = −2100. Executing the Euler’s
method gives y2000

.= 0.15 × 1077 which is far away from the exact solution and shows a
blown up in computations. The method is zero-stable and we proved that when h→ 0 it is
convergent. Indeed, for sufficiently small stepsizes we achieve accurate results as reported
in Table 3.

Table 3: Global errors for the Euler’s method with different stepsizes.
h 0.001 0.00097 0.00095 0.0008 0.0004
|eN | 0.15e + 77 0.77e + 26 0.40e− 07 0.79e− 07 0.40e− 08

Something dramatic happens for values of h between 0.00095 and 0.00097. For smaller
values of h we get very good results, whereas for larger values of h the solution blows
up. To find the reason, we come back to (2.4) where we have for the linear IVP with

22

f(t, y) = λ(y − cos t)− sin(t) the recursion

ek+1 = (1 + λh)ek + τk+1.

This means that in each time step the previous error is multiplied by factor (1 + λh). With
λ = −2100 and h = 0.001 we have |1 + λh| = 1.1. After 2000 steps the truncation error
introduced in the first step has grown by a factor of roughly (1.1)2000 ≈ 1082, which is
consistent with the error actually seen. Note that with λ = 10, we have |1 + λh| = 0.99
causing a decay in the effect of previous errors in each step. For the first case, i.e., λ = 0,
the amplification factor is 1 the reason why we got a worse result in this case than the case
of λ = −10.
Consequently, we can argue that for values of h satisfying

|1 + λh| ⩽ 1

the Euler method produces stable and accurate results for IVP (2.11). In the case of
λ = −2100 the above criterion suggests the values of h smaller than 2/2100 .= 0.000952.

Remark 2.1. Note that the exponential growth of errors for some positive values of h in the
previous example does not contradict zero-stability or convergence of the method in any
way. The method does converge as h→ 0.

Example 2.4 shows that another notion of stability is needed to force a numerical method
to produce stable and accurate results with a given step length h > 0. There exists a wide
variety of “stability” notions but one that is most basic is the absolute stability. This kind
of stability is based on the linear test equation

y′(t) = λy(t), λ ∈ C. (2.12)

The restriction on the step length h > 0 on which the method will work for test ODE (2.12) is
called the absolute stability conditions. For example, the Euler’s method if is applied on (2.12)
yields

yk+1 = (1 + λh)yk = (1 + λh)2yk−1 = · · · = (1 + λh)k+1y0.

In order to prevent a blown up in the solution when k →∞ we should impose the condition

|1 + λh| ⩽ 1.

If λ ∈ R, the stability condition will be −2 ⩽ z ⩽ 0 for z ≡ λh. This implies that

λ ⩽ 0 and 0 ⩽ h ⩽
2
−λ

.

In the general case λ ∈ C, the complex number z should satisfy |1 + z| ⩽ 1 which means that
z should lie inside and on a circle with center (−1, 0) and radius 1 in the complex plane. This
region is called the region of absolute stability of the Euler’s method. See shadow part on
the left hand side of Figure 9.

23

Definition 2.5. By applying a one-step method on the test problem (2.12) we get

yk+1 = R(z)yk, z = λh

for some function R(z), and then the absolute stability region of the method is defined to
be

S = {z ∈ C : |R(z)| ⩽ 1}.

The stability region of the explicit Euler’s method is rather small compared to other (usu-
ally) implicit methods. This will impose a serious restriction on stepsize h to guarantee the
convergence. This restriction together with slow convergence rate of Euler’s method convince
us to study and develop other more efficient ODE solvers. For comparison, the absolute sta-
bility region of the implicit Euler’s method (see the next section) is drown on the right hand
side of Figure 9. It contains all the complex plane except a unit circle with center (1, 0).

Explicit Euler

−3 −2 −1 0 1
−2

−1

0

1

2

Implicit Euler

−1 0 1 2 3
−2

−1

0

1

2

Figure 9: Absolute stability regions of explicit and implicit Euler’s methods

Although the absolute stability region is determined by testing the method on simple linear
ODE (2.12), it yields information that is typically useful in determining an appropriate step
length in nonlinear problems as well.

For a system of ODEs of the form

y′(t) = Ay(t), A ∈ Rn×n (2.13)

where A is diagonalizable with eigenvalues λℓ, ℓ = 1, 2, . . . , n, a numerical method is absolutely
stable if zℓ = λℓh all lie in the absolute stability region of the method in the scaler case. The
proof is simple, because as we observed in (1.13) the system can be decoupled to n scaler ODE

u′
ℓ = λℓuℓ, ℓ = 1, 2, . . . , n.

Now, we investigate a numerical solution of a simple partial differential equation (PDE) using
the method of lines (MOL) which results in a linear system of ODEs.

Example 2.5. Consider the linear diffusion equation
∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 , 0 ⩽ x ⩽ 1, t ⩾ 0

24

with homogeneous Dirichlet boundary conditions u(0, t) = u(1, t) = 0 and initial condition
u(x, 0) = u0(x). The method of lines (MOL) solution if is applied on this problem with the
central difference approximation

∂2u

∂x2 (xk, t) ≈
u(xk+1, t)− 2u(xk, t) + u(xk−1, t)

(∆x)2 , ∆x = 1
m+ 1 ,

with xk = k∆x, leads to a system of equations of the form (2.13) with

y(t) =



u(x1, t)
u(x2, t)

...
u(xm−1, t)
u(xm, t)


, A = 1

(∆x)2



−2 1
1 −2 1

.
1 −2 1

1 −2


.

The matrix A is symmetric and tridiagonal. There exists a close formula for its eigenvalues:

λℓ = 2
(∆x)2 (cos(πℓ∆x)− 1) = −4

(∆x)2 sin2(π2 ℓ∆x), ℓ = 1, . . . ,m.

The distribution of eigenvalues for two different matrix size m = 10, 20 (or ∆x = 1/11, 1/21)
are displayed in Figure 10.

Figure 10: Distribution of eigenvalues of matrix A.

All eigenvalues are real (because A is symmetric) and fall on the left-half (complex) plane.
If one insists to apply the explicit Euler’s method for solving this system then the step
length h should be chosen small enough such that all λℓh lie in the absolute stability region
of the method. Since the largest (in magnitude) eigenvalue is λm, the absolute stability is
guaranteed if the step length is chosen equal to or less than

2
−λm

= (∆x)2

2 sin2(π
2m∆x)

Since sin2(π
2m∆x) < 1, it is enough to take the step length equal to or less than 1

2(∆x)2.
This is a serious restriction for numerical solution of such PDE.

Remark 2.2. A method is zero-stable if the origin belongs to its region of absolute stability.

2.5 Implicit methods
Euler’s method is an explicit method in that it uses the already known information at time tk

to advance the solution to time tk+1. However, this method has a rather small stability region.

25

The implicit Euler’s method (backward Euler’s method) is obtained by approximating y′(tk)
by the first-order backward difference approximation

y′(tk) = y(tk)− y(tk−1)
h

− h

2y
′′(ξk), tk−1 ⩽ ξk ⩽ tk.

By dropping the error term and using the approximate values yk instead of y(tk), we obtain an
algebraic equation yk = yk−1 + hf(tk, yk) for k = 1, 2, Shifting the index by 1, the implicit
Euler’s method is obtained as

yk+1 = yk + hf(tk+1, yk+1), k = 0, 1, . . . , N − 1,

y0 = y(t0).
(2.14)

This scheme is implicit because we must evaluate f with the argument yk+1 before we know
its value. If f is a nonlinear function in y then a rootfinding method such as fixed-point iteration
or Newton’s method can be used. A good starting guess for the iteration is the solution at
the previous time step or one step solution of the explicit Euler’s method. If f is Lipschitz
continuous and h is small enough it can be proved that y − yk + hf(tk+1, y) = 0 has a unique
root.

Usually, a simple iteration method is efficient for solving the nonlinear equation in each step.
In step k + 1, given an initial guess y(0)

k+1, we define y(1)
k+1, y

(2)
k+1, . . . by

y
(j+1)
k+1 = yk + hf(tk+1, y

(j)
k+1), j = 0, 1, 2, (2.15)

Subtracting (2.15) from (2.14), we obtain

yk+1 − y(j+1)
k+1 = h

[
f(tk+1, yk+1)− f(tk+1, y

(j)
k+1)

]
.

If we assume that f is Lipschitz continuous with constant L then we can write

|yk+1 − y(j+1)
k+1 | ⩽ hL|yk+1 − y(j)

k+1|.

This means that if h is chosen small enough such that

hL ⩽ 1 (2.16)

then the error will converge to zero for a sufficiently good initial guess y(0)
k+1. In practice, usually

one step of the explicit Euler’s method, i.e.,

y
(0)
k+1 = yk + hf(tk, yk)

is used as an initial guess in each step of the implicit Euler’s method. This is called a predictor
formula as predicts the root of the implicit method. Besides, h is chosen so small such that
(2.16) is much smaller than 1 to have a rapid fixed-point convergence. Often few iterates
(sometimes only one iterate) need(s) to obtain a satisfactory result.

Another practical way is to assume y
(0)
k+1 = yk and do the iteration (2.15) twice. This

two-point iteration is equivalent to following two-step scheme

z = yk + hf(tk+1, yk)

yk+1 = yk + hf(tk+1, z),

26

or, by writing it in a one line,

yk+1 = yk + hf(tk+1, yk + hf(tk+1, yk)). (2.17)

This method is still of first-order accuracy but has some absolute stability limitations. However,
the implicit Euler’s method (2.14) if is applied on test equation (2.12) gives

yk = 1
(1− λh)k

y0.

The instability never happens if
1

|1− λh| ⩽ 1.

Therefore, the region of absolute stability of the method is S = {z ∈ C : |1− z| ⩾ 1} which is
shown on the right hand side of Figure 9.

One drawback of both explicit and implicit Euler’s methods is the low convergence order.
Before presenting new higher order schemes let us discuss another approach for obtaining
Euler’s formulas. If we integrate the equation y′(t) = f(t, y(t)) from tk to tk+1, we obtain

y(tk+1) = y(tk) +
∫ tk+1

tk

f(τ, y(τ))dτ. (2.18)

The explicit Euler’s method will be resulted if the integral in (2.18) is approximated by the
box rule ∫ b

a
g(τ)dτ ≈ (b− a)g(a)

while the implicit Euler’s method follows from the box quadrature∫ b

a
g(τ)dτ ≈ (b− a)g(b).

More accurate quadratures can be used to obtain more accurate methods. For instance, we
can implement the trapezoidal rule (with the error term)∫ b

a
g(τ)dτ = 1

2(b− a)[g(a) + g(b)]− 1
12(b− a)3g′′(ξ), (2.19)

for some a ⩽ ξ ⩽ b. Applying (2.19) to (2.18), we obtain

y(tk+1) = y(tk) + h

2 [f(tk, y(tk)) + f(tk+1, y(tk+1))]−
h3

12y
(3)(ξk) (2.20)

for some tk ⩽ ξk ⩽ tk+1. The second derivative in the error term of the trapezoidal rule (2.19)
is replaced by the third derivative of y in (2.20) because f(t, y) = y′(t). By dropping the
error term in (2.20) and replacing y(tk) by approximate values yk, the trapezoidal method
is obtained as

yk+1 = yk + h

2 [f(tk, yk) + f(tk+1, yk+1)], k = 0, 1, 2, . . .

y0 = y(t0).
(2.21)

The local truncation error for this method is

τk+1 = −h
3

12y
(3)(ξ). (2.22)

27

It can be proved that the trapezoidal method is of second-order accuracy and its global error
satisfies

|eN | ⩽ Ch2

for all sufficiently small h. The proof follows the same sketch as the proof of the explicit
Euler’s method. In additions, we can simply show that the region of absolute stability of the
trapezoidal method is the left half plane as shown in Figure 11.

Trapezoidal

−2 −1 0 1 2
−2

−1

0

1

2

Figure 11: Absolute stability region of the trapezoidal method

Workout 2.6. Show that the region of absolute stability of the trapezoidal method is the
left half complex plane.

The convergence order 2 and the absolute stability of the trapezoidal method are two ad-
vantages that make this method an important tool for solving ordinary differential equations.

When f(t, y) is nonlinear in y, the discussion for the solution of the implicit Euler’s method
applies to the solution of the trapezoidal method (2.21) with a slight variation. The iteration
formula (2.15) is replaced by

y
(j+1)
k+1 = yk + h

2 [f(tk, yk) + f(tk+1, y
(j)
k+1), j = 0, 1, 2, (2.23)

The convergence condition (2.16) is replaced by
hL

2 ⩽ 1.

The usual choice of the initial guess y(0)
k+1 for (2.23) is the Euler’s solution

y
(0)
k+1 = yk + hf(tk, yk).

With this choice the resulting global error will be still of order h2, because a one step error
of the Euler’s method is of order h2. If only one iteration of (2.23) is used the resulting new
scheme is

yk+1 = yk + h

2 [f(tk, yk) + f(tk+1, yk + hf(tk, yk))], (2.24)

which is also known as Heun’s method. This method is still of second order accuracy, but with
a more restricted region of absolute stability. The Heun’s method is identical with one of the

28

Runge-Kutta methods of order two. We will address various types of Runge-Kutta method in
a forthcoming section.

Workout 2.7. Show that the absolute stability regions of schemes (2.17) and (2.24) are
bounded. Especially both of them do not include the whole negative real line.

Workout 2.8. Let θ ∈ [0, 1] and consider the θ-method

yk+1 = yk + h[(1− θ)f(tk, yk) + θf(tk+1, yk+1)].

(a) Which values of θ correspond to the explicit Euler, implicit Euler, and trapezoidal
methods? (b) Separate two cases θ ∈ [0, 1/2) and θ ∈ [1/2, 1]. In which case the left-half
plane lies in the absolute stability regions of this method?
Optional: answer the above questions for the generalized midpoint method

yk+1 = yk + hf(tk+θ, (1− θ)yk + θyk+1)

where tk+θ = (1− θ)tk + θtk+1.

Workout 2.9. Consider the scheme

yk+1 = yk−1 + 2hf(tk, yk),

for solving y′(t) = f(t, y). Show that the local truncation error of this scheme is of order h3.
The absolute stability region for this scheme is S = {z = α+ iβ ∈ C : α = 0,−1 ⩽ β ⩽ 1},
which is a marginal stability region (no need to prove!) This method is known as midpoint
or leapfrog method. Is the leapfrog method A-stable?
Hint: To obtain the truncation error, replace yk by exact values y(tk) and leave the formula
by additional term τk. Then use Taylor expansion to determine τk.

Lab Exercise 2.10. Write MATLAB functions for implicit and trapezoidal methods. In
each case, use an iterative method and/or a predictor formula to handle the nonlinearity.
Then solve the examples in Lab Exercise 2.3 using your codes and compare the errors and
orders. Comment on your results.

Lab Exercise 2.11. Consider the IVP

y′(t) = 1
t
y(t) + (α− 1)tα−1, y(0) = 0, t ∈ [0, 1],

with α > 0. The solution is y(t) = tα. To have y twice continuously differentiable, we
need α ⩾ 2. Use your MATLAB codes for explicit and implicit Euler and trapezoidal
methods for α = 2.5, 1.5, 1.1 with stepsizes h = 0.2, 0.1, 0.05, 0.025, 0.0125. Determine the

29

computational convergence orders. Compare with theoretical orders and report a reason for
your observation.

2.6 Taylor series methods
Euler’s methods can be formulated by using a Taylor series approximation when y′ is replaced

by f(t, y) and higher order derivative in the series are dropped. One can of course use higher
order terms but then y′′, y′′′, . . . should be obtained by differentiating the differential equation

y′(t) = f(t, y),

successively. From the Taylor series expansion of order p we have

y(tk+1) ≈ y(tk) + hy′(tk) + h2

2! y
′′(tk) + · · ·+ hp

p! y
(p)(tk) (2.25)

where the truncation error is

τk+1 = hp+1

(p+ 1)!y
(p+1)(ξk), tk ⩽ ξk ⩽ tk+1. (2.26)

The term y′(t) in (2.26) can be replaced by f(t, y) as we have done in Euler’s methods. For
higher order derivatives we can write

y′′(t) = ft + fyf

y(3)(t) = ftt + 2ftyf + fyyf
2 + fy(ft + fyf)

...
provided that partial derivatives of f(t, y) with respect to y exist. Substituting these formulas
into (2.25), we obtain

yk+1 = yk + hy′
k + h2

2 y
′′
k + · · ·+ hp

p! y
(p)
k , (2.27)

which is called the Taylor series method. The derivatives formulas in (2.27) are

y′
k = f(tk, yk), y′′

k = (ft + fyf)(tk, yk), and so on.

The formulas for higher order derivatives rapidly become too complicated, so Taylor series
methods of higher order have not often been used in practice. Recently, however, the availability
of symbolic manipulation and automatic differentiation systems have made these methods more
feasible.

If the solution y and the derivative function f(t, y) are sufficiently differentiable then it can
be proved that the global error for the scheme (2.27) satisfies

|eN | ⩽ Chp∥y(p+1)∥∞,

which means that the method is of p-th order accuracy. The constant C is something similar
to that was obtained for the explicit Euler’s method (the first order Taylor method).

Lab Exercise 2.12. Construct the Taylor series methods of orders 2 and 3 for IVP

y′(t) = [cos y(t)]2, 0 ⩽ t ⩽ 10, y(0) = 0.

30

Write a MATLAB code to compute the results for stepsizes h = 0.2, 0.1,0.05, 0.025, 0.0125,
0.00625. Plot the error functions in each case and calculate numerical orders. Compare
the results with Euler and trapezoidal methods. The exact solution of the above IVP is
y(t) = tan−1(t). Use this information to calculate errors and orders.

2.7 Runge-Kutta methods
The calculation of higher order partial derivatives of f(t, y) makes the Taylor series meth-

ods complicated and time-consuming. Runge-Kutta methods (abbreviated by RK methods)
replace higher derivatives by more evaluations of f(t, y) to have finite difference approxima-
tions for derivatives while retain the accuracy of Taylor series methods. The RK methods are
one-step but multi-stage and are fairly easy to program not only for a scaler ODE but also for
a system of ODEs.

To derive a second order RK method, consider the second order Taylor method

yk+1 = yk + hy′
k + h2

2 y
′′
k (2.28)

where y′ = f(t, y) and y′′ = ft +fyf both evaluated at (tk, yk). We aim to approximate ft +fyf

by expanding f in a bivariate Taylor series as

f(t+ h, y + hf) =
(
f + hft + hffy

)
(t, y) +O(h2).

This simply shows that

y′′(t) = (ft + fyf)(t, y) = 1
h

[f(t+ h, y + hf(t, y))− f(t, y)] +O(h).

Dropping the O(h) term and substituting in (2.28), we obtain

yk+1 = yk + hf(tk, yk) + h2

2
1
h

[f(tk + h, yk + hf(tk, yk))− f(tk, yk)]

= yk + h

2 [f(tk, yk) + f(tk + h, yk + hf(tk, yk))].
(2.29)

This method was previously derived as the Heun’s method in (2.24). As an RK2 method it is
usually written in the following two step pattern:

z1 = yk

z2 = yk + hf(tk, z1)

yk+1 = yk + h

2 [f(tk, z1) + f(tk + h, z2)].

(2.30)

This is not the only order 2 explicit RK method. As we discussed in section 2.2, a general
explicit method can be written as

yk+1 = yk + hψ(tk, yk, h), y0 = y(t0).

In the RK2 method (2.29) we derived ψ(t, y, h) as

ψ(t, y, h) = 1
2f(t, y) + 1

2f(t+ h, y + hf(t, y)).

31

This formula can be generalized to ansatz

ψ(t, y, h) = b1f(t, y) + b2f(t+ αh, y + βhf(t, y)), (2.31)

with unknown coefficients b1, b2, α, β that can be determined such that the local truncation
error

τk+1 = y(tk+1)− [y(tk) + hψ(tk, y(tk), h)]

will satisfy τk+1 = O(h3) just as with the Taylor method of order 2. After some manipulations
with the bivariate Taylor expansion, we will obtain the relations

b2 ̸= 0, b1 = 1− b2, α = β = 1
2b2

.

between the coefficients in order to have τk+1 = O(h3). Depending on the choice of b2, there
exists a family of RK methods of order 2. The case b2 = 1/2 results in RK method (2.29).
Another choice b2 = 1, b1 = 0 and α = β = 1

2 , results in

yk+1 = yk + hf(tk + 1
2h, yk + 1

2hf(tk, yk)). (2.32)

or in a multi-stage format

z1 = yk

z2 = yk + h

2f(tk, z1)

yk+1 = yk + hf(tk + h
2 , z2).

(2.33)

A general explicit RK method is defined as below.

Definition 2.13. An explicit RK method with s stages has the form
z1 = yk,

z2 = yk + ha2,1f(tk, z1),

z3 = yk + h
[
a3,1f(tk, z1) + a3,2f(tk + c2h, z2)

]
,

...

zs = yk + h
[
as,1f(tk, z1) + as,2f(tk + c2h, z2) + · · ·+ as,s−1f(tk + cs−1h, zs−1)

]
,

yk+1 = yk + h
[
b1f(tk, z1) + b2f(tk + c2h, z2) + · · ·+ bsf(tk + csh, zs)

]
.

(2.34)

Such RK method is fully determined by coefficients {cℓ, aℓ,j, bj}. These coefficients are
usually displayed in a table called Butcher’s Tableau2

2After John Charles Butcher (1933-present) who is a New Zealand mathematician and an specialist in
numerical methods for ODEs.

32

0 = c1

c2 a2,1

c3 a3,1 a3,2
...
cs as,1 as,2 · · · as,s−1

b1 b2 · · · bs−1 bs

RK methods can be expressed in the general form (2.9) with

ψ(t, y, h) =
s∑

j=1
bjf(t+ cjh, zj), zj = y + h

j−1∑
ℓ=1

ajℓf(t+ cℓh, zℓ).

The consistency condition ψ(t, y, 0) = f(t, y) holds if
s∑

j=1
bℓ = 1. (2.35)

According to Theorem 2.4, if f is continuous in t and Lipschitz continuous in y, and the
condition (2.35) holds, then the RK method (2.34) is convergent.

Moreover, in a RK method we always assume that
ℓ−1∑
j=1

aℓj = cℓ, ℓ = 1, 2, . . . , s, (2.36)

which ensure that intermediate values zℓ provide approximations of order at least 1 to exact
values y(tk + cℓh). Conditions (2.36) are called the stage conditions for RK methods.

Example 2.6. The Butcher’s tableau of the RK2 method (2.30) is
0
1 1

1/2 1/2
while the RK2 method (2.33) has a Butcher’s tableau of the form

0
1/2 1/2

0 1

There also exist a family of third-order RK methods. The Butcher’s tableau of one of these
schemes is:

0
1/2 1/2

1 −1 2
1/6 2/3 1/6

Workout 2.14. (a) Convert the above tableau into a 3-stage RK formula. (b) Search the
internet to find another RK3 method and write down its stages.

33

A very popular explicit RK method is the following fourth-order scheme (RK4):

z1 = yk,

z2 = yk + 1
2hf(tk, z1),

z3 = yk + 1
2hf(tk + 1

2h, z2),

z4 = yk + hf(tk + 1
2h, z3),

yk+1 = yk + h

6
[
f(tk, z1) + 2f(tk + 1

2h, z2) + 2f(tk + 1
2h, z3) + f(tk + h, z4)

]
.

(2.37)

The Butcher’s tableau for this method is
0

1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 1/3 1/3 1/6

Using a similar but more tedious calculation than that was done for method (2.30), we can
show that the local truncation error for this 4-stage method is of order h5. Then by applying
the sketch given in section 2.2 for analysing general explicit methods we can show that the
global error of method (2.37) satisfies

|eN | ⩽ Ch4

which shows that this method is of fourth-order accuracy, for this reason is usually called RK4.
This is not the only fourth-order explicit RK method; there exists a family of such methods
with different Butcher’s tableaus.

Workout 2.15. Show that the RK4 method (2.37) when is applied on simple differential
equation y′(t) = f(t) (with no dependence of f on y) reduces to Simpson’s rule for numerical
integration.

Like as other explicit methods, RK methods have restricted regions of absolute stability.
For example, by applying the RK2 formula (2.29) on test equation y′(t) = λy, we obtain

yk = (1 + λh+ 1
2(λh)2)yk,

which shows that the region of absolute stability for this method is

S = {z ∈ C : |1 + z + 1
2z

2| ⩽ 1}.

This region is shown in Figure 12 (left panel). The stability regions for an RK3 method and
the RK4 method (2.37), obtained in a similar way, are shown in the middle and right sides of
Figure 12.

34

Figure 12: Absolute stability regions of Runge-Kutta methods of orders 2, 3 and 4.

Lab Exercise 2.16. Use a MATLAB code for solving the IVP

y′(t) = 1
1 + t2

− 2[y(t)]2, 0 ⩽ t ⩽ 10, y(0) = 0.

using RK2 and RK4 formulas with stepsizes h = 0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625. Plot
the error functions in each case and determine numerical orders of convergence. The exact
solution for this IVP is y(t) = t/(1+t2). Use this information to calculate errors and orders.

Lab Exercise 2.17. Use the RK2 method to solve

y′(t) = −y(t) + t0.1(1.1 + t), y(0) = 0

whose exact solution is y(t) = t1.1. Solve the equation on interval [0, 5] and com-
pute the solution and errors at times t = 1, 2, 3, 4, 5. Use different stepsizes h =
0.1, 0.05, 0.025, 0.0125, 0.00625. Compute the order of convergence and compare with theo-
retical order 2 of the RK2 method. Explain your results.

Workout 2.18. What difficulty arises in attempting to use a Taylor series method of order
⩾ 2 to solve the equation

y′(t) = −y(t) + t0.1(1.1 + t), y(0) = 0.

What does it tell us about the solution?

Workout 2.19. (a) Write down the RK4 method for solving linear system of equations
y′(t) = Ay(t) for A ∈ Rn×n with initial condition y(0) = y0. (b) How many matrix-
vector multiplications should be performed in each step? (c) Optional: estimate the overall
complexity of the method to approximate y(tN).

35

3 Stiff differential equations
At the beginning of 1950’s, a new difficulty was discovered in numerical solution of some

practical ODEs, which has come to be known as stiffness, and led to some new concepts of
stability by Germund Dahlquist3 and others. Numerical methods with finite absolute stability
regions (such as explicit methods) all fail to produce accurate and stable solutions for stiff
problems unless the step size h is chosen excessively small which is impractical and inefficient
in many situations.

3.1 What is stiffness?
It is difficult to formulate a precise definition for stiffness. One may argue that a stiff

equation includes some terms that can lead to rapid variation (fast transients) in the solution.
However, there exist some ODEs with smooth solutions4 but are known as stiff problems. This
means that the stiffness is independent of the solution but it is a property of the ODE itself.
However, even if a stiff problem has a smooth solution, a slight perturbation to the solution at
any time results in another solution curve that has a rapid variation. The following example
from [LeVeque:2007] will make this more clear.

Example 3.1. Consider the ODE

y′(t) = λ(y − cos t)− sin(t) (3.1)

from Example 2.4. For initial value y(0) = 1, this problem has smooth solution y(t) = cos t
independent of the value of λ. If we change the initial condition to y(t0) = y0 that does not
lie on this curve, then the solution is

y(t) = eλ(t−t0)(y0 − cos t0) + cos t

If Re(λ) < 0, this function approaches cos t exponentially quickly with decay rate Re(λ). In
Figure 13 different solution curves for this equation with different choices of t0 and y0 with
λ = −2 and λ = −20 are plotted.

0 2 4 6 8 10
t

−2

−1

0

1

2

y(
t)

0 2 4 6 8 10
t

−2

−1

0

1

2

y(
t)

3Germund Dahlquist (1925–2005) was a Swedish mathematician known primarily for his early contributions
to the theory of numerical solution of ODEs.

4In this section, by a ‘smooth solution’ we mean a function without any rapid transition.

36

Figure 13: Solution curves of a stiff problem with different initial times and initial values for
λ = −2 (left) and λ = −20 (right).

We observe rapid transients in solution curves for λ = −20. The perturb solutions quickly
approach toward the particular solution y(t) = cos t. This problem is known as a stiff
problem for values of λ with large real part magnitudes.

The phenomenon we observed in Example 3.1 will cause a serious numerical difficulty even if
the initial condition is chosen such that the exact solution does not exhibit any rapid transient
(for example y(t) = cos t with y(0) = 1 in ODE (3.1)). Because any numerical method is
subjected to local truncation and roundoff errors which act as a perturbation to the solution
and move us away from the smooth solution to a solution with a rapid transient. Numerical
methods with finite absolute stability regions are unstable unless the time step is small relative
to the time scale of the rapid transient. In the case of a smooth true solution it seems that a
reasonably large step length would work, but the numerical method must always deal with the
rapid transients introduced by truncation and roundoff errors in every time step. Consequently,
a very small step length is needed to avoid the instability.

Example 3.2. Consider the ODE (3.1) on interval [0, 10] with initial condition y(0) = 1. Let
λ = −104. The numerical solution using the explicit RK4 method (2.37) with step length
h = 0.00028 blows up as is shown in the left hand side of Figure 14. Smaller values of h such
as h = 0.00025 leads to a stable solution that is shown in the right hand side. However,
this stable calculations requires lots of function evaluations in the procedure of RK method.
Note that, the complexity will quickly increase for a system of differential equations.

0 2 4 6 8
t

−5

−4

−3

−2

−1

0

y(
t)

1e303

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

y(
t)

Figure 14: Numerical solution of ODE (3.1) with λ = −104 and initial condition y(0) = 1 using
the RK4 method: unstable solution with h = 0.00028 (left) and a stable solution with h = 0.00025
(right). In the left panel, the values on the y-axis are multiplied by huge number 10303.

It is better to look for other efficient numerical methods that can solve such a stiff problem
stably using a much larger step size. For instance, the implicit Euler’s method will do this
job perfectly (write and execute the code). The trapezoidal method works much better than
explicit methods but still introduces some limitations in the presence of rapid transients in

37

the solution.

Lambert, after examining some other statements, finally has suggested the following defini-
tion for stiff problems [Lambert:1991].

Definition 3.1. A stiff ODE is an equation for which certain numerical methods with finite
absolute stability regions for solving the equation are numerically unstable, unless the step
size is taken to be excessively small in relation to the smoothness of the exact solution.

Explicit methods such as forward Euler’s method and explicit RK methods (and in fact
all explicit methods) are examples of numerical methods with finite absolute stability regions.
Definition 3.1 reveals the fact that solving a stiff problem with an explicit method (or an
implicit method with a finite absolute stability region) is very costly. We also note that the
stiffness may vary over the total interval of integration.

3.2 Stiff systems
Now, let us look at a system of ODEs. Consider the linear system y′(t) = Ay(t) + g(t) on

interval [0, b] with a constant matrix A of size n × n, and initial condition y(0) = y0. The
exact solution of this ODE is

y(t) = eAty0 +
∫ t

0
eA(t−τ)g(τ)dτ.

If A has distinct eigenvalues λk ∈ C and corresponding eigenvectors vk ∈ Cn, then

y(t) =
n∑

k=1
cke

λktvk + g̃(t)

where c = V −1y0 for V = [v1, . . . ,vn], and g̃(t) is the integral term (particular solution) in
solution y(t). Let us assume that

Re(λk) < 0, k = 1, 2, . . . , n,

which imply that all terms eλktvk go to 0 as t → ∞, so that the solution y approaches g̃(t)
asymptotically as t→∞. The term eλktvk decreases monotonically if λk is real and sinusoidally
if λk is complex. Thus, the term

n∑
k=1

cke
λktvk

can be viewed as the transient solution and the term g̃(t) as the steady state solution. If Re(λk)
is large then the corresponding term cke

λktvk will decay quickly as t increases and is thus called
a fast transient; if Re(λk) is small the corresponding term cke

λktvk decays slowly and is called
a slow transient. Let λ and λ be defined such that

|Re(λ)| ⩽ |Re(λk)| ⩽ |Re(λ)|, k = 1, 2, . . . n.

If our aim is to reach the steady-state solution, then we must keep integrating until the slowest
transient is negligible. The smaller |Re(λ)| is, the longer we must keep integrating. If, however,
the method we are using has a finite region of absolute stability, we must ensure that the step

38

size h is sufficiently small for λkh ∈ S, k = 1, 2, . . . , n to hold. Clearly a large value of |Re(λ)|
implies a small step size h. We therefore get into a difficult situation if |Re(λ)| is very large
and |Re(λ)| is very small; we are forced to integrate for a very long time with an excessively
small step size. It seems natural to take the ratio

rS := |Re(λ)|
|Re(λ)|

the stiffness ratio, as a measure of the stiffness of the system [Lambert:1991]. While rS is
often a useful quantity, one should not rely entirely on this measure to determine whether
a problem is stiff. For example, a scalar problem can be stiff while the rS is always 1 since
there is only one eigenvalue. Or, in a system of equations if one eigenvalue is zero then the
contribution of this eigenvalue to the exact solution is a constant term. If the moduli of the
real parts of the remaining eigenvalues are not particularly large, the system is not stiff, yet
the stiffness ratio is now infinite.

Example 3.3. Consider the following systems of ODEs [Lambert:1991]y′
1

y′
2

 =
−2 1

1 −2

y1

y2

+
 2 sin t
2(cos t− sin t)

 ,
y1(0)
y2(0)

 =
2
3

 (3.2)

and y′
1

y′
2

 =
−2 1
998 −999

y1

y2

+
 2 sin t
999(cos t− sin t)

 ,
y1(0)
y2(0)

 =
2
3

 . (3.3)

Both problems have the same exact solutiony1(t)
y2(t)

 = 2e−x

1
1

+
sin t
cos t

 .
The plots of these solutions on interval [0, 10] are given in Figure 15. Both solutions are
smooth (without any rapid transients).

0 2 4 6 8 10
t

−1

0

1

2

3

y(
t)

y1(t)
y2(t)

Figure 15: Exact solutions of systems (3.2) and (3.3)

We employ the explicit Euler’s method for both systems. Everything is perfect for system
(3.2), but unstable results are obtained for system (3.3) unless the step size is chosen smaller
than 0.002. System (3.3) is stiff but system (3.2) is non-stiff. The eigenvalues of the matrix
in (3.2) are −1 and −3, and if we consider the general initial condition to y(0) = y0 then

39

the exact solution is y1(t)
y2(t)

 = c1e
−t

1
1

+ c2e
−3t

 1
−1

+
sin t
cos t

 .
where c1 and c2 are determined by imposing the initial value y0. The eigenvalues of the
matrix in (3.3) are −1000 and −1 and the exact solution for an arbitrary initial value y0 isy1(t)

y2(t)

 = c1e
−t

1
1

+ c2e
−1000t

 1
−998

+
sin t
cos t

 .
In the second solution the exponential term e−1000t produces a rapid transient in the solution.
Although the initial value y0 = [2, 3]T gives c1 = 2 and c2 = 0 for both systems (therefore
annihilates the rapid transient in the second system), slight perturbations (truncation and
roundoff errors) in numerical solution at different time levels produce a component on
the rapid transient term and introduce the mentioned numerical difficulties. The same
happens even if we choose initial conditions such that c1 = c2 = 0; in that case the explicit
Euler’s and explicit RK methods are unable to integrate even the very smooth solution
y(x) = [sin t, cos t]T unless at very small stepsizes. Finally, we note that the stiffness ratio
is rS = 3 for system (3.2) while it is rS = 1000 for system (3.3).

The situation would be more complicated for nonlinear system of equations. For the scaler
case the partial derivative ∂f

∂y
or Lipschitz constant of f with respect to y, and for nonlinear

system the eigenvalues of the Jacobian matrix Jf (t,y) may give an insight to discover the
stiffness. As we pointed out at the end of subsection 1.4, the stability analysis through the
Jacobian matrix has only a local validity. Nevertheless, the stiffness ratio

rS = max
t∈[t0,b]

maxk |Re(λk(t))|
mink |Re(λk(t))| ,

where λk(t) are eigenvalues of Jf (t,y), may give an insight to stiffness of system y′(t) = f(t,y).

Remark 3.1. Sometimes we can indicate the stiffness of system of ODEs y′(t) = f(t,y) by
looking at the coefficients on the right-hand side. When these coefficients vary significantly
in magnitude, it suggests that the system is likely stiff. For example the following system
of equations for Robertson’s auto-catalytic chemical reaction

y′
1 = −0.04y1 + 104y2y3

y′
2 = 0.04y1 − 104y2y3 − 3× 107y2

2

y′
3 = 3× 107y2

2

is a stiff system of ODEs, as it contains coefficients with different sizes ranging from 0.04
to 3× 107. This is also the case for system (3.3) in Example 3.3.

A practical way to detect the stiffness of an ODE is to attempt to solve it using a method
with a finite absolute stability region with a moderate step size and see whether the computed
solution is blown up or is not.

40

Workout 3.2. Consider solving Robertson’s auto-catalytic chemical system of ODEs, as
described in Remark 3.1, over the time interval [0, 500] with initial conditions y1(0) = 1,
y2(0) = y3(0) = 0, using the Explicit Euler and Explicit RK4 methods. Ensure that the
chosen step length h is sufficiently small to yield stable results. Upon plotting the solutions,
provide your observations. What distinguishes the behavior of the solution y2 from the
others?

3.3 A-stability
It is clear from the considerations of this section that those methods with bounded stability

regions are inappropriate for stiff problems. Such class of methods includes all explicit methods
and even some implicit methods such as Adams-Moulton methods. On the other hand, an
implicit method that its region of absolute stability includes the whole of the left half-plane
is efficient for stiff problems because there will be no stability restriction on the step size h
provided that all the eigenvalues have negative real parts, as is often the case in practice.

Definition 3.3. A numerical ODE solver is called A-stable if its absolute stability region
contains the whole left-half plane {z ∈ C : Re(z) ⩽ 0}.

Among the methods we have already studied, the implicit Euler’s method and the trape-
zoidal method are A-stable. As a negative result, the Dahlquist’s second barrier theorem states
that any A-stable linear multistep method is at most second order accurate, and in fact the
trapezoidal method is the A-stable method with smallest truncation error. However, higher
order A-stable implicit RK methods (multi-stage methods) do exist.

For many stiff problems the eigenvalues are located near the negative real axis or at most in
a wedge π−α ⩽ arg(z) ⩽ π+α for an angle α ∈ [0, π/2]. For such problems, we just need the
stability region to contain such a wedge rather than the whole left-half plane. See Figure 16.

Definition 3.4. A numerical ODE solver is called A(α)-stable, for α ∈ [0, π/2], if its
absolute stability region contains the wedge {z ∈ C : π − α ⩽ arg(z) ⩽ π + α}.

α

α

Figure 16: A region of A(α)-stability

41

An A-stable method is A(π/2)-stable. A method is A(0)-stable if the negative real axis
itself lies in the stability region. Some numerical methods with A(α)-stability property which
are appropriate for stiff ODE problems have been developed. For example we can mention the
implicit RK methods and the backward differentiation formulas (BDF) which will be
introduced in sections 5 and 6.3. To see how to solve stiff ODEs using MATLAB, refer to the
section 7 below.

3.4 L-stability
As we pointed out, both implicit Euler and trapezoidal methods are A-stable but there is

a major difference between the stability regions of these methods. The trapezoidal method
is stable only in the left half-plane, whereas implicit Euler’s method is stable not only in the
left-half plane but also over much of the right half-plane. See Figures 9 and 11. Let us solve
the stiff ODE (3.1) on interval [0, 10] for λ = −104 with both methods. First, we assume
that y(0) = 1 which corresponds to the smooth exact solution y(t) = cos t. Let h = 0.2.
Both methods provide satisfactory results with norm-infinity error 9.998× 10−6 for the Euler’s
method and 3.346 × 10−7 for the trapezoidal method. Remember that the explicit methods
failed to numerically solve this problem even at much smaller step sizes. It is expectable that
the trapezoidal method is more accurate because its convergence order is 2 compared with the
convergence order of the implicit Euler’s method which is only 1. However, this is not the
whole story. Let us change the initial value to y(0) = 1.5 which corresponds to exact solution

y(t) = 1
2e

−10000t + cos t

which includes a fast transient term. The initial value y(0) = 1.5 rapidly (at a time scale of
about 10−4) decreases toward the particular solution cos t. The approximate solutions with
h = 0.2 are plotted in Figure 17.

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

1.5

y(
t)

y(t)
yN(t)

0 2 4 6 8 10
t

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y(
t)

y(t)
yN(t)

Figure 17: Numerical solution of stiff problem (3.1) with λ = −104 and y(0) = 1.5 with step size
h = 0.2, the implicit Euler’s method (left) and the trapezoidal method (right).

Both methods are still absolutely stable, but the result of trapezoidal method shows unsatisfac-
tory oscillations. For absolute stability we test on equation y′ = λy and obtain yk+1 = R(z)yk

42

such that
R(z) = 1

1− z , |R(z)| → 0 as z →∞,
for the implicit Euler’s method and

R(z) =
1 + 1

2z

1− 1
2z
, |R(z)| → 1 as z →∞,

for the trapezoidal method. For problems with rapid transients, we aim for a method that can
effectively damp in a single time step, because we intend to use a steplength much larger than
the true decay time of the transient. To illustrate this point, refer to Figure 18, which provides
a close-up comparison of the exact and numerical solutions obtained with each method over
the time interval [0, 2].

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

y(
t)

y(t)
yN(t)

0.0 0.5 1.0 1.5 2.0
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
y(
t)

y(t)
yN(t)

Figure 18: Closeup of solutions: the implicit Euler’s method (left) and the trapezoidal method (right).

At the first time step, the implicit Euler’s method damps very effectively toward the steady
state solution cos t and continues to produce very accurate results thereafter. In fact, this
method, if is applied on stiff ODE (3.1), yields

yk+1 = 1
1 + λh

yk −
λh

1 + λh
cos tk+1 −

h

1− λh sin tk+1,

which means
yk+1 ≈ cos tk+1

because λh = −104 × 0.2 = −2000 and
1

1 + λh
= 1

2001
.= 0.0005 ≈ 0.

This implies that by the second time step we approximately fall on the steady state solution
cos t. The trapezoidal method is also stable and the results stay bounded, however, we have

1 + 1
2λh

1− 1
2λh

= − 999
1001

.= −0.9980 ≈ −1.

43

By applying on stiff ODE (3.1), this method gives

yk+1 =
1 + 1

2λh

1− 1
2λh

yk −
1
2λh

1− 1
2λh

[cos tk+1 + cos tk]−
1
2h

1− 1
2λh

[sin tk+1 + sin tk],

or,
yk+1 ≈ −yk + [cos tk+1 + cos tk].

At the first time step, we have y1 ≈ −1.5 + [cos 0 + cos 0.2] ≈ 0.48 which falls below the
steady state solution. Moving to the second time step, y2 is 0.48 + [cos 0.2 + cos 0.4] ≈ 2.38,
overshooting the steady-state solution. This pattern persists in subsequent time steps, resulting
in the zigzag-shaped solution observed on the left-hand side of Figure 17.

The results of the trapezoidal method can be improved if a small enough steplength h is
used. In Figure 19, numerical solutions with h = 10−2 and h = 10−4 are shown.

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

1.5

y(
t)

y(t)
yN(t)

0 2 4 6 8 10
t

−1.0

−0.5

0.0

0.5

1.0

1.5

y(
t)

y(t)
yN(t)

Figure 19: Numerical solution of stiff problem (3.1) with λ = −104 and y(0) = 1.5 using the trape-
zoidal method, with h = 10−2 (left) and h = 10−4 (right).

With step length h = 10−2 we still have oscillations near the initial time, while with step length
h = 10−4 a perfect numerical solution is observed. We note that, h = 10−4 is identical with
the time scale of the transient term. This means that the trapezoidal method works perfect
provided that the step size is chosen equal or smaller than the time scale of the transient terms
in the solution.

However, our primary aim was to develop efficient numerical methods that be able to inte-
grate the stiff problems with a rather large step length. What which makes the implicit Euler’s
method different from the trapezoidal method is the following property that the implicit Euler’s
method possesses while the trapezoidal method does not.

Definition 3.5. A one-step method is called L-stable if it is A-stable and lim
z→∞
|R(z)| = 0.

The implicit Euler method is L-stable. We will introduce some higher order L-stable methods
in the forthcoming sections.

44

4 Adaptive time stepping
All solvers presented up to here use a single stepsize h in all iterations. It is desirable to have

an algorithm that can adjust the stepsize hk in each step k to ensure that the local truncation
errors at all steps remain below a certain tolerance:

|τk| ⩽ ε, for all k. (4.1)

In certain parts of the domain, where the derivatives of y have small amplitudes, larger stepsizes
may suffice, resulting in a reduced computational expense due to a lower number of function
evaluations. Since y and its derivatives are unknown the truncation error can not be calculated
analytically. To do so, we need an estimate for τk at each step, and a way to select a new
stepsize that will ensure that the estimated error is acceptably small.

Remark 4.1. It is more reasonable to keep the global error under control rather than the
local errors (4.1). Because bounding the τk’s individually does not lead to a natural bound
on the global error, since it ignores the propagation of the error in each step. But local
control is simple and is good enough in practice if we take local tolerances smaller than
what it seems necessary. See the following.
Now we address the question of how to estimate the local errors and compute the new time

step.

4.1 Using two methods of different order
A good strategy is to use two methods of different orders. Informally, we use the more

accurate one as an estimate for the exact solution, to estimate the error for the less accurate
method. Assume that for a given stepsize h we have two methods:

• Method A: with local order p and truncation error τk+1(h) to compute yk+1,

• Method B: with local order p+ 1 to compute a more accurate value ỹk+1.
Then the estimated local truncation error is

ek+1 := ỹk+1 − yk+1.

If we suppose that the value at time step k is exact, i.e. yk = y(tk), then by definition of local
truncation errors we have

y(tk+1) = yk+1 + τk+1(h)

y(tk+1) = ỹk+1 +O(hp+1).
(4.2)

Since the local error of Methpd A is O(hp), we can expand the truncation error τk+1(h) as

τk+1(h) = Chp +O(hp+1),

for a constant C. By subtracting two equations in (4.2) and taking absolute value we obtain

|ek+1| = |ỹk+1 − yk+1| = |C|hp +O(hp+1).

45

By dropping the term O(hp+1), we approximately have

|τk+1(h)| ≈ |C|hp ≈ |ek+1|. (4.3)

Consequently, if the error is small, i.e.,

|ek+1| ⩽ ε (4.4)

then the step is accepted and the more accurate solution ỹk+1 is assigned as an approximation
for y(tk+1). The algorithm then goes to the next time step tk+1 + h. Otherwise the tentative
value ỹk+1 is rejected and the step must be redone by a smaller steplength hnew. To estimate
hnew we use this fact that it must satisfy

|τk+1(hnew)| ≈ |C|hp
new ⩽ ε.

Taking the ratio of this and the estimate (4.3) we obtain(
hnew

h

)p

≲
ε

|ek+1|
which gives an estimate for hnew as

hnew ≲ h

(
ε

|ek+1|

)1/p

.

In practice, because this is just an estimate, one puts an extra coefficient in to be safe, typically
something like

hnew := 0.8h
(

ε

|ek+1|

)1/p

. (4.5)

This formula decreases the stepsize if the error is large. This process should be repeated by
replacing h by hnew until (4.4) is satisfied and the step is accepted. Sometimes, other controls
are added; like not decreasing or increasing h by too much per time step.

4.2 Embedded RK methods
A disadvantage of the above adaptive scheme is that each step involving error estimation

incurs a cost that is roughly twice that of a fixed step method because two methods are run.
Nonetheless, by carefully selecting the methods, we can generate some computational overlap
and thereby reduce the workload.

An approach is to use an embedded pair of RK formulas where most of the f values
are the same for both methods A and B. For example, suppose we wish to create a pair for
estimating the error in Euler’s method (RK1) as Method A. We also need a method with order
2 (local order 3) as Method B. Recall the RK2 method (2.32) which can be written as

f1 = f(tk, yk)

f2 = f
(
tk + h

2 , yk + h

2f1

)
ỹk+1 = yk + hf2

46

Then the value yk+1 is computed via the Euler’s method by

yk+1 = yk + hf1,

which requires essentially no extra function evaluation; the value of f1 is used for both. Then
following the rule (4.5) the adapted stepsize is computed as

hnew = 0.8h
(

ε

|ek+1|

)1/2

where ek+1 = ỹk+1 − yk+1 = h(f2 − f1). That value yk+1 is not actually needed to compute
because the error estimation ek+1 is obtained in terms of fk values, and the more accurate
value ỹk+1 is selected as an approximation for y(tk+1). The initial stepsize h = ε1/3 can be used
because the local error in the first step is supposed to be of order h3. The MATLAB code for
such scheme is given here.

1 function [T,Y] = ODE12(f,y0 ,tspan ,tol)
2 % Adaptive embedded method with RK1 and a RK2 formulas
3 % Inputs:
4 % f: right hand side function f(t,y)
5 % y0: initial condition
6 % tspan: [t0 , tfinal]
7 % tol: predefined error
8 % Output:
9 % T: vector of time steps

10 % Y: solution
11 t = tspan (1); Y = y0; T = t;
12 h = tol ^(1/3);
13 while t <= tspan (2)
14 f1 = f(t,y0);
15 f2 = f(t+h/2,y0+h/2* f1);
16 e = norm(h*(f2 -f1),inf);
17 if e < tol
18 yt = y0 + h*f2;
19 y0 = yt; t = t + h;
20 Y = [Y yt]; T = [T t];
21 h = tol ^(1/3);
22 else
23 h = 0.8*h*(tol/e)^(1/2);
24 end
25 end

47

Example 4.1. As an example, consider the IVP

y′ = 1
y2 + 0.01 , 0 ⩽ t ⩽ 3,

y(0) = 0

We solve this equation using the above MATLAB code with tolerance ε = 10−3.

1[t,y] = ODE12 (@(t,y) 1/(y ^2+0.01) ,0,[0 3] ,10e -3);
2plot(t,y(1 ,:) ,'-ob','MarkerFaceColor ','b')

Figure 20: Numerical solution using the adaptive scheme

Plot of the solution is given in Figure 20. The scheme adapts much smaller stepsizes at
the beginning of the time interval (where the solution takes more action) but remarkably
larger stepsizes at remaining parts. This leads to saving memory and time specially when
the underlying problem is a large system of equations with a long time interval.

Embedded methods of higher order can be constructed by the right choice of coefficients.
One popular embedded pair is the Runge-Kutta-Fehlberg method, which uses a fourth-order
and fifth-order formula that share most of the fk values. A formula of this form with stepsize
selected by (4.5) is the strategy employed, for instance, by MATLAB’s ode45.

5 Implicit Runge-Kutta methods
While high convergence order and ease of implementation are advantages of explicit RK

methods and make them popular for solving various types of ODEs, their bounded stability
regions render them impractical for a variety of important and challenging problems, such as
stiff differential equations. Therefore, it is natural to develop, among other techniques, a class
of implicit RK methods.

48

An s-stage implicit Runge-Kutta method has the form

zℓ = yk + h
s∑

j=1
aℓjf(tk + cjh, zj), ℓ = 1, 2, . . . , s,

yk+1 = yk + h
s∑

j=1
bjf(tk + cjh, zj).

The Butcher’s tableau for this formula has the form
c1 a1,1 a1,2 · · · a1,s

c2 a2,1 a2,2 · · · a2,s

...
cs as,1 as,2 · · · as,s

b1 b2 · · · bs

Here, the diagonal and upper diagonal parts of the tableau may have nonzero values. To
advance form time level tk to tk+1 using an s-stage implicit RK method we should solve a system
of s nonlinear equations for s unknowns z1, z2, . . . , zs. For a system of equations y′ = f(t,y)
with m differential equations we must solve a system of sm equations in sm unknowns at each
time step.

There typically are some ways to derive coefficients {bj, cℓ, aℓ,j} for a given accuracy, provided
the number of stages is sufficiently large. The dominant approach converts the IVP in to integral
equation

y(t) = y(tk) +
∫ t

tk

f(τ, y(τ))dτ, t ∈ [tk, tk+1],

uses a polynomial interpolation of order s for f(τ, y(τ)) on a predefined set of interpolation
points τ1, . . . , τs ∈ [tk, tk+1], and collocate the resulting equation at t = τ1, . . . , τs to predict
z1, z2, . . . , zs and yk+1. This approach is called collocation. We omit derivation details but
we present the Butcher’s tableaus for some formulas instead. An extensive theory has been
developed by Butcher for analyzing these methods.

The tableau for a two-stage formula with good convergence and stability properties is

(3−
√

3)/6 1/4 (3− 2
√

3)/12
(3 +

√
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2
This method is also called two-stage Gauss method because the transferred Gauss-Legendre

points {−
√

3
3 ,

√
3

3 } are used for the polynomial interpolation. It can be shown that the local
truncation error for this method has size O(h5), and the global error behaves like O(h4).

Workout 5.1. Show that the absolute stability region of the two-stage Gauss method is

S =
{
z ∈ C :

∣∣∣∣∣1 + 1
2z + 1

12z
2

1− 1
2z + 1

12z
2

∣∣∣∣∣ ⩽ 1
}
.

Show that the negative part of the real line falls in S. More generally, show that the left-half
plane falls in S.

49

The nice stability feature of the two-stage Gauss method, as outlined in Workout 5.1, comes
at the cost of solving a nonlinear system of algebraic equations for each time step. In general,
a fully implicit RK method where each zℓ value depends on all the zℓ values, can be costly to
implement for a system of ODEs. This is because a nonlinear system of sm equations in sm

unknowns must be solved at each time step. However, a subclass of implicit methods that are
simpler to implement are the diagonally implicit Runge–Kutta methods (DIRK methods),
in which aℓ,j = 0 for j > ℓ, i.e., zℓ depends on zj for j = 1, . . . , ℓ. An s-stage DIRK method,
when applied to a system of m nonlinear ODEs, requires solving a sequence of s nonlinear
systems, each of size m, rather than a coupled set of sm equations.

As an example of a 3-stage DIRK method, we can mention a method with following Butcher
tableau:

0 0
1/2 1/4 1/4

1 1/3 1/3 1/3
1/3 1/3 1/3

This method is of second order accuracy, and also is known as the TR-BDF2 method.

6 Multistep methods
All methods we considered so far are single-step or one-step methods, since at a typical

step yk+1 is determined solely from yk. In this section we study the multistep methods where
the solution yk+1 depends on more than one previous values, i.e., yk, yk−1, Three families
of such methods are widely used; Adams-Bashforth (AB) and Adams-Moulton (AM)
methods and backward differentiation formulas (BDF).

Again, we reformulate the solution of IVP y′(t) = f(t, y) at t = tk+1 as

y(tk+1) = y(tk) +
∫ tk+1

tk

f(t, y(t))dt. (6.1)

A numerical scheme for computing y(tk+1) can be obtained if the integral on the right-hand side
of (6.1) is approximated by a numerical quadrature. A numerical quadratures for computing
a definite integral of the form ∫ tk+1

tk

g(t)dt

can be developed by replacing g with an interpolation polynomial p of a certain degree. In
a q-step AB method we assume that p interpolates g at points {tk−q, . . . , tk−1, tk} while in a
q-step AM method at points {tk−q+1, . . . , tk, tk+1}. In AM methods the solution yk+1 depends
on already computed values yk, yk−1, . . . , yk−q thus AB methods are explicit. In AM methods,
on the other hand, yk+1 depends on q − 1 previous values and yk+1 itself, thus AM methods
are implicit.

50

6.1 Adams-Bashforth methods
Let q = 1. The linear interpolant of g at points {tk−1, tk} then is

p1(t) = 1
h

[(tk − t)g(tk−1) + (t− tk−1)g(tk)],

with error function
e(t) = g(t)− p1(t) = 1

2(tk − t)(t− tk−1)g′′(ζk),

for some tk−1 ⩽ ζk ⩽ tk. Integrating over [tk, tk+1] yields∫ tk+1

tk

g(t)dt =
∫ tk+1

tk

p1(t) +
∫ tk+1

tk

e(t) = h

2 [3g(tk)− g(tk−1)] + 5h3

12 g
′′(ξk)

for some tk−1 ⩽ ξk ⩽ tk+1. Applying this to (6.1), gives

y(tk+1) = y(tk) + h

2
[
3f(tk, y(tk))− f(tk−1, y(tk−1))

]
+ 5h3

12 y
′′′(ξk). (6.2)

Dropping the error term and replacing the exact values y(tk) by the approximate values yk, we
obtain the 2-step AB formula

yk+1 = yk + h

2
[
3f(tk, yk)− f(tk−1, yk−1)

]
, k = 1, 2, (6.3)

At the initial level k = 1, computing y2 requires both y0 and y1, yet we only have y0 from
the initial value. The value of y1 must be computed using another method. If y1 is obtained in
such a way that |y1 − y(t1)| ⩽ c1h

2 then it can be proved that the global error of the method
(6.3) satisfies

|eN | ⩽ Ch2

provided that h is sufficiently small, f(t, y) is Lipschitz continuous and y is 3 times continuously
differentiable. See section 6.4. To calculate y1 we have at least two possibilities from previous
sections. The explicit Euler’s method gives

y1 = y0 + hf(t0, y0)

with error |y(t1)− y1| ⩽ c1h
2, and the RK2 method

y1 = y0 + h

2 [f(t0, y0) + f(t0 + h, y0 + hf(t0, y0))]

with error |y(t1)− y1| ⩽ c1h
3, which is more than adequate.

The 3-step AB method is obtained by interpolating g at points {tk−2, tk−1, tk} and then
integrating over [tk, tk−1] as is required in (6.1). The interpolant will be

p2(t) = ℓ0(t)g(tk) + ℓ1(t)g(tk−1) + ℓ2(t)g(tk−2)

with Lagrange functions

ℓ0(t) = 1
2h2 (t− tk−1)(t− tk−2),

ℓ1(t) = 1
h2 (t− tk)(t− tk−2),

ℓ2(t) = 1
2h2 (t− tk)(t− tk−1),

51

and interpolation error

e(t) = g(t)− p2(t) = 1
6(t− tk)(t− tk−1)(t− tk−2)g′′′(ζk)

for some tk−2 ⩽ ζk ⩽ tk. Exact integration of the polynomial p2 and error term e reveals that∫ tk+1

tk

g(t)dt = h

12 [23g(tk)− 16g(tk−1) + 5g(tk−1)] + 3h4

8 g′′′(ξk)

for some tk−2 ⩽ ξk ⩽ tk+1. Using this quadrature for (6.1) and dropping the error term, we
obtain the 3-step AB method

yk+1 = yk + h

12
[
23y′

k − 16y′
k−1 + 5y′

k−2

]
, k = 2, 3, 4, . . . , (6.4)

where y′
k = f(tk, yk). In this formula y1 and y2 values must be obtained separately by other

methods with errors at most of order h3 (such as RK2 method) to keep the global error of (6.4)
of order h3.

Higher order AB methods can be derived similarly. In Table 4 the AB methods of order 1
through 4 are listed. Local truncations errors are given in the last column. See section 6.4 for
an error analysis.

Table 4: Adams-Bashfoth methods. Here by y′
k we mean f(tk, yk).

q Order Method τk+1

0 1 yk+1 = yk + hy′
k

1
2h

2y′′(ξk)

1 2 yk+1 = yk + 1
2h[3y′

k − y′
k−1] 5

12h
3y′′′(ξk)

2 3 yk+1 = yk + 1
12h[23y′

k − 16y′
k−1 + 5y′

k−2] 3
8h

4y(4)(ξk)

3 4 yk+1 = yk + 1
24h[55y′

k − 59y′
k−1 + 37y′

k−2 − 9y′
k−3] 251

720h
5y(5)(ξk)

Compared to Runge-Kutta methods with the same order of accuracy, multistep methods
require fewer evaluations of f at each time step. For instance, in the explicit RK4 method
(2.37), we need 4 function evaluations per time step, whereas in the explicit 4-step AB method,
only 1 function evaluation is needed in each time step, provided that previous function values
of f are reused.

6.2 Adams-Moulton methods
The implicit Euler’s method can be obtained by setting q = 0, i.e., by using constant

interpolation p0 = tk+1 in the AM process. Besides, with q = 1 the AM method is identical
with trapezoidal method (2.21) because the resulting quadrature in [tk, tk+1] is just the well-
known trapezoidal rule which is obtained by linear interpolation on points {tk, tk+1}. For

52

q = 2 the interpolant p2 should set up on points {tk−1, tk, tk+1} and integration should apply
on interval [tk, tk+1]. The resulting method is the 2-step AM method listed in the second row
of Table 5. Other AM methods up to order 4 are given in this table with the corresponding
truncation errors in the last column. As we observe, the h powers in local truncation errors are
the same as their counterparts in the table of AM methods. However, the constants behind
the h are remarkably smaller in the AM methods. The error analysis is given in section 6.4
below.

Table 5: Adams-Moulton methods. Here by y′
k we mean f(tk, yk).

q Order Method τk+1

0 1 yk+1 = yk + hy′
k+1 −1

2h
2y′′(ξk)

1 2 yk+1 = yk + 1
2h[3y′

k+1 − y′
k] − 1

12h
3y′′′(ξk)

2 3 yk+1 = yk + 1
12h[5y′

k+1 + 8y′
k − y′

k−1] − 1
24h

4y(4)(ξk)

3 4 yk+1 = yk + 1
24h[9y′

k+1 + 19y′
k − 5y′

k−1 + y′
k−2] − 19

720h
5y(5)(ξk)

Discussion on using other methods with consistent accuracies for calculating few initial
values to bootstrap the AB methods is applicable here for the AM methods as well.

Since AM methods are implicit, an initial guess y(0)
k+1 and an iteration on yk+1 are needed

in each time step. A choice for initial guess can be a solution of an AB method of the same
order. For example, to implement the AM method of order 3 we may write

y
(0)
k+1 = yk + 1

12h[23y′
k − 16y′

k−1 + 5y′
k−2],

y
(1)
k+1 = yk + 1

12h[5f(tk+1, y
(0)
k+1) + 8y′

k − y′
k−1].

If h is sufficiently small, we can accept y(1)
k+1 as the solution yk+1. Otherwise, we can proceed

with more iterations at the expense of additional evaluations of f(t, y).

6.3 Backward differentiation formulas (BDF)
Another class of efficient numerical methods with excellent stability properties is the back-

ward differentiation formulas (BDF). As the name implies, they are backward (implicit) for-
mulas. For constructing a BDF of order q, we assume that p is a polynomial of degree q that
interpolates y(t) at points {tk+1, tk, . . . , tk−q+1} for k ⩾ q − 1:

p(t) =
q−1∑

j=−1
ℓj(t)y(tk−j) (6.5)

where ℓj(t), j = −1, . . . , q − 1 are Lagrange polynomials on points {tk+1, tk, . . . , tk−q+1}. Then
we use

p′(tk+1) ≈ y′(tk+1) = f(tk+1, y(tk+1)). (6.6)

53

Since the interpolation points are equidistance with distance h, we can use the change of
variable

θ = t− tk+1

h

to simplify the notation. This change of variable maps the interpolation points to integer set
{0,−1,−2, . . . ,−(k − q)}. In particular, t = tk+1 is mapped to θ = 0. If Lagrange functions
on this scaled points are denoted by ℓ̃j(θ), we can simply show that

ℓj(t) = ℓ̃j(θ) and ℓ′
j(t) = 1

h
ℓ̃j(θ).

On the other hand, the Lagrange interpolation error is

e(t) =(t− tk+1)(t− tk) · · · (t− tk−q+1)
(q + 1)! y(q+1)(ζk(t))

=h
q+1θ(θ − 1) · · · (θ − k + q)

(q + 1)! y(q+1)(ζk(t))

for some tk−q+1 ⩽ ζk(t) ⩽ tk+1. The error of differentiation in (6.6) at t = tk+1 (or θ = 0) then
is

e′(tk+1) = 1
h

hq+1(−1)k−q(k − q)!
(q + 1)! y(q+1)(ξk) =: τ̃k+1, (6.7)

where ξk = ζk(tk+1). Combining (6.5) and (6.6) and adding the error term give
1
h
ℓ̃′

−1(0)y(tk+1) + 1
h

q−1∑
j=0

ℓ̃′
j(0)y(tk−j) = f(tk+1, y(tk+1)) + τ̃k+1.

By setting

β = 1
ℓ̃′

−1(0)
, αj = −

ℓ̃′
j(0)

ℓ̃′
−1(0)

, j = 0, . . . , q − 1, (6.8)

we obtain
y(tk+1) =

q−1∑
j=0

αjy(tk−j) + hβf(tk+1, y(tk+1)) + hτ̃k+1.

By replacing the exact values y(tk) by approximate values yk when dropping the truncation
error

τk+1 = hτ̃k+1 = (−1)k−q(k − q)!
(q + 1)! hq+1y(q+1)(ξk),

the q-step BDF method is obtained as

yk+1 =
q−1∑
j=0

αjyk−j + hβf(tk+1, yk+1), k = q − 1, q, q + 1, (6.9)

The coefficients β and αj can be simply computed (for example using a symbolic toolbox
such as Maple) from (6.8). In Table 6 the q-step BDF methods for q = 1, 2, . . . , 5 are given.

The case q = 1 is simply the implicit Euler’s method (2.14). All discussions concerning the
initial values y1, . . . , yq−1 and iteration for nonlinearity that we outlined for the Adams-Moulton
methods are applicable here for BDF methods.

As the local truncation error for a q-step BDF method behaves as O(hq+1), it is predictable
that the global error of such method behaves as O(hq). A general error analysis is given in
section 6.4.

54

Table 6: BDF methods. Here by y′
k+1 we mean f(tk+1, yk+1).

q Method τk+1

1 yk+1 = yk + hy′
k+1 −1

2h
2y′′(ξk)

2 yk+1 = 4
3yk − 1

3yk−1 + 2
3hy

′
k+1 −2

9h
3y′′′(ξk)

3 yk+1 = 18
11yk − 9

11yk−1 + 2
11yk−2 + 6

11hy
′
k+1 − 3

22h
4y(4)(ξk)

4 yk+1 = 48
25yk − 35

25yk−1 + 16
25yk−2 − 3

25yk−3 + 12
25hy

′
k+1 − 12

625h
5y(5)(ξk)

5 yk+1 = 300
137yk − 300

137yk−1 + 200
137yk−2 − 75

137yk−3 + 12
137yk−4 + 60

137hy
′
k+1 − 10

137h
6y(6)(ξk)

Workout 6.1. Consider solving the linear system of equations y′(t) = Ay(t) + f(t) with
initial condition y(0) = y0, given constant matrix A ∈ Rn×n and know vector function f .
Write down the BDF3 scheme for solving this system.

Lab Exercise 6.2. Let’s revisit Example 2.5 (MOL solution of the diffusion equation). Im-
pose the initial condition

u0(x) = sin(πx), 0 ⩽ x ⩽ 1.

With a spatial step size of ∆x = 0.001, apply the BDF3 method on the resulting system
of ordinary differential equations (ODEs) and compute the PDE solution with steplengths
h = 0.1, 0.05, 0.025, 0.0125, and 0.00625 up to the final time t = 0.5. Plot the errors,
compute the convergence orders, and compare them with the theoretical order q = 3. To
initiate BDF3 iterations, in addition to the initial condition y0, we require y1 and y2, which
should be computed using a one-step method with a truncation error of at least O(h3). For
instance, the trapezoidal or RK2 methods can be employed for this purpose. The exact
solution of this equation with the given initial condition is u(x, t) = e−π2t sin x, which we
can use to compute the errors and orders.
Explain the advantages of BDF3 over explicit Euler, implicit Euler, and RK methods. Recall
that when the spatial step size ∆x decreases, the size of the ODE system increases and the
system becomes stiff.

6.4 Error analysis of multistep methods
In general, a multistep method, including AB, AM, and BDF methods, can be formulated

as
yk+1 =

q∑
j=0

ajyk−j + h
q∑

j=−1
bjf(tk−j, yk−j), k ⩾ q. (6.10)

55

In both Adams methods (AB and AM methods) a0 = 1 and aj = 0 for j = 1, . . . , q. In AB
methods b−1 = 0 and in AM methods bq = 0. In BDF methods b−1 = β, bj = 0 for j = 0, . . . , q,
and aq = 0.

We present the analysis for the general form (6.10) with only a restrictive condition on
coefficients aj. The analysis will be valid for all three classes of methods mentioned above. It
also works for some one-step schemes such as implicit Euler and trapezoidal methods as they
are special cases of AM methods. The truncation error for formula (6.10) is defined as

τk+1 = y(tk+1)−
q∑

j=0
ajy(tk−j) + h

q∑
j=−1

bjy
′(tk−j), k ⩾ q. (6.11)

For function τ(h) defined by
τ(h) = 1

h
max

q⩽k⩽N
|τk|,

if we have τ(h)→ 0 as h→ 0 then we say the method (6.10) is consistent. If

τ(h) = O(hm)

for some m ⩾ 1, we say the order of consistency is m. The following theorem gives necessary
and sufficient conditions on coefficients in (6.10) to achieve the consistency.

Theorem 6.3 ([Atkinson-et-al:2009]). Let m ⩾ 1 be a given integer. For τ(h) → 0 for
all continuously differentiable function y, that is, for method (6.10) to be consistent, it is
necessary and sufficient that

q∑
j=0

aj =1, (6.12)

−
q∑

j=0
jaj +

q∑
j=−1

bj =1. (6.13)

Furthermore, to have the consistency order m, i.e., τ(h) = O(hm) for all functions y that
are m + 1 continuously differentiable, it is necessary and sufficient that (6.12) and (6.13)
hold and that

q∑
j=0

(−j)iaj + i
q∑

j=−1
(−j)i−1bj = 1, i = 2, 3, . . . ,m. (6.14)

Proof. For the proof just write the degree m Taylor expansion of y(t) around tk and
manipulate the truncation error (6.11). It is left as an exercise. ■

Workout 6.4. Write the proof of Theorem 6.3

The following theorem proves the convergence of the multistep method (6.10). The theorem
does not cover all the multistep methods but includes all methods we considered so far such
as AB, AM and BDF schemes.

56

Theorem 6.5 ([Atkinson-et-al:2009]). Consider solving the initial value problem y′(t) =
f(t, y(t)) for t ⩾ t0 with initial condition y(t0) = y0 using the multistep method (6.10). As-
sume that f(t, y) is continuous and satisfies the Lipschitz condition with respect to variable
y with Lipschitz constant L > 0. Assume that the initial errors satisfy

η(h) := max
0⩽k⩽q

|y(tk)− yk| → 0, as h→ 0.

Moreover, assume that y is continuously differentiable and the method is consistent, that
is, τ(h)→ 0 as h→ 0. Finally, assume that all coefficients aj are nonnegative:

aj ⩾ 0, j = 0, 1, . . . , q. (6.15)

Then the method (6.10) is convergent and

max
0⩽k⩽N

|y(tk)− yk| ⩽ c1η(h) + c2τ(h) (6.16)

for some suitable constants c1 and c2. If the solution y(t) is m+1 continuously differentiable,
the method (6.10) is of consistency order m, and the initial errors satisfy η(h) = O(hm)
then the convergence order is m, i.e., the error is of size O(hm).

Proof. Let ek = y(tk)− yk. By subtracting (6.10) from (6.11), we obtain

ek+1 =
q∑

j=0
ajek−j + h

q∑
j=−1

bj

[
f(tk−j, y(tk−j))− f(tk−j, yk−j)

]
+ τk+1.

Taking absolute value, using the Lipschitz condition, and using assumption (6.15) yield

|ek+1| ⩽
q∑

j=0
aj|ek−j|+ hL

q∑
j=−1
|bj| |ek−j|+ |τk+1|.

By introducing the notation

Ek = max
0⩽i⩽k

|ei|, k = 0, 1, . . . , N

we can write
|ek+1| ⩽ Ek

q∑
j=0

aj + hLEk+1

q∑
j=−1
|bj|+ hτ(h).

From (6.12) we know that the sum of ajs is 1, thus we have

|ek+1| ⩽ Ek + hcEk+1 + hτ(h), c = L
q∑

j=−1
|bj|.

Since the right hand side is trivially a bound for Ek and Ek+1 = max{|ek+1|, Ek}, we simply
have

Ek+1 ⩽ Ek + hcEk+1 + hτ(h).

For hc ⩽ 1
2 , which is true as h→ 0, we obtain

Ek+1 ⩽
Ek

1− hc + h

1− hcτ(h) ⩽ (1 + 2hc)Ek + 2hτ(h).

If we proceed as in the analysis of the Euler’s method in section 2.1.1 we finally have

EN ⩽ e2c(b−t0)η(h) +
[
e2c(b−t0) − 1

c

]
τ(h),

57

which complete the proof. ■

To obtain the rate of convergence of O(hm) it is necessary that τk+1 = O(hm+1) in each step
k (i.e., τ(h) = O(hm) which needs relation (6.14) to hold), and the initial values y0, y1, . . . , yq

need to be computed with an accuracy of only O(hm), i.e., η(h) = O(hm).

6.5 Stability regions of multistep methods
Again consider the general multistep method (6.10). If we apply it on test equation y′(t) =

λy(t) we obtain

yk+1 =
q∑

j=0
ajyk−j + hλ

q∑
j=−1

bjyk−j.

Letting z = λh and rearranging the above equation give

(1− zb−1)yk+1 −
q∑

j=0
(aj + zbj)yk−j = 0. (6.17)

This is a homogenous linear difference equation of order q + 1. For absolute stability, we need
to find the general solution yk and impose some condition on z in order to have a bounded |yk|
as k → ∞. The general theory for solving linear difference equation is given in the Appendix
A. The general solution can be found by looking for solutions of the special form

yk = rk, k ⩾ 0.

Substituting this special solutions in to (6.18) and cancelling the factor rk−q yield

(1− zb−1)rq+1 −
q∑

j=0
(aj + zbj)rq−j = 0. (6.18)

This equation is called the characteristic equation. For example, the characteristic equations
for 3-step AB, AM, and BDF methods are

r3 − (1 + 23
12z)r

2 + 16
12zr −

5
12z = 0,

(1− 9
24z)r

3 − (1 + 19
24z)r + 5

24zr −
1
24z = 0,

(1− 6
11z)r

3 − 18
11r

2 + 9
11r −

2
11 = 0,

respectively.
Assume that the characteristic polynomial has roots r0, r1, . . . , rq. As the roots depend on

z, we denote them by r0(z), r1(z), . . . , rq(z). The boundary of the stability region is where all
roots have magnitude 1 or less, and at least one root has magnitude 1. Roots with magnitude
1 can be represented as r = eiθ for 0 ⩽ θ < 2π, where i is the imaginary number. To obtain
the boundary of the stability region we can find all z where (6.18) holds true with r = eiθ. One
can separate the terms containing z and write (6.18) in the form

ρ(r)− zσ(r) = 0

where
ρ(r) = rq+1 −

q∑
j=0

ajr
q−j, σ(r) = b−1r

q+1 +
q∑

j=0
bjr

q−j.

58

Now, for all θ ∈ [0, 2π) we compute the complex values

z = ρ(eiθ)
σ(eiθ) =: u+ iv

and plot v against u. The plot includes the boundary of the stability region. With a little care
we can identify the true stability region.

Stability regions of the Adams-Bashforth and Adams-Moulton methods are plotted in Fig-
ures 21 and 22. It can be seen that for AB and AM methods of equal order, the AM method
has a larger absolute stability region. Unless the AM methods of order 1 and 2 which are the
implicit Euler’s and the trapezoidal methods, stability regions of other AB and AM methods
do not contain the left-half plane and even do not encompass the whole negative real line.
Consequently, these methods are not adequate for solving stiff differential equations.

Figure 21: Stability regions of Adams-Bashforth methods of orders 1 to 4.

The stability regions of BDF schemes are plotted in Figure 23. Notably, BDF1 (implicit
Euler’s method) and BDF2 are A-stable. As the order of the method increases, the region
of absolute stability diminishes, although it still encompasses the entire negative real line and
maintains A(α)-stability. The angle α decreases with increasing order from 1 to 6. Nonetheless,
BDF1 to BDF6 are suitable schemes for solving stiff differential equations. However, schemes
of orders q ⩾ 7 lose this property and are not adequate for solving stiff problems.

6.6 One-step versus multistep methods
Finally, we compare one-step and multistep methods for numerical solution of ODEs. Some

advantages of one-step methods over multistep methods are listed below.

59

Figure 22: Stability regions of Adams-Moulton methods of orders 1 to 4. Note the different scale on
the axes comapred to Figure 21.

Figure 23: Stability regions of BDF methods of orders 1 to 6. BDF1 and BDF2 are A-stable and
BDF3-BDF6 are A(α)-stable.

• One-step methods are self-starting: the available initial guess y0 is enough to start and
compute next values y1, y2,

60

• Adaptivity is easier with one-step methods. The step length h can be changed at any
point in one-step method, based on an error estimate. In a multistep methods, however,
more care is required since the previous values are assumed to be equally spaced in the
standard form of these methods given in Table 4 and 5.

• If the solution y(t) is not smooth at some isolated point t∗ then with a one-step method
it is often possible to get full accuracy simply by ensuring that t∗ is a grid point. This is
impossible with multistep methods.

On the other hand, one-step methods have some disadvantages. The disadvantage of Taylor
series methods is that they require differentiating the given equation and are cumbersome
and often expensive to implement. RK methods only use evaluations of the function f , but a
higher order RK method requires evaluating f several times each time step. While, in multistep
methods only one new f evaluation is required in each time step.

7 MATLAB’s ODE suite
A suite of ODE solvers was introduced with version 5 of MATLAB and continued to current

versions. The suite now contains seven solvers. Here we introduce some of them.
• ode23

This is a low-order adaptive embedded solver for nonstiff ODEs. The ‘23’ in the function
name indicates that two simultaneous single-step formulas, one of second order and one
of third order, are involved.

• ode45

This is a high order embedded Runge-Kutta-Fehlberg solver which uses a fourth-order and
fifth-order formulas. For differential equations with smooth solutions, ode45 is often more
accurate than ode23 but still works for nonstiff ODEs. The MATLAB documentation
recommends ode45 as the first choice and Simulink blocks set ode45 as the default solver.

• ode23t

This solver is an implementation of the trapezoidal rule using a free interpolant. Use this
solver if the problem is only moderately stiff and you need a solution without numerical
damping. This solver can solve differential algebraic equations (DAEs) as well.

• ode15s

This solver is suitable for solving stiff ODEs and DAEs. It is a variable order solver based
on the numerical differentiation formulas. Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) which are a class of multistep solvers.
(we did not learn multistep methods in this course). Try ode15s when ode45 fails, or is
very inefficient.

• See also ode113, ode78, ode89, etc. in the MATLAB’s help document.

61

You can explore other ODE and DAE solvers by referring to MATLAB’s help documentation
or other sources available. The syntax for calling these solvers is one of the

1 [t,y] = solver(odefun ,tspan ,y0)
2 [t,y] = solver(odefun ,tspan ,y0 , options)

where solver is one of ode45, ode23 and else. odefun is a function that evaluates f(t, y),
the right-hand side of the differential equations. y0 is the initial condition. tspan is a two-
vector specifying the interval of integration, [t0, tfinal]. To obtain solutions at specific times
(all increasing or all decreasing), use tspan = [t0, t1, . . . , tfinal]. For example the command

1 [t,y] = ode45(odefun ,[0:0.01:0.5] ,[0 1]);

returns the function values at the specified vector [0:0.01:0.5]. But if the values at specified
points are not required you can simply set tspan = [0 0.5].

Optional integration arguments are created using the odeset function. For example we can
customize the error tolerances using

1 options = odeset('RelTol ',1e-6,'AbsTol ',1e -10);
2 [t,y] = ode45 (@ myfunc ,[0 0.5] ,[0 1], options);

This guarantees that the error at each step is less than RelTol times the value at that step,
and less than AbsTol. More precisely

|ek| ⩽ max{RelTol× |yk|, AbsTol}.

Decreasing error tolerance can considerably slow the solver.

Example 7.1. To solve the scaler value equation

y′(t) = t3/y(t), 0 ⩽ t ⩽ 10, y(0) = 1

using ode23 we can write (without additional options):

1[t,y] = ode23 (@(t,y) t^3/y ,[0 10] ,1);
2plot(t,y,'-ob')

The second example is a known nonstiff system of equations describing the motion of a rigid
body without external forces:

y′
1(t) = y2(t)y3(t)

y′
2(t) = −y1(t)y3(t)

y′
3(t) = −0.51y1(t)y2(t)

62

with initial conditions y1(0) = 0, y2(0) = 1 and y3(0) = 1. The time interval is [0, 12]. With
optional relative and absolute errors, we can compute the solutions by writing the following
script.

1options = odeset('RelTol ',1e-4,'AbsTol ' ,[1e-4 1e-4 1e -5]);
2[t,y] = ode45 (@ rigid ,[0 12] ,[0 1 1], options);
3plot(t,y(: ,1) ,'-',t,y(: ,2) ,'-.',t,y(: ,3) ,'.');

The rigid function can be written in a separated script as a new function:

1function yprime = rigid(t,y)
2yprime = zeros (3 ,1);
3yprime (1) = y(2)*y(3);
4yprime (2) = -y(1)*y(3);
5yprime (3) = -0.51*y(1)*y(2);
6end

All solvers solve systems of equations in the form y′ = f(t,y) or problems that involve a
mass matrix, M(t,y)y′ = f(t,y). ode15s and ode23t can solve problems with a mass matrix
that is singular, i.e., DAEs. The mass matrix can be imported via odeset. See doc odeset in
the MATLAB’s help for a list of options you can customize.

Lab Exercise 7.1. Repeat solving examples in Lab Exercise 2.3 using ode23 and ode45.
Try to test different options. In each case plot the exact and numerical solutions in the
same figure.

Lab Exercise 7.2. The Van der Pol oscillator is a self-maintained electrical circuit comprised
of an inductor (L), an initially charged capacitor with capacitance (C), and a nonlinear
resistor (R), all connected in series, as shown in the figure below.

By using the operational amplifier, the characteristic intensity-tension of the nonlinear re-

63

sistance (R) is given as

UR = −R0i0

[
i

i0
− 1

3

(
i

i0

)3]
(7.1)

where i is the current and i0 and R0 are the current and the resistance of the normalization
respectively. By applying the Kirchhoff’s law to the above figure we have

UL + UR + UC = 0 (7.2)

where UL and UC are the tension to the limits of the inductor and capacitor, respectively,
and are defined as

UL = L
di
dt , UC = 1

C

∫
i dt. (7.3)

1. Substitute (7.1) and (7.3) into (7.2) and obtain an integral-differential equation. Then
differentiate it and obtain the following second order ODE:

L
d2i

dτ 2 −R0

[
1− i2

i20

]
di
dτ + i

C
= 0. (7.4)

Then use the change of variables u = i/i0 and t = ωτ where ω = 1/
√
LC (electric

pulsation), to convert (7.4) to the following equation:
d2u

dt2 −R0

√
C

L

(
1− u2

) du
dt + u = 0.

2. By setting µ = R0

√
C
L

and adding initial conditions obtain the well-known Van der
Pol equation

u′′ − µu′(1− u2) + u = 0, 0 ⩽ t ⩽ b

u(0) = u0, u′(0) = u′
0.

(7.5)

and convert it to a system of first-order ODEs.

3. Apply RK2 and RK4 methods (your own codes) for solving the system obtained from
equation (7.5) with different values µ = 1, 10, 100, 1000, and with initial conditions
u0 = 2 and u′

0 = 0. For µ = 1 let b = 20, for µ = 10 let b = 100, for µ = 100 let
b = 500 and for µ = 1000 let b = 5000. For large values of µ use a supper small
stepsize h to get accurate results. In each case plot the numerical solution u and u′

in terms of t in interval [0, b] and report your observations. Also report the executing
times (sec.) in a table.

4. Now use ODE solvers ode45, ode23t and ode15s to solve this ODE again with dif-
ferent values of µ and b given in item (1). In each case produce the plot of u and
u′ in terms of t, and compute the CPU time required (sec.) for executing the codes.
Compare with the results of item (2).

64

8 Appendix

A: Difference equations
Consider the following homogeneous difference equation of order n,

ckyk + ck−1yk−1 + · · ·+ ck−pyk−p = 0, k ⩾ p (8.1)

with given initial values y0, y1, . . . , yp−1. The general solution of this equation is obtained by
looking for solutions of the special form

yk = rk, k ⩾ 0.

If we can obtain p linearly independent solutions, then an arbitrary linear combinations of this
solutions give the general solution of (8.1). Substituting yk = rk into (8.1) and cancelling rk−p,
we obtain

cpr
p + cp−1r

p−1 + · · ·+ c1r + c0 = 0 (8.2)

which is called characteristic equation, and the left side is characteristic polynomial. If (8.2)
possesses p distinct solutions (roots) r1, r2, . . . , rp then the general solution of (8.1) is

yk =
p∑

j=1
βjr

k
j , k ⩾ 0. (8.3)

The coefficients β0, β1, . . . , βp−1 are obtained by imposing the known initial values y0, y1, . . . , yp−1

into the general solution (8.3). It is clear that if |rj| ⩽ 1 then the solution yk does not grow as
k →∞. However, if rj is a root of multiplicity ν, i.e.,

rj = rj+1 = · · · = rj+ν−1,

then the ν linearly independent solutions corresponding to these roots are

rk
j , kr

k
j , . . . , k

ν−1rk
j

and in formula (8.3) the part βjr
k
j + βj+1r

k
j+1 + · · ·+ βj+ν−1r

k
j+ν−1 should be replaced by

[βj + kβj+1 + · · ·+ kν−1βj+ν−1]rk
j .

In this case the solution yk remains stable as k → ∞ provided that |rj| ⩽ 1 for simple roots
and |rj| < 1 for roots with multiplicity.

Example 8.1. The general solution of difference equation

yk + 5yk−1 + 6rk−2 = 0

is obtained in terms of roots r1 = 2 and r2 = 3 of characteristic polynomial r2 + 3r + 2,

yk = β12k + β23k.

If y0 = 0 and y1 = 2 are given then by solving y0 = β1 + β2 and y1 = 2β1 + 3β2 we simply
obtain β1 = −2 and β2 = 2. The solution then is

yk = −2× 2k + 2× 3k, k = 0, 1, 2, 3,

65

As second example consider the following difference equation

yk − 5yk−1 + 6yk−2 + 4yk−3 − 8yk−4 = 0.

The characteristic equation is r4− 5r3 + 6r2 + 4r− 8 = 0 with roots r1 = −1 and r2 = r3 =
r4 = 2. The general solution then is

yk = β1(−1)k + [β2 + kβ3 + k2β4]2k.

With given initial values y0 = −1, y1 = y2 = −7 and y3 = 7 we must solve

−1 =β1 + β2

−7 =− β1 + 2[β2 + β3 + β4]

7 =β1 + 4[β2 + 2β3 + 4β4]

7 =− β1 + 8[β2 + 3β3 + 9β4]

to obtain coefficients βj. Solving this system gives β1 = 1, β2 = −2, β3 = −2 and β4 = 1.

References
[1] K. E. Atkinson, W. Han, D. E. Stewart, Numerical Solution of Ordinary Differential Equa-

tions, Wiley, 2009.

[2] M. T. Heath, Scientific Computing, an Introductory Survey, revised 2nd edition, SIAM,
Philadelphia, PA, 2018.

[3] J. D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, 1991.

[4] R. J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations,
SIAM, 2007.

66

	An introduction to ODEs
	Modelling with ODEs: a funny example
	Higher order ODEs
	First order system of ODEs
	Stability of solutions

	Basic numerical methods
	Euler's method
	Error analysis of Euler's method

	General explicit one-step methods
	Zero-stability
	Absolute stability
	Implicit methods
	Taylor series methods
	Runge-Kutta methods

	Stiff differential equations
	What is stiffness?
	Stiff systems
	A-stability
	L-stability

	Adaptive time stepping
	Using two methods of different order
	Embedded RK methods

	Implicit Runge-Kutta methods
	Multistep methods
	Adams-Bashforth methods
	Adams-Moulton methods
	Backward differentiation formulas (BDF)
	Error analysis of multistep methods
	Stability regions of multistep methods
	One-step versus multistep methods

	MATLAB's ODE suite
	Appendix

