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1 Introduction

Many physics and engineering problems give rise to time-dependent partial differential equa-
tions (PDEs), and one of the most significant and extensively used among them is the hy-
perbolic conservation law. One characteristic aspect of conservation laws is the potential
development of discontinuities, known as shocks, or sharp fronts in the solution, even when
the initial condition is smooth. These discontinuities can lead to non-physical oscillations
in the numerical solution. The goal of numerical techniques is to accurately capture these
discontinuities while avoiding oscillations and achieving solutions with a high order of con-
vergence. Over the past decades, the finite volume method (FVM) has become a widely-used
numerical technique for solving conservation laws. FVM has a rich history and has evolved
into various forms and methodologies. These methods are either linear or non-linear and
share similarities with finite difference schemes for hyperbolic PDEs, but are also adapt-
able to unstructured grids. According to the Godunov theorem, linear schemes must be
either first-order accurate or oscillatory. To achieve higher accuracy without oscillations,
non-linear schemes have been developed. These schemes typically employ the Godunov’s
approach, an artificial viscosity, or a high-order reconstruction.

2 Background

The earliest attempts at achieving higher than first-order reconstructions dates back to
the application of flux and slope limiter methods to obtain second-order accurate schemes
in FVM [1]. Subsequently, higher-order essentially non-oscillatory (ENO) reconstructions
were developed and widely used for approximating hyperbolic PDEs for computational fluid
dynamic problems [3]. ENO reconstruction involves determining sets of stencils surrounding
a control volume, computing a reconstruction on each stencil, and selecting the smoothest
reconstruction for the control volume. Weighted ENO (WENO) reconstruction improves
upon this by using a weighted sum of different reconstructions based on their smoothness.

The ENO and WENO reconstructions were initially based on polynomial interpolation
on structured grids (FVM cells). However, for unstructured meshes, these polynomial in-
terpolations can be replaced by radial basis function (RBF) approximations, which offer the
advantage that are well-suited for scattered data on different geometries and dimensions.

Recently, a weighted smoothed reconstruction (WSR) approach has been proposed in [2]
which employs a single central stencil alongside a smoothed RBF reconstruction to suppress
non-physical oscillations near shocks or sharp fronts.

1



3 Project description

Consider a system of conservation law on an open and bounded computational domain
Ω ⊂ Rd with an initial condition as follows

∂u

∂t
+∇ · F (u) = 0, u (0, x) = u0(x), (1)

where u ≡ u (t, x) : I × Ω −→ Rm is the vector of conserved variables (the solution) and
F (u) is a flux function. Moreover, I := (0, tf ] is a time interval with a final time tf , and
u0(x) is the initial function.

We solve this system using the finite volume method by employing RBF reconstructions
to achieve high-order and non-oscillatory solutions. For example, consider the Kurganov-
Petrova-Popov (KPP) equation, which represents a scalar conservation law (with m = 1) in
2D (with n = 2) and non-convex flux function F (u) = (sinu, cosu). The solution to this
equation is a rotating wave, which is challenging to approximate numerically. A numerical
solution using the WSR method is shown on the left side of Figure 1.
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Figure 1: Caption

Another example is the 2D Euler equations for gas dynamics (compressible fluids), where
the conserved variables are (ρ, ρu1, ρu2, E), representing density, momentum, and total en-
ergy, respectively. The flux function is given by:

F (u) =


ρu1 ρu2

ρu2
1 + p ρu1u2

ρu1u2 ρu2
2 + p

u1(E + p) u2(E + p)


where p is the pressure. The numerical solution for the density ρ using 151,768 cells (h ≈
0.005) was computed with the WSR approach and is shown on the right-hand side of Figure
1.

In this project, we build on our previous work by applying these methods to other systems
of conservation laws, such as Maxwell’s equations in electromagnetism. Additionally, we
aim to enhance the implementation of the WSR method by introducing parallelization and
improving both the stability and the computational efficiency of the involved local linear
systems.
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4 Planed tasks and required expertise

Planed tasks are:

• Learning and understanding the physics and mathematics of conservation laws

• Learning and understanding the RBF approximation,

• Learning and understanding the FVM for hyperbolic PDEs,

• Implementation of WENO and WSR algorithms for different systems using available
codes

• Enhancing the implementation of WSR algorithm

The required backgrounds are:

1. Basic understanding of interpolation techniques,

2. Basic understanding of numerical methods for PDEs,

3. Computer programming with basic understanding of HPC

4. Willingness to learn about numerical PDE solvers.
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