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1 Background

A point cloud represents an unorganized set of points in R3, typically obtained through laser
scanning of an object. Because of the limited sample density, partial information of the real
object has lost in the discrete point cloud, so the object’s geometry can not be completely
described. In order to obtain the geometric shape of the measuring object, we must fit a
proper continuous surface which preserves geometrical features of the physical entity to the
point cloud. See Figure 1.

Figure 1: Point clouds and reconstructed surfaces using the method of [1].

The problem of reconstructing a surface from a point cloud has been used in a variety of
applications, including computer graphics, computer aided design, medical imaging, image
processing, manufacturing, and remote sensing.

2 Project description

Given a point cloud

X := {xk = (xk, yk, zk) ∈ R3, k = 1, 2, . . . , N}

coming from an unknown surface Γ, the goal is to find a surface Γ̂ which is a reconstruction
(approximation) of Γ. In an implicit surface approach, Γ is defined as the surface of all
points x = (x, y, z) ∈ R3 that satisfy the implicit equation

f(x, y, z) = 0,
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for an unknown function f . In this case Γ is said to be the level set of f . To approximate f
one can assume that f is zero at on-surface points X, and use additional off-surface points
X+ and X− with positive and negative f values, respectively, and finally interpolate f
on this 3N interpolation points. This approach leads to a surface reconstruction method
which consists of three main steps: (1) generate off-surface points, (2) approximate f on the
extended dataset, (3) compute the zero iso-surface. If the set of normals
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to Γ at points xk are known (or can be approximated) the off-surface points can be generated
by marching a small distance δ along the positive and negative directions of normals:

X± = {xk ± δnk : k = 1, 2, . . . , N}.

Then we can assume that fX = 0, fX+ = ϵ and fX− = −ϵ, for a positive ϵ, and approximate
f using an appropriate technique. The zero iso-surface of f approximates Γ, hopefully well.

However, the naive method described above suffers from some disadvantages. Another
approach is based on the fact that if f : R3 → R defines a zero-level set Γ and n is a normal
vector to Γ, then n is curl-free, i.e.,

curl(n) = 0.

The reason is clear: because n is proportional to ∇f (gradient of f) and the curl of a
gradient field is zero. Consequently, we can design an algorithm to recover (approximate)
the potential f , such that ∇f ≈ n at every point xk.

Other techniques, such as Poisson Surface Reconstruction, also exist, which reconstruct
the surface by solving the Poisson equation [2].

All of these techniques must be paired with a stable and typically localized shattered
data approximation method. In this project we focus on the moving least squares (MLS)
approximation which is a local polynomial reproduction technique and results in an arbitrary
smooth reconstruction from data values at a set of scattered data points [3]. The method
is called moving because at every point x we must solve the a least square problem of the
form

argmin
p∈Pm

{
N∑
j=1

ϕδ(∥x− xj∥2)(f(xj)− p(xj))
2

}
.

Here, ϕδ represents a radial weight function that measures the influence of neighboring
points on the point x. MLS is usually used in Euclidean spaces, however, we can extend it
to manifolds and use the approaches outlined above for surface reconstruction.

Planed tasks are:

• learning and understanding the basics of the approximation with MLS,

• developing a numerical algorithm for surface reconstruction based on off-surface points,

• learning and understanding the interpolation with divergence-free and curl-free MLS

• developing an algorithm for surface reconstruction based on the curl-free approach.

The recommended programming environment is Matlab, although other programming lan-
guages can also be utilized.
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